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1. INTRODUCTION

Collisionless shocks are considered as one of the most efficient phenomena for the electron
acceleration in space and astrophysical plasmas, yet the detailed acceleration process and heating
mechanism remain unsolved. Various acceleration and heating mechanisms have so far been
proposed and discussed to explain the spacecraft measurements in situ at Earth’s bow shock,
involving the large-scale electromagnetic fields, plasma turbulence, and wave-particle interactions.
A key element of the acceleration and heatingmechanisms is the spatial scale of the shock transition
with respect to the gyro-radius of the electrons [1]. In the simplest picture, since the shock transition
occurs on a spatial scale of ion gyro-radius, the electrons behave as magnetized at the shock
transition.

The cross-shock potential (electrostatic potential drop across the shock transition) plays two
distinct roles in electron dynamics [2]. First, the cross-shock potential reduces a certain amount of
the upstream flow kinetic energy (mostly carried by the ions due to their mass); Second, the kinetic
energy is used to heat the electrons (DC heating). On the other hand, the electrons can also be
scattered (or demagnetized) by high-amplitude, randomly-oscillating electromagnetic fields such
as turbulence or strong inhomogeneities (AC heating). Space turbulence can potentially scatter
the electrons randomly leaving upstream or downstream of the shock ramp region. For a quasi-
perpendicular shock, the electrons become scattered in a non-adiabatic sense perpendicular to the
mean magnetic field (Figure 1).

In this paper, the adiabaticity in collisionless shocks is addressed to the studies based on particle-
in-cell-simulation (PIC). Two important parameters enter a PIC simulation carried out for the
study of a collisionless shock: the mass ratio mp/me between ions and electrons and the ratio of
the electron plasma frequency to gyrofrequency ωpe/�ce, see e.g., [3]. Due to the computational
limitations, the usage of the realistic values for the both parameters is not yet possible. The common
way to overcome this problem is to find a compromise for the two parameters that can mostly
optimize the purpose of the study. The impact of using low frequency ratio of the electron plasma
frequency to gyrofrequency in numerical simulations has been discussed in Krasnoselskikh et al.
[4]: the electric field is considerably overestimated than it should be for a comparison with the Earth
bow shock. Here, I address the question, “What is the consequence of using a smaller frequency
ratio upon the adiabatic motion of the electrons”?

2. AUTHOR’S OPINION

2.1. Adiabaticity and PIC (Particle-in-Cell) Simulations

Adiabatic electrons are characterized by a constant magnetic moment µ =
mv2⊥
2B and a particle

energy (which is a sum of the electrostatic potential and the kinetic energy) E = e8 + 1
2mv2‖ +

1
2mv2⊥, wherem is the electronmass, v‖ and v⊥ the particle velocity parallel and perpendicular to the

http://www.frontiersin.org/Physics
http://www.frontiersin.org/Physics/editorialboard
http://www.frontiersin.org/Physics/editorialboard
http://www.frontiersin.org/Physics/editorialboard
http://www.frontiersin.org/Physics/editorialboard
http://dx.doi.org/10.3389/fphy.2016.00029
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2016.00029&domain=pdf&date_stamp=2016-07-22
http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive
https://creativecommons.org/licenses/by/4.0/
mailto:comisel@spacescience.ro
http://dx.doi.org/10.3389/fphy.2016.00029
http://journal.frontiersin.org/article/10.3389/fphy.2016.00029/full
http://loop.frontiersin.org/people/321394/overview
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FIGURE 1 | Sketch on adiabatically parallel-accelerated electron (left)

and non-adiabatically scattered electron back to the upstream region

(right).

local magnetic field with a magnitude of the magnetic field
B, respectively, e the elementary charge, and 8 the potential.
The potential is electrostatic, and therefore, depends on the
frame of Goodrich and Scudder [1]. Convenient choices are
the references attached to the shock front such as the shock
is in rest. In particular, the normal incident frame (NIF) and
the de Hoffmann-Teller frame (HT) are useful in analyzing
the electron dynamics in the shock transition layer. The both
frames are inertial. On the assumption of a planar geometry
and time stationarity, the shock transition reduces to one-
dimensional variations along the shock normal direction. NIF
sets the incoming flow aligned with the normal direction of the
shock. HT minimizes the motional (or convective) electric field
by introducing a slide with a speed tangential to the shock.

