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Quantitative social science is not only about regression analysis or, in general, data

inference. Computer simulations of social mechanisms have an over 60 years long

history. They have been used for many different purposes—to test scenarios, to test

the consistency of descriptive theories (proof-of-concept models), to explore emergent

phenomena, for forecasting, etc… In this essay, we sketch these historical developments,

the role of mechanistic models in the social sciences and the influences from the natural

and formal sciences. We argue that mechanistic computational models form a natural

common ground for social and natural sciences, and look forward to possible future

information flow across the social-natural divide.

Keywords: computational social science, mechanistic models, simulation, complex systems, interdisciplinary

science

Background

In mainstream empirical social science, a result of a study often consists of two conclusions. First,
that there is a statistically significant correlation between a variable describing a social phenomenon
and a variable thought to explain it. Second, that the correlations with other, more basic, or trivial,
variables (called control, or confounding, variables) are weaker. There has been a trend in recent
years to criticize this approach for putting too little emphasis on the mechanisms behind the
correlations [1–3]. It is often argued that regression analysis (and the linear, additive models they
assume) cannot serve as causal explanations of an open system such as usually studied in social
science. A main reason is that, in an empirical study, there is no way of isolating all conceivable
mechanisms [4]. Sometimes authors point to natural science as a role model in the quest for
mechanistic models. This is somewhat ironical, since many natural sciences, most notably physics,
traditionally put more emphasis on the unification of theories and the reduction of hypotheses
[1]. In other words, striving to show that two theories could be more simply described as different
aspects of a single, unified theory. Rather than being imported from natural or formal sciences,
mechanistic modeling has evolved in parallel in the social sciences. Maybe the most clean-cut forms
of mechanistic models are those used in computer simulations. Their past, present and future, and
the flow of information regarding them across disciplines, are the themes of this paper. Before
proceeding, other authors would probably spend considerable amounts of ink to define and discuss
central concepts—in our case “mechanism” and “causal.” We think their everyday usage in both
natural and social sciences is sufficiently precise for our purpose and recommend [3] to readers
with a special interest of details.

In practice, establishing the mechanisms behind a social phenomenon takes much more
than simulating a model. Mechanistic models can serve several different purposes en route to
establishing a mechanistic explanation. We will make a distinction of proof-of-concept modeling,
discovery of hypotheses and scenario testing (described in detail below). There are of course other
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ways, perhaps also better, to characterize mechanistic models.
These categories are not strict either—they could be overlapping
with regard to a specific model. Nevertheless, we think they
serve a point in our discussion and that they are fairly well
defined.

The idea of proof-of-concept modeling is to test the
consistency of a verbal description, or cartoon diagram, of a
phenomenon [5]. It is in general hard to make an accurate
verbal explanation, especially if it involves connecting different
levels of abstraction, such as going from a microscopic to
a macroscopic description. A common mistake is to neglect
implicit assumptions, some that may even be the convention
of a field. With the support of such proof-of-concept models,
a verbal argument becomes much stronger. Then one has at
least firmly established that the constituents of the theory are
sufficient to explain the phenomenon. The individual-based
simulations of the Anasazi people (inhabiting parts of the
American West millennia ago) by Joshua Epstein, Robert Axtell
and colleagues [6] are blueprints of proof-of-concept modeling.
In these simulations, the authors combined a multitude of
conditions along with anthropological theories to show that they
could generate outcomes similar to the archeological records.

The most common use of mechanistic models is our second
category—to explore the possible outcomes of a certain situation,
and to generate hypotheses. We will see many examples of that in
our essay. As a first example, consider Robert Axelrod’s computer
tournaments to find optimal strategies for the iterated prisoner’s
dilemma [7]. The prisoner’s dilemma captures a situation where
an individual can choose whether or not to cooperate with
another. If one knows that the encounter is the last one, the
rational choice is always not to cooperate. However, if the
situation could be repeated an unknown number of times, then it
might be better to cooperate. To figure out the way to cope with
this situation, Axelrod invited researchers to submit strategies to
a round-robin tournament. The winning strategy (“tit-for-tat”)
was to start cooperating and then do whatever your opponent
did the previous step. From this result, Axelrod could make the
hypothesis that a tit-for-tat-like behavior is common among both
people and animals, either because they often face a prisoner’s
dilemma or at that such situations, once you face them, tend to
be important.

