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The brain is a complex system par excellence. In the last decade the observation of

neuronal avalanches in neocortical circuits suggested the presence of self-organized

criticality in brain networks. The occurrence of this type of dynamics implies several

benefits to neural computation. However, the mechanisms that give rise to critical

behavior in these systems, and how they interact with other neuronal processes such

as synaptic plasticity are not fully understood. In this paper, we present a long-term

plasticity rule based on retro-synaptic signals that allows the system to reach a

critical state in which clusters of activity are distributed as a power-law, among other

observables. Our synaptic plasticity rule coexists with other synaptic mechanisms

such as spike-timing-dependent plasticity, which implies that the resulting synaptic

modulation captures not only the temporal correlations between spiking times of pre- and

post-synaptic units, which has been suggested as a requirement for learning andmemory

in neural systems, but also drives the system to a state of optimal neural information

processing.
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PACS numbers: 05.65.+b, 05.70.Fh, 05.70.Jk

1. INTRODUCTION

Retro-synaptic signals are defined as signals that travel across the synaptic cleft from the post-
synaptic unit to the pre-synaptic one [1, 2]. Candidate molecules to be responsible of this type
of retrograde communication between two neurons are neurotrophins [3], proteins [4], cell-
adhesion molecules [5], lipids [6], and even gases [7]. Previously, it has been reported that
retrograde signaling is responsible for network development and apoptosis in the early stages brain
formation [8]. Additionally, this type of messaging has been proposed as a mechanism by which
neurons compete with their neighbors to supply their targets with appropriate information in
exchange for a “reward” that travels in the opposite direction of the action potential resembling
the mechanism by which supply networks work in a free-market economy [9]. In this paper we
explore the idea that retro-synaptic signals might also be responsible for the emergence of critical
behavior in brain networks by studying their effects in a model of neuronal avalanches.

As the name suggests, neuronal avalanches are bursts of activity that resemble a domino
effect triggered by spiking in groups of neurons. In the past decade, the observation of cascades
of spontaneous neuronal activity, whose sizes and durations are distributed as a power-law, in
brain tissue of rat cortex suggested a link between neural dynamics and phase transitions [10].
Consequently, this triggered an avalanche of research in different experimental scenarios [11–17],
which confirmed the presence of neuronal avalanches in vivo and ex vivo as a previously unknown
modality of brain operation.
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It has been reported that neural networks whose dynamics
are poised at the border of a phase transition, and whose
activity is identified by power-law distribution of events, acquire
several benefits for neural computation which include: optimal
information transmission and maximum dynamic range [18],
maximum information storage [19], and stability of information
transmission [20]. However, if brain networks operate at a critical
point marking the border between regularity and randomness,
how do they reach such dynamical regime?

Self-organized criticality (SOC) has been suggested as a
concept to explain the emergence of critical dynamics in natural
phenomena [21]. It has been applied to describe the behavior of
phenomena as diverse as plate tectonics [22], piles of granular
matter [23], forest fires [24], mass extinctions [25], and crashes
in the stock market [26], among others. This concept implies
the existence of a critical point that becomes an attractor in the
collective dynamics of a system. Thus, the control parameter,
which is an essential notion in the theory of critical phenomena
and phase transitions, does not require to be fine-tuned by
an external entity. Rather, the system implements a feedback
mechanism based on its internal dynamics that provides it with
direct control over its control parameter.

In neural systems, self-organized critical models of neuronal
avalanches have been put forward to explain the emergence
of critical dynamics in brain tissue. These models can be
divided in two categories, those that explain the emergence of
critical behavior through plasticity mechanisms such as spike-
timing-dependent plasticity [27, 28], short-term plasticity [29],
Hebbian-like plasticity processes [30–33], and even non-Hebbian
plasticity [34]; and those that explain it through non-plastic
mechanisms like axonal re-wiring [35–37] or the balance between
neuronal excitation and inhibition [10, 32].

However, few of these models consider the relationship
between learning and criticality, which could reveal the effects
of this dynamical regime on cognition. Synaptic plasticity has
been proposed as the neurobiological basis of learning and
memory in brain networks. Some models of critical neuronal
avalanches implement synaptic plasticity mechanisms either to
explain the emergence of critical behavior in the system [28],
or to provide the network with learning capabilities akin to
artificial neural networks in machine learning [32]. However,
in the latter case it is not clear whether the critical regime
survives the synaptic modulation induced by learning, whereas in
the former case the implementation of spike-timing-dependent
plasticity mechanisms is rather artificial as the system halts for
predetermined periods of time in order to apply the synaptic
modulation based on the recent activity of the nodes in the
system.