The gyro-radius of a magnetized electron changes with the
magnitude of the magnetic field as ρ ∝ B−1/2, where ρ denotes
the electron gyro-radius. A sharp gradient of the magnetic field
can demagnetize the electrons when the gradient scale is smaller
than the gyro-radius. The particle becomes unmagnetized and it
is perpendicular accelerated by the cross-shock potential.

Naively speaking, since a lower value of the frequency ratio
ωpe/�ce means a higher gyro-frequency, the electrons should be
more magnetized. Here I use a condition for the non-adiabatic
electrons as [5],

R̃NA =
mec

2

eB2

∣

∣

∣

∣

dEx

dx

∣

∣

∣

∣

≥ 1 (1)

where Ex is the electric field along the shock normal in a suitable
inertial frame of reference (NIF, HT, or any intermediate). The
magnetic field B can be derived by using the centimetre-gram-
second system of units (CGS) in terms of the electron plasma-
and gyro-frequencies as,

B =
mec�ce

e
=

mec�ce

ωpe

√

me
4π

=

√

4πne

τ
mec2 (2)

where ne is the upstream electron particle density, c is the speed
of light, and the frequency ratio is denoted by,

τ =

(

ωpe

�ce

)2

(3)

The electric field E can be estimated by using Faraday’s law for an
electromagnetic whistler wave of frequencyω and wave number k
standing on the shock front (as a precursor) and co-moving with
the shock velocity vsh, [4],

E =
1

c

ω

k
B =

1

c
vshB =

1

c
MAVAB = MA

√

me

mp

4πne

τ 2
mec2 (4)

where, MA is the shock Mach number, and VA is the Alfvén
velocity, VA =

√

me/mpVAe =
√

me/mpc/τ
1/2.

The magnetic field B̃sim in the simulation code “em1D” [6], is
defined in a dimensionless way by normalizing the field energy in
the volume of the Debye cube λ3D (or a Debye sphere without the
prefactor 4π/3) to the rest energy of a single electronmec

2,

B̃2sim ≡

(

B2λ3D
mec2

)

sim

=

(

B2λ3D
mec2

)

obs

(5)

By comparing Equation (2) and Equation (5), the magnetic field
obtained from the simulation is related to the observed one as,

Bsim =

√

τobs

τ sim
Bobs (6)

The magnitude of the electric field is normalized in the same
fashion as in Equation (5) by replacing the magnetic field B by
the electric field E. Then, by using Equation (4),

Esim =
τobs

τ sim

√

√

√

√

(

mp/me

)

real
(

mp/me

)

sim

Eobs (7)

where
(

mp/me

)

real
is the realistic mass ratio and (m/me)sim is the

mass ratio used in the simulation. Assuming a spatial periodic

structure with the wave number k, one may evaluate as dEx
dx

=
kδEx ≈ kE. The left hand side of Equation (1) can be written as,
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2

eB2
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e
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(8)

The normalization relation for the non-adiabaticity condition is
obtained as,

(

R̃NA
)

sim
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√

τsim

τ obs
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(9)

A typical in-situ value for the electron plasma frequency to the
electron gyrofrequency in the solar wind is (ωpe/�ce)obs ≈
200, see e.g., [4], while for a common particle-in-cell simulation
(using the realistic value for proton-to-electron mass ratio) is
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(ωpe/�ce)sim ≈ 10. Equations (6) and (7) show that the
electromagnetic field is overestimated in the simulation by a
factor of 20 for the magnitude of the magnetic field and by a
factor of 400 for the magnitude of the electric field. Similarly, the
non-adiabaticity condition in the simulation is underestimated
by a factor of 20. Accordingly to Equation (1) and Equation (9),
the electron in simulation is 20 times stronger magnetized than it
usually has to be in the solar wind plasma.