Mechanistic models forecasting social systems are less
frequent than our previous two classes. One reason is probably
that forecasting open systems is difficult (sometimes probably
even impossible) [4]; another that non-mechanistic methods
(machine learning, statistical models, etc. . . ) are better for this
purpose. A model without any predictive power whatsoever
is, of course, not a model at all, and under some conditions
all mechanistic models can be used in forecasting, or (perhaps
more accurately) scenario testing. One celebrated example is the
“World3” simulation popularized by the Club of Rome 1972
book The Limits to Growth [8] where an exponentially growing
artificial population faced a world of limited resources. Maybe
a sign of the time, since several papers from the early 1970s
called for “whole Earth simulations” [9, 10]. Echoes of this
movement were heard recently with the proposal of a “Living
Earth Simulator” [11].

In this essay, we will explore mechanistic models as scientific
explanations in the social sciences. We will give an overview of
the development of computer simulations of mechanistic models
(primarily in the social sciences, but also mentioning relevant
developments in the natural sciences), and finally discuss if and
how mechanistic models can be a common ground for cross-
disciplinary research between the natural and social sciences.
We do not address data-driven science in the interface of the
natural or social, nor do we try to give a comprehensive survey
of mechanistic models in the social sciences. We address anyone
interested in using simulation methods familiar to theoretical
natural scientists to advance the social sciences.

Influence from the Natural and Formal

Sciences

As we will see below, the development and use of computer
simulations to understand social mechanisms has happened on
quite equal terms as in the natural and formal sciences. It will,
however, be helpful for the subsequent discussion to sketch the
important developments of computer simulations as mechanistic
models in the natural sciences. This is of course a topic that would
need several book volumes for a comprehensive coverage—
we will just mention what we regard the most important
breakthroughs.

The Military Origins
Just like in social science, simulation in natural science has many
of its roots in the military from the time around the Second
World War. The second major project running on the first
programmable computer, ENIAC, started April 1947. The topic,
the flow of neutrons in an incipient explosion of a thermonuclear
weapon [12], is perhaps of little interest today, but the basic
method has never ran out of fashion—it was the first computer
program using (pseudo) randomnumbers, and hence an ancestor
of most modern computer simulations. Exactly who invented
this method, codenamed Monte Carlo, is somewhat obscure,
but it is clear it came out of the development of the hydrogen
bomb right after the war. The participants came from the
(then recently finished) Manhattan project. Nicholas Metropolis,
Stanislaw Ulam and John von Neumann are perhaps most well-
known, but also Klara von Neumann, John’s wife [12]. It was
not only the first program to use random numbers, it was also
the first modern program in the sense that it had function calls,
and had to be fed into the computer along with the input. As a
curiosity, the random number generator in this program worked
by squaring eight-digit numbers and using the mid eight digits
as output and seed to the next iteration. Far from having the
complexity of modern pseudo random number generator (read
Mersenne Twister [13]), it gives random numbers of (at least in
the authors’ opinion) surprisingly good statistical quality.

The first Monte Carlo simulation was not an outright success
as a contribution to the nuclear weapons program. Nevertheless,
the idea of using random numbers in simulations has not
fallen out of fashion ever since, and the Monte Carlo method
(nowadays referring to any computational model based on
random numbers) has become a mainstay of numerical methods.
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Another very significant step for the natural sciences, especially
chemistry and statistical physics, by the Los Alamos group
was the Metropolis–Hastings algorithm—a method to sample
configurations of particles, atoms or molecules according to
the Boltzmann distribution (connecting the probability of a
configuration and its energy). The radical invention was to
choose configurations with a probability proportional to the
Boltzmann distribution and weighting them equally, rather than
choosing configurations randomly and weighing them by the
probability given by the Boltzmann distribution [14]. Hastings
name was added to credit his extension of the algorithm
to general distributions [15]. Today, this algorithm is an
indispensible simulation technique to generate the probability
distributions of the state of a system both in natural and social
sciences (usually called Markov Chain Monte Carlo, MCMC).

The Monte Carlo project and the MCMC method did not
immediately lead to fundamental advances in science itself.
Deterministic computational methods, on the other hand, did,
and (not surprisingly) post-Manhattan-project researchers were
involved. Enrico Fermi, John Pasta, and Stanislaw Ulam (and,
like the Monte Carlo project, with undercredited help by a
female researcher, Mary Tsingou [16]) studied vibrations of a
one-dimensional string with non-linear corrections to Hooke’s
law (that states that the force needed to extend a spring a certain
distance is proportional to the distance). They expected to see the
non-linearity transferring energy from one vibrational mode (like
the periodic solution of the linear problem) to all other modes
(i.e., thermal fluctuations) according to the equipartition theorem
[17]. Instead of such a “thermalization” process, they observed
the transition to a complex, quasi-periodic state [18] that never
lost its memory of the initial condition. The FPU paradox was the
starting point of a scientific theme called non-linear science that
also, as we will see, has left a lasting imprint on social science.