Moreover, most models do not take into account the complex
configuration of brain networks characterized by the presence
of highly-connected units or hubs, as well as the presence of
the small-world property which provides the system with an
architecture efficient for information transmission across distant
regions in the network [38]. Some exceptions are the models
presented in Refs. [31–33], which use Apollonian networks to
capture both the notion of scale-invariant degree distributions
and the small-world property. Lastly, it has been pointed out that

non-conservative neural systems such as the one presented in
Levina et al. [29] cannot be truly critical, and rather they wander
about the critical regime [39, 40].

In this paper we put forward a novel model of self-organized
critical neuronal avalanches in neural systems. Our approach
differs from others by considering retro-synaptic signals that
inform the neuron about the behavior at the level of its
local surroundings. We propose a long-term synaptic plasticity
mechanism based on this type of signals, which allows the
system to reach the critical state autonomously. Such state is
robust to the synaptic modulation induced by spike-timing-
dependent plasticity mechanisms. Moreover, by considering
scale-free structures with high clustering we take into account
complex network features such as the small-world property and
scale-invariant degree distributions which imply the presence of
highly-connected nodes. By considering this type of topologies,
our model considers the complex structure of brain networks
which are neither regular nor random [38].

2. MODEL

We present a basic model for neuronal avalanches [41] that
resembles the paradigmatic model of SOC: the sand-pile model
of Bak et al. [21]. The model consists of N non-leaky integrate-
and-fire nodes. Each node j has amembrane potential hj, which is
a continuous variable that is updated in discrete time according
to the equation:

hj(t + 1) = hj(t)+

N
∑

i=1

Aijwijsi(t)+ Iext (1)

whereA denotes the adjacencymatrix with entriesAij = 1 if node
i sends an edge to node j, and Aij = 0 otherwise, wij denotes the
synaptic weight from node i to node j, si(t) ∈ {1, 0} represents
the state of node i (active or quiescent, respectively) at time t, and
Iext denotes external input which is supplied to a node depending
on the state of the system at time t. The mechanism of external
driving works as follows: if there is no activity at time t, then a
node is chosen uniformly at random and its membrane potential
is increased by a fixed amount through the variable Iext . If hi(t)
exceeds the threshold θ , then node i emits a spike, which changes
the state of this node to active (si(t) = 1) and propagates its
activity through its synaptic output. Afterwards, the node is reset,
i.e., hi(t + 1) = 0.

The propagation of activity might trigger subsequent
activation of neurons. This results in cascading behavior. Here,
avalanches take the form of neuronal activity being propagated as
a domino effect.While the system is relaxing, external drive stops.
This guarantees that the relaxation time occurs at a different
time scale than that of the external driving. This corresponds
to an infinite separation of time scales between external driving
and relaxation dynamics that has been suggested as a necessary
condition for critical behavior [42].

In the original model, the synaptic couplings wij are set by
dividing the control parameter α by the mean connectivity of the
network. The parameter α needs to be fine-tuned in order for
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critical dynamics to emerge. Here, we will set the synaptic weights
randomly with values taken from an uniform distribution in the
interval (0, 1), and let the system evolve according to a synaptic
plasticity mechanism that we describe below.

We introduce a local measure of the performance of a node
during simulation time called node success. The node success of
node i at time t is the fraction of out-neighbors of this node that
become active at time t + 1 when node i spikes at time t, in other
words:

ϕi(t) =

∑N
j=1 Aijsj(t + 1)
∑N

j=1 Aij

(2)

where A is the adjacency matrix of the network, and sj(t + 1) is
the state of node j at time t + 1. The sum in the numerator runs
for all out-neighbors j of node i.

Thus, node success measures the performance of an individual
spike in terms of the subsequent spikes triggered by such initial
activation, which occur within the out-neighborhood of a given
node. With this metric we construct a long-term plasticity
rule called node-success-driven plasticity (NSDP). The intuition
behind the NSDP learning rule is quite straightforward: if a node
has very low success, then the node increases the synaptic weight
in all of its out-neighborhood, but only if the node is not spiking
too often, that is, if the node possesses a low firing rate.