Let us now briefly discuss the simulation results of Comişel
et al. [7]. Here, the Liouville mapping has been applied to
the results obtained in a particle-in-cell simulation of a high
Mach number quasi-perpendicular shock. The following input
parameters have been used: ωpe/�ce = 8, mp/me = 1800, βe =
βi = 0.2,MA = 8, and the angle between the upstream magnetic
field direction and the normal to the shock is 2Bn = 81◦. Due to
strong residual electric fields, the cross-shock potential resulted
from the Liouville mapping was compared with the integrated
electric field in an ad-hoc de Hoffmann-Teller frame where the
additional convective field components have been removed. I
raise the question why Liouville mapping can provide relatively
consistent results with the data from the simulation, although the
electrons have to work against the existing motional electric field
in the de Hoffmann-Teller frame.

Here, I argue that the low pitch angle electrons could cross
the shock bound on the magnetic field line experiencing only
the electrostatic component of the total electric field. Due to
the simulation setup (low ωpe/�ce ratio or high gyrofrequency
�ce), these electrons should have small gyroradii and they
consequently lose their adiabaticity. However, as long as the
condition for breaking the adiabaticity is not fulfilled, the
particles remain adiabatic and get parallel energy from the
electrostatic field.

The energy gain for an adiabatic electron moving along the
magnetic field line (or at low pitch angles) can be evaluated in a
one-dimensional treatment of the two-fluid model of plasma as,

1ǫfluide ≈ e

∫ Eb · ∇ · Pe

ne(En · Eb)
dx (10)

=

∫

e

ne

(

∂Pexx
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+
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∂Pexz

∂x

)

dx

where the electric field in the de Hoffmann-Teller frame is
approximated by the ambipolar term of the electron momentum
equation and by an additional motional electric field component,

Pe is the electron pressure tensor, Eb is the magnetic field unit
vector, and En is the unit vector normal to the shock surface. The
first term in the above integral represents the electron energy gain
associated with the fluid estimate of the cross shock potential
in the de Hoffmann-Teller frame, see e.g., [8]. The next two
terms are the energy gain contribution from the electron stress
(the non-diagonal terms of the electron pressure tensor) and
has the role of electron heating at local electron kinetic scales.

A good match between 1ǫfluide and the energy gain provided
by the Liouville mapping should support the proposed scenario.
For highly energetic particles, the electromagnetic effect does
not affect the energy gain irrespectively of the pitch angles,
which should confirm the expectation that such highly energetic
particles cross the shock layer so quickly and do not feel the
variations of the electromagnetic field.

3. SUMMARY AND FUTURE PERSPECTIVE

I have analyzed the consequences of using low ratio values of
the electron plasma frequency to gyrofrequency in particle-in-
cell simulations. The electric field of electromagnetic origin tends
to be overestimated due to the numerical setup of the electron
Alfvén speed that is not representative for a typical solar wind
condition and due to the overestimated magnetic field. The
impact on the electron adiabaticity was discussed in the terms
of the non-adiabaticity condition derived in Gedalin et al. [5].
The answer on the question addressed in the introduction is that
the ratio between the electron plasma frequency to gyrofrequency
can influence and significantly change the dynamics of the
electron acceleration and heating in a quasi-perpendicular
collisionless shock. By using small values of the frequency ratio
τ , the electrons strengthen their adiabaticity and could have a
less physical behavior than in observation. Further studies on the
electron adiabaticity by using the Liouville mapping and particle-
in-cell-simulations should consider more realistic values for the
plasma input parameters.
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