Complexity Theory
Non-linear science has a strong overlap with chaos theory,
another set of ideas from natural sciences that influenced social
science. Chaos is summarized in the vernacular by the “butterfly
effect”—a small change (the flapping of a butterfly’s wings)
could lead to a big difference (a storm) later. One important
early contribution came from Edward Lorentz’s computational
solutions of equations describing atmospheric convection. He
observed that a small change in the initial condition could send
the equations off into completely different trajectories [19]. Just
like for the FPU paradox, the role of the computational method
in chaos theory has largely been to discover hypotheses that later
have been corroborated by analytical studies. This line of research
has not been directly aimed at discovering newmechanisms; still,
ideas and concepts from chaos theory have also reached social
sciences [20].

Another natural science development largely fueled by
computer simulations, which has influenced social sciences,
is that of fractals. Fractals are mathematical objects that
embody self-similarity—a river can branch into contributaries,
that branch into smaller contributaries, and so on, until the
biggest rivers are reduced to the tiniest creeks [21]. At all
scales, the branching looks the same. Fractals provide an

analysis tool—the fractal dimension—that can characterize self-
similar objects. There are many socioeconomic systems that
are self-similar—financial time series [22], the movement of
people [23], the fluctuations in the size of organizations [24],
etc. . .Quite frequently, however, authors have not accompanied
their measurement of a fractal dimension with a mechanistic
explanation of it, which is perhaps why fractals have fallen out
of fashion lately.

Fractals are closely related to power-law probability
distributions, i.e., the probability of an observable x being
proportional to x−α, α > 0. Power-laws are the only self-similar
(or “scale-free”) real-to-real functions in the sense that, if e.g.,
the wealth distribution of a population is a power law, then a
statement like “there are twice as many people with a wealth
of 10X than 15X” is true, no matter if X is dollars, euros, yen
or kronor [25]. The theories for such power-law phenomena
date back to Pareto’s lectures on economics published 1896 [26].
Fractals and power-laws are also connected to phase transitions
in physics—an idea popularized in Hermann Haken’s book
Synergetics [27].

Next step in our discussion is the studies of artificial life.
The central question in this line of research is to mechanistically
recreate the fundamental properties of a living system, including
self-replication, adaptability, robustness and evolution [28]. The
origins of artificial life can be traced to John von Neumann’s self-
replicating cellular automata. These are configurations of discrete
variables confined to an underlying square grid that, following a
distinct set of rules, can reproduce, live and die [29]. The field of
artificial life later developed in different directions, both toward
themore abstract study of cellular automata and tomore biology-
related questions [28]. It is also strongly linked to the study
of adaptive systems (systems able to respond to changes in the
environment) [30] and has a few recurring ideas that also are
related to social phenomena. The first idea is that simple rules
can create complex behavior. The best-known model illustrating
this is perhaps Conway’s game of life. This is a cellular automaton
with the same objectives as that of von Neuman, but with fewer
and simpler rules [28]. The second idea (maybe not discovered
by the field of artificial life, but at least popularized) is that of
emergence. This refers to the properties of a system, as a whole,
coming from the interaction of a large number of individual
subunits. A textbook example is that of murmurations of birds
(flocks of hundreds of thousands of e.g., starlings). These can
exhibit an undulating motion, fluctuating in density, that in no
way could be anticipated from the movement of an individual.
Another feature of emergence, exemplified by bird flocks, is
that of decentralization—there is no leader bird. These topics
are common to many disciplines of social science (emergence
is similar to the micro-to-macro-transition in sociology and
economics). These theories have spawned its own modeling
paradigm—agent based models [31–34]—that is similar to what
was simply called “simulation” in early computational social
science. One first sets up rules for how units (agents) interact with
each other and their surroundings. Then one simulates many of
them together (typically on a two-dimensional grid) and let them
interact. We note that the concept of emergence has also been
influential to cognitive, and subsequently behavioral, science. The
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idea of cognitive processes being emergent properties of neural
networks—connectionism [35]—is nowadays fundamental to
our understanding of computational processes in nature [36].