Formally, NSDP is defined by the following equations:

wij(t + 1) = wij(t)+ 1wij(ϕi(t),1ti) (3)

where1ti = t−tiLS denotes the time difference between the spike
of node i occurring at current time step t and its previous spike
which occurred at tiLS (subscript LS refers to last spike). Whereas,

1wij(ϕi(t),1ti) = A exp

{

−ϕi(t)

B

}

− C exp

{

−1ti

D

}

(4)

with parametersA, B, C, andD taken from R
+. These parameters

are phenomenological, that is, they do not represent a particular
physiological property of the living neuron. The action of the first
term at the right hand of Equation (4) potentiates the connection
(i, j) according to the current node success of i, whereas the
second term depresses it depending in the firing rate of i, which
is succinctly captured by 1ti

1.
Network structure plays a significant role on the way that

the collective dynamics emerge and behave within a system.
Moreover, complex network properties such as the presence of
hubs and the small-world property might affect the system’s
behavior in a way that cannot be anticipated by studying
simple heterogeneous structures such as random networks
or homogeneous structures such as fully-connected networks.
Therefore, we consider five different network types in order to
compare the onset of the critical regime in systems under the
mechanism of NSDP:
1Naturally, this quantity differs from the firing rate, as the latter is a time averaged

quantity, whereas 1ti is stochastic in nature.

i. random,
ii. out-degree scale-free with low mean clustering coefficient

(CC),
iii. out-degree scale-free with highmean CC,
iv. in-degree scale-free with lowmean CC, and
v. in-degree scale-free with highmean CC.

Our networks are directed, and for every node in the network
the out- and the in-degree is larger than zero. This implies that
every node in the system is able to receive and transmit spikes.
Out-degree scale-free networks exhibit a power-law in the out-
degree distribution, whereas their in-degree distribution follows
a Poisson distribution. A power-law out-degree distribution
implies the presence of a small fraction of nodes with many
outgoing connections that we call broadcasting hubs. On the
other hand, an in-degree scale-free network exhibits a power-
law in-degree distribution. This implies the existence of a small
fraction of nodes with many incoming connections that we call
absorbing hubs.

The purpose of tuning the overall clustering coefficient in a
network results in different degrees of the small-world property
on it Holme and Kim [43]. Therefore, high and low levels of the
mean clustering coefficient result in high and low degrees of the
small-world property in our scale-free networks. Taken together,
the small-world property and the presence of hubs will result
in collective dynamics that differ from random structures as we
show below.

3. ASSESSMENT OF CRITICAL BEHAVIOR

Our first concern lies on how to determine that the collective
dynamics of the system are in the critical state. Critical dynamics
feature the presence of power-law distribution of events (e.g., size
and duration of avalanches). Thus, a simple and straightforward
way to look for criticality is to inspect the distribution of
avalanche sizes and durations. If the distribution resembles a
power-law distribution, then we have reasons to suspect that the
system is undergoing a phase transition.

We assess the quality of such a power-law through the
mean-squared deviation 1γ from the best-matching power-law
distribution with exponent γ obtained through regression in log-
log scales. Our choice of using this method is due to its simplicity,
and justified by the asymptotic unbiasedness of the estimation.
When this error function is at its minimum, that is, when the data
is best approximated by a power-law distribution of avalanche
sizes with exponent γ , is when the system is at the critical state.

A power-law fit of the distribution of avalanche sizes is by no
means a sufficient condition for a system to be critical, but it is a
necessary one. Other tests for criticality that we perform are:

i. Analysis of the relationship between the critical exponents
of avalanche sizes and their durations: From the theory
of critical phenomena, we know that at criticality the
distribution of several observables follow power-law
distributions with mathematical expressions linking each
other [44]. In particular, there is a power-law positive
correlation between avalanche sizes and their durations
which only occurs at criticality [16, 45].
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ii. Analysis of the largest eigenvalue 3 associated to the matrix
of synaptic weights: Larremore et al. studied the spectral
decomposition of the weight matrix of a system at criticality,
and concluded through analytical inspections along with
numerical simulations that the largest eigenvalue of the
weight matrix governs the network’s dynamic range. When
this value is unity, the system is in a critical state and its
dynamic range is maximized [46].

iii. Analysis of data collapse: At criticality the dynamics of a
system show no particular scale, thus resulting in a fractal
geometry of its observables [44, 47]. A standard procedure to
analyse the critical regime in a model of neuronal avalanches
is to observe if avalanches exhibit a fractal structure. To
this purpose, the average “shape” of avalanches is estimated
by keeping track of the the lifetime of an avalanche and
the number of nodes involved at each avalanche step. If
the system is at criticality, then avalanches of different sizes
would exhibit the same shape up to a scaling function, in such
a way that data could be collapsed in order to observe how
avalanche shapes resemble each other [14].