In the 1980’s, artificial life, adaptive systems, fractals and chaos
where grouped together under the umbrella term complexity
science [37]. This was in many ways a social movement
gathering researchers of quite marginalized research topics (the
Santa Fe Institute, and some similar centers, acted as hubs
for this development). Many of the themes within complexity
science could probably just as well be categorized as mutually
independent fields. This is perhaps best illustrated in that
there is no commonly accepted definition of “complexity.”
Instead, there are a number of common, occasionally (but
not always) connected, themes (like the above-mentioned,
emergence, decentralized organization, fractals, chaos, etc. . . )
that together defines the field. On the other hand, there is
a common goal among complexity scientists to find general,
organizational principles that are not limited to one scientific
field. In spirit, this dates back to, at least, von Bertalanffy’s general
systems theory [38]. The diversity of ideas and applications
has not necessarily been a problem for complexity science; on
the contrary, it has encouraged many scientists of different
backgrounds (including the authors of this paper) to try
collaborating, despite the transdisciplinary language barriers.

Game Theory
Game theory is a mathematical modeling framework for
situations where the state of an individual is jointly determined
by the individual’s own decisions and the decisions of others
(who all, typically, strive to maximize their own benefit) [39].
Vaccination against infectious diseases is a typical example. If
everyone else were vaccinated, the rational choice would be to
not get vaccinated. The disease could anyway not spread in
the population, whether or not you are vaccinated. Moreover,
vaccines can, after all, have side effects, and injections are
uncomfortable. If nobody were vaccinated, and the chance
of getting the disease times the gravity of the consequences
outweighs the above-mentioned inconveniences, then it would be
rational to get vaccinated. This situation could, mathematically,
be phrased as a minority game [40]. The emergent solution for
a population of rational, well-informed and selfish individuals
is that a fraction of the agents would get vaccinated and
another fraction not. This example is, at the time of writing, the
background to a controversy where people getting vaccinated see
people resisting vaccination as irresponsible to the society [41].

Game theory has been an especially strong undercurrent in
economy and population biology. We note that a special feature
of game theory, compared to similarly interdisciplinary theories,
is that the various fields using it seem rather well informed
about the other fields’ progress and not so many concepts have
been reinvented. Game theory itself is not a framework for
mechanistic models, and especially in population biology (where
an individual usually represents a species or a sub-population)
it is not clear that is its main use. Nevertheless, there are many
mechanistic models in economy and population biology that uses
game theory as a fundamental ingredient [42].

Network Theory
Just like complexity and game theory, network theory is a great
place for information exchange between the natural and social
sciences. Its basic idea is to use networks of vertices, connected
pairwise by edges, as a systematic way of simplifying a system. By
studying the network structure (roughly speaking, how a network
differs from a random network) one can say something about
how the system functions as a whole, or the roles of the individual
vertices and edges in the system [43, 44]. The multidisciplinarity
of network theory is reflected in its overlapping terminology—
vertices and edges are called nodes and links in computer science,
sites and bonds in physics and chemistry, actors and ties in
sociology, etc. . .

Many ideas in network theory originated in social science,
and for that reason it may not fit in a section about influences
from natural science. Nevertheless, as mentioned, it is a field
where ideas frequently flow from the natural and formal sciences
to social sciences. Centrality measures like PageRank and HITS
were, for example, developed in computer science [43], as
were fundamental concepts of temporal network theory (where
information about the time when vertices and edges are active is
included in the network) [45].

Early Computer Simulations to Understand

Social Mechanisms

In this section, we will go through some developments in the
use of mechanistic models in social science. We will focus on
early studies, assuming the readers largely know the current
trends. This is by no means a review (which would need volumes
of books), but a few snapshots highlighting some differences
and similarities to today’s science in the methodologies and the
questions asked.

Operations Research
Just like the computer hardware, the research topics for
simulation and mechanistic models have many roots in military
efforts around the Second World War. Perhaps the main
discipline for this type of research is operations research, which
is usually classified as a branch of applied mathematics. The
objective of operations research is to optimize themanagement of
large-scale organizations—managing supply chains, scheduling
crews of ships, planes and trains, etc. . . The military was not
the only such organization that interested the early computer
simulation researchers. Harling [46] provides an overview of the
state of computer simulations in operation research in the late
1950’s. As a typical example, Jennings and Dickins modeled the
flow of people and buses in the Port Authority Bus Terminal
in New York City during the morning rush hour [47]. They
modeled the buses individually and passengers as numbers
of exiting, not transferring, individuals. The authors tried to
simultaneously optimize the interests of three actors—the bus
operators, the passengers, and the Port Authority (operating
the terminal). These objectives were mostly not conflicting—in
principle it was better for all if the passenger throughput was
as high as possible. A further simplifying factor was that the
station was the terminus for all buses. The challenge was that
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buses stopping to let off passengers could block other buses, thus
creating a traffic jam. To solve this problem, the paper evaluated
different methods to assign a bus stop to an incoming bus.

Political Science
Although rarely cited today, simulation studies of political
decision processes were quite common in the 1950s and 1960s.
Crecine [48] reviews some of these models. One difference from
today is that these models were less abstract, often focusing on a
particular political or juridical organization. The earliest paper
we are aware of is Guetzkow’s 1959 investigation of the use
of computer simulations as a support system for international
politics [49]. However, many studies in this field credit de Sola
Pool et al.’s simulation of the American presidential elections
1960 and 1964 as the starting point [50]. In their work, the
authors gathered a collection of 480 voter profiles that they could
use to test different scenarios (with respect to what topics that
would turn out to be important for the campaign). Eventually
they predicted the outcome of the elections with 82% accuracy.

In their Ph.D. theses, Cherryholmes [51] and Shapiro [52]
modeled voting in the House of Representatives by: First,
dividing members into classes with respect to how susceptible
they were to influence. Second, modeling the influence process
via an interaction network where people were more likely to
communicate (and thus influence each other) if they were
from the same party, state, committee, etc. . .Cherryholmes
and Shapiro also validated their theories against actual voting
behavior (something rarely seen in today’s simulation studies
of opinion spreading [53]). Other authors addressed more
theoretical issues of voting systems, such as Arrow’s paradox
[54, 55] (which states, briefly speaking, that a perfect voting
system is impossible for three or more alternatives).

There was also a considerable early interest in simulating
decision making within an organization. Apparently the Cuban
missile crisis of 1962 was an important source of inspiration.
De Sola Pool was, once again, a pioneer in this direction with
a simulation of decision-making in a developing, general crisis
with incomplete information [56]. Even more explicitly, Smith
[57] based his simulation on the personal accounts of the people
involved in solving the Cuban missile crisis. Clema and Kirkham
proposed yet a model of risks, costs and benefits in political
conflicts [58]. Curiously, as late as 2007 there was a paper
published on simulating the Cuban missile crisis [59]. However,
this paper exploresmechanisticmodeling as amethod of teaching
history, rather than the mechanisms of the decision making
process itself.

Another type of political science research concerns the
evolution of norms. A classic example is Axelrod’s 1986 paper
[60] where he investigated norms emerging as successful
strategies in situations described by game theory. Axelrod let the
norms evolve by genetic algorithms (an algorithmic framework
for optimization inspired by genetics). In addition to norms,
Axelrod also studied metanorms—norms that promote other
norms (by e.g., encouraging punishing of people breaking or
questioning the norms). Axelrod interpreted the results of the
simulation in terms of established social mechanisms supporting

the existence of norms (domination, internalization, deterrence,
etc. . . ).

Linguistics
In linguistics, the first computer simulation studies appeared
in the mid-1960s. A typical early example is Klein [61] who
developed an individual-based simulation platform for the
evolution of language. Just like Cherryholmes and Shapiro
(above), Klein assumed that the communication was not
uniformly random between all pairs of individuals—spouses were
more likely to speak to, and learn from, one another, as were
parents and children. In multilingual societies, speakers were
more likely to communicate to another speaker of the same
language (Klein allowed multilingual individuals). A language
was represented by a set of explicit grammatical rules (with
explicit word classes: nouns, verbs, etc. . . ). Communication
reinforced the grammatical rules between the speakers. Klein
incremented the time by years and simulated several generations
of speakers, but was not entirely happy with the results as
communities tended to lose the diversity of their grammar
quickly or diverge to mutually incomprehensible grammars. In
retrospect, we feel like it was a still a great step forward, where
the negative results helped raising important questions about
what mechanisms that were missing. More modern models of
language evolution have consideredmuch simpler problems [62].
One cannot help thinking that this is to avoid the complexities of
reality, and more models in the vein of Klein’s 1966 paper would
be more important. Later, Klein focused his research on more
specific questions like the evolution of Tikopia and Maori [63].
The goal of these early simulation studies was to create something
similar to a sociolinguistic fieldwork study. Thus, these were
proof-of-concept studies on a more concrete level than today’s
more theoretically motivated research.

Geography
Demography and geography were also early fields to adopt
computer simulations. One notable pioneer was the authors’
compatriot Torsten Hägerstrand whose Ph.D. thesis used
computer simulations to investigate the diffusion of innovations
[64]. His model was similar to two-dimensional disease-
spreading models (but probably developed independently of
computational epidemiology, where the first paper was published
the year before [65]). Hägerstrand used an underlying square
grid. People were spread out over the grid according to an
empirically measured population distribution. At each iteration
of the simulation, there was a contact between two random
individuals (where the chance of contact decayed with their
separation). If the one of the individuals had adopted the
innovation, and the other had not, then the latter would (with
100% probability) adopt it. A goal of Hägerstrand’s modeling
was to recreate a “nebula shaped” distribution of the innovation
(this is further developed in Hägerstrand [66]). To this end,
Hägerstrand introduced a concept (still in use) called mean
information field representing the probability of getting the
information (innovation) from the source.

A technically similar topic to information diffusion is that
of migration (as in moving one’s home). This research dates
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back to Ravenstein’s 1885 paper “The laws of migration” which
is very mechanistically oriented [67]. He listed seven principles
for human migration such as: short-distance migration is more
common than long-distance; people who migrate far have a
tendency to go to a “great centre of commerce or industry.”
Computer simulation lends itself naturally to exploring the
outcomes such mechanisms in terms of demographics. One such
example is Porter’s migration model where agents were driven
by the availability of work and the availability of work was partly
driven by where people were. If there was an excess of workers,
workers would move to the closest available job opportunity; if
there was an excess of vacancies, the closest applicant would be
offered the job [68].

The study of human mobility (how people move around both
in their everyday lives and extreme situations, such as disasters)
is an active field of research. It has even been revitalized lately
by the availability of new data sources (see e.g., [23]). One
common type of simulation study, involving human mobility
data, aims at predicting outbreaks of epidemic diseases. Tomodel
potentially contagious contacts between people, one can usemore
or less realism. However, even for the most realistic and detailed
simulations, there is a choice of using the real data to calibrate
a model of human mobility [69] or run the simulation on actual
mobility data (perhaps with simulations to fill in missing data)
[70].

Economics and Management Science
There were many early computational studies in economics that
used simulation techniques for scenario testing [71, 72]. A typical
question was to investigate the operations of a company at
many levels (overlapping with the operations-research section
above). Evidently, the researchers saw a future where every
aspect of running a business would be modeled—marketing,
human resource development, social interaction within the
company, the competition with other firms, adoption of new
technologies, etc. . . To make progress, the authors needed to
restrict themselves. Birchmore [72], for example, focused on
forest firms. Much of his work revolved around a forestry firm’s
interaction with its resource and the many game theoretical
considerations that arouse from the conflicting time perspectives
of short- and long-time revenues and the competition with other
companies. Birchmore only used one or a few combinations
of parameter values, rather than investigating the parameter
dependence like modern game theory would do. Finally, we
note that economics and management science were also early
to address questions about validation and other epistemological
aspects of computer simulations [73].

Anthropology and Demographics
Anthropology was also early to embrace simulation techniques,
especially to problems relating to social structure, kinship and
marriage [74]. These are perhaps the traditional problems of
anthropology that has the most complex structure of causal
explanations, and for that reason are most in need for proof-of-
concept-type computer simulations. Gilbert and Hammel [75],
for example, addressed the question: “How much, and in what
ways, is the rate of patrilateral parallel cousinmarriage influenced

by the number of populations involved in the exchange of
women, by their size, by their rules of postmarital residence, and
by degree of territorially endogamic preference?” To answer these
questions, the authors constructed a complex model including
villages of explicit sizes, individuals of explicit gender, age and
kinship, and rules for how to select a spouse. The model was
described primarily in words, in much detail and length. A
modern reader would think that pseudocode would make the
paper more readable (and certainly much shorter). Probably the
anthropology journals of the time were too conservative, or the
programming literacy to low, for including pseudocode in the
articles.

In a study similar to Gilbert and Hempel, one step closer to
demographics, May and Heer [76] used computer simulations to
argue that the large family sizes in rural India (of that time) were
rational choices for the individuals, rather than a consequence
of ignorance and indecision. Around the same time, there were
studies of more general questions of human demographics [77],
highlighting a transition from mechanistic models for scenario
testing to proof-of-concept models and hypothesis discovery.

Cognitive and Behavioral Science
In cognitive science (sometimes bordering to behavioral science),
researchers in the 1960s were excited about the prospects of
understanding human cognition as a computer program.

Abelson and Carroll [78], for example, proposed that
mechanistic simulations could address questions like how a
person can reach an understanding (“develop a belief system”)
of a complex situation in terms of a set of consistent descriptive
clauses (encoding, for example causal relationships). Several
researchers proposed reverse engineering of human thinking
into computer programs as a method to understand cognitive
processes [79]. Some even went so far as to interpret dreams
as an operating system process [80]. These ideas were not
without criticism. Frijda [81] argued that there would always
be technical aspects of computer code without a corresponding
cognitive function. History seems to given the author right since
few studies nowadays pursues replicating human thinking by
procedural computer programs. There were of course many
other types of studies in this area. For example, early studies
in computational neuroscience influenced the behavioral-science
side of cognitive science [82].

Sociology
Simulation, in sociology, has always been linked to finding social
mechanisms. Even before computer simulations, there were
mathematical models for that purpose [83, 84]. As an example
of mathematical model building, we briefly mention Nicholas
Rashevsky and his program in “mathematical biophysics” at
University of Chicago [85, 86]. Trained as a physicist, Rashevsky
and his group pioneered the modeling of many social (and
biological) phenomena such as social influence [87], how social
group structure affect information flow [88], and fundamental
properties of social networks [89]. However, Rashevsky and
colleagues operated rather disconnected from the rest of
academia—mostly publishing in their Bulletin of Mathematical
Biophysics and often not building on empirical results available.
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Perhaps for this reason (even though his contemporaries were
aware of his work [90]) is Rashevsky et al.’s direct impact on
today’s sociology rather limited.

Even though there were stochastic models in sociology in
the early 1960’s (e.g., [91]), these were analyzed analytically and
early sociological computer simulations were off to a rather late
start. Coleman [92], Gullahorn and Gullahorn [93, 94] gave the
earliest discussions of the prospects of computer modeling in
sociology that we are aware of. Coleman discussed both abstract
questions about relating social action and social organization, and
more concrete ones like using simulation to test social-contagion
scenarios of smoking among adolescents. The Gullahorns were
more interested in organization and conflict resolution, typically
in the interface of sociology and behavioral science. McGinnis
[95] presented a stochastic model of social mobility that he
analyzed both analytically and by simulations. “Mobility,” in
McGinnis work, should be read in an extremely general sense,
indicating change of an individual’s position in any sociometric
observable (including physical space).

Markley’s 1967 paper on the SIVA model is another early
simulation study of a classic sociological problem [96], namely
what kind of pairwise relationships that could build up a stable
organization. The letters SIVA stands for four aspects of such
relationships in an organization facing some situation that could
require some action to be taken—Strength (the ratio of how
important the two individuals are to the organization), Influence
(describing how strongly they influence each other), Volitional
(the relative will to act with respect to the situation) and Action
(quantifying the joint result of the two actors). These different
aspects are coupled and Markley used computer simulations to
find fixed points of the dynamics. For many parameter values, it
turned out that the SIVA values diverged or fluctuated—which
Markley took as an indication that one would not observe such
combinations of parameter values in real organizations.

A model touching classical sociological ground that recently
has received exceptional amounts of attention is Schelling’s
segregation model [97]. With this model, Schelling argued that
a strong racial segregation (with the United States in mind) does
not necessarily mean that people have very strong opinions about
the race of their neighbors. Briefly, Schelling spread individuals
of two races on a square grid. Some sites were left vacant. Then
he picked an individual at random. If this individual had a lower
ratio of neighbors of the same race than a threshold value, then he
or she moved to a vacant site. It turned out that the segregation
(measured as the fraction of links between people of the same
race) would always move away from threshold as the iterations
converged. Segregation, Schelling concluded, could thus occur
without people actively avoiding different races (they just needed
to seek similar neighbors), and spatial effects would make a
naïve interpretation of the observed mixing overestimating the
actual sentiments of the people. The core question—what are the
weakest requirements (of tolerance to your neighbors ethnicity)
for something (racial segregation) to happen—was a hallmark
of Schelling’s research and probably an approach that could
be fruitful for future studies. We highly recommend Schelling’s
popular science book Micromotives and Macrobehavior [98] as a
bridge between the methodologies of natural and social science.

Discussion and Conclusions

The motivation for the use of mechanistic models in social
science is often to use them as proof-of concept models. “[I]t
forces one to be specific about the variables in interpersonal
behavior and the exact relation between them” [93, 99, 100].
The way computer programming forces the researchers to
break down the social phenomena into algorithmic blocks helps
identifying mechanisms [93, 101]. Other authors point out
that with computational methods, the researchers can avoid
oversimplifying the problem [50]. Another point of view is that
simulation in social sciences is primarily for exploring poorly
understood situations and phenomena as a replacement for an
actual (in practice impossible to carry out) experiment [48, 102–
104]. Such models are obviously closest to hypothesis generators
in our above classification. Crane [105] and Ostrom [106] think
of computer simulations that, alongside natural languages and
mathematics, could describe social sciences. Going a bit off topic,
other authors went so far as to using, or recommending to
use, computer programs as representations of human cognitive
processes [79, 80, 107].

The history of computational studies in social science—as
illustrated by our examples—has seen a gradual shift of focus.
In the early days, it was, as mentioned, often regarded as a
replacement for empirical studies. Such mechanistic models
for scenario testing still exists in both natural and social
science. However, nowadays it is much more common to use
computational methods in theory building—either one uses it
to test the completeness of a theoretical framework (proof-
of-concept modeling), or to explore the space of possible
mechanisms or outcomes (hypothesis discovery).

It is quite remarkable how similar this development has been
in the natural and social sciences. At least since mid-1950s, it
is hard to say that one side leads the way. This is reflected
in how the information flows between disciplines. Looking at
the interdisciplinary citation patterns [108] found that out of
203,900 citations from social science journals, 33,891 were to
natural science journals, and out of 10,080,078 citations from
natural science journals 35,199 were to social science journals. If
citations were random, without any within-field bias there would
be around 201,000 interdisciplinary citations in both directions,
which is 5.9 times the number of social science citations to natural
science and 5.7 times the number of natural science citations to
social science. In this view, there is almost no inherent asymmetry
in the information flow between the areas, only an asymmetry
induced by the size difference.

Even though social scientists do not need to collaborate
with natural scientists to develop mechanistic modeling, we
do encourage collaboration. The usefulness of interdisciplinary
collaborations comes from the details of the scientific work.
It can help people to see their object system with new eyes.
One discipline may, for example, care about the extreme and
need input from another to see interesting aspects of the
average (cf. phase transitions in the complexity of algorithms
[109]). Interdisciplinary information flow could help a discipline
overcome technical difficulties. The use of MCMC techniques
in the social sciences may be a good example of this. It is,
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however, important that such developments come from a need to
understand the world around us and not just because they have
not been done before.

A major trend at the time of writing is “big data” and “data
science.” This essay has intentionally focused on the other side of
computational social science—mechanistic models. In practice,
these two sides can (and do) influence each other. If it cannot
predict real systems at all, a mechanistic model is quite worthless
in providing a causal explanation [110, 111]. Modern, large-scale
data sets provide plenty opportunities to validate models [112–
114]. Another use of big data is in hybrid approaches where
one combines a simulation and an empirical dataset, for example
simulations of disease spreading on temporal networks of human
contacts [45].

As a concluding remark, we want to express our support
for social scientists interested in exploring the methods of
natural science and natural scientists seeking applications for
their methods in the social sciences. To be successful and make
most out of such a step, we recommend the social scientist
to spend a month to learn a general programming language
(Python, Matlab, C, etc. . . ). There is not shortcut (like an
integrated modeling environment) to learning the computational
subtleties and trade-offs of building a simulation model, and
simulation papers often do not mention them. Furthermore,
if a social scientist leaves this aspect to a natural scientist,

then she also leaves parts of the social modeling to the natural
scientist—collaboration simply works better if the computational
fundamentals need not be discussed. To the theoretical natural
scientists that are used to simulations, we recommend spending a
month reading popular social science books (e.g., [98, 102, 115]).
There are too many examples of natural scientists going into
social science with the ambition to use the same methods as
they are used to—only replacing the natural components by
social—and ending up with results that are unverifiable, too
general to be interesting, infeasible or already known. While
reading, we encourage meditating the following question—why
do social scientists ask different questions about society than
natural scientists do about nature?
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