Our fist approach to analyse the critical behavior of our systems
will involve estimating the 1γ function due to its ease to be be
implemented in running time. When more formal analyses are
required we will use the tests described above.

4. RESULTS

During our experiments, we consider three different system
sizes: 128, 256, and 512 for each of the different network types
considered (i.e., scale-free and random), and 20 different trials
per network, which result from generating 20 different networks
for each type. We fix the parameters B, C, and D in Equation (4)
to 0.1, 0.001, and 10, respectively; and we vary parameter A
according to the system’s size. This value is set around 10−4, 10−5,
and 10−6 for sizes 128, 256, and 512, respectively.

4.1. Distribution of Avalanche Sizes Can Be
Approximated by a Power-Law
To start our examination of the critical state of our systems
under NSDP we proceed by having a look at the distribution
of avalanche sizes at the end of simulation time. We observe a
power-law distribution of avalanche sizes that is identified by a
straight line in a log-log plot of the distribution until finite size
effects take on. In Figure 1A we present only the mean values of
these distributions for the sake of clarity. The labeling in Figure 1
and in subsequent figures is as follows: SF[indeg, lowCC] stands
for in-degree scale-free networks with low mean CC, SF[indeg,
highCC] stands for in-degree scale-free networks with highmean
CC, SF[outdeg, lowCC] stands for out-degree scale-free networks
with low mean CC, SF[outdeg, lowCC] stands for out-degree
scale-free networks with high mean CC, and RN stands for
random networks.

Next, we analyse the error of the power-law approximation
to our data, that is, the 1γ curve. We present the evolution of
the fitting error in Figure 1B. At the beginning of the simulation
the systems are not in a critical state. This can be observed in

FIGURE 1 | (A) Double logarithmic plots of the distribution of avalanche sizes

of scale-free and random nets of size N = 256 under weight modulation by

NSDP. The distribution follows a power-law for approximately two decades.

Power-law distribution of avalanche sizes is a signature of criticality. (B)

Evolution of 1γ for systems under NSDP. Systems converge toward a low

error (< 0.05) for the power-law approximation of avalanche size distribution,

which implies that this distribution is well-approximated by a power-law. (We

present mean and standard deviations from our trials).

the shape of the 1γ curve in Figure 1B during the first one
million time steps of simulation time where the error is large.
However, after some time the fitting error settles around a value
<0.05. This implies that the distribution of avalanche sizes is
well approximated by a power-law distribution for the systems
considered in our simulations.

If the synaptic weights of our systems are initialized randomly
from the unit interval without applying the NSDP synaptic
mechanism, their distribution of avalanche sizes will not
resemble a power-law distribution. In Figure 2 we present the
distribution of avalanche sizes and 1γ curve (inset) for systems
in which the weights have been initialized with random values
from the unit interval, but without applying the NSDP synaptic
mechanism. In this case, the fitting-error is large (inset) reflecting
the fact that the avalanche-size distribution does not resemble
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FIGURE 2 | Distribution of avalanche sizes and 1γ curve (inset) for

systems comprising 128 nodes without introducing NSDP

mechanisms. Here, the avalanche-size distribution does not resemble a

power-law distribution as in Figure 1.

a power-law distribution. Thus, NSDP is responsible for the
emergence of power-law behavior in our randomly initialized
systems.

Once observing that the distribution of avalanche sizes can
be well approximated by a power-law (Figure 1), the remaining
question is about the exponent of such power-law distribution.
We observe that the value of such exponent lies close to −1.5 as
it has been reported in several systems at criticality. We present
the evolution of the value of the exponent γ in Figure 3A.

As can be seen in Figure 3A, the speed of convergence to a
low error regime and an exponent of γ = −1.5 depends on
topology, for instance, in-degree scale-free networks converge
faster than any other type of networks. This can be explained
by the presence of absorbing hubs and to some extent to the
high amount of small-world-ness in these networks. On the other
hand random networks and out-degree scale-free networks with
low mean clustering coefficient exhibit the slowest convergence
which can be attributed to low clustering within the network, and
the absence of hubs.

4.2. Largest Eigenvalue 3 Close to Unity
As mentioned in Section 3, based on the work by Larremore et
al. [46] we analyse the value of the largest eigenvalue3 associated
to the matrix of synaptic weights. It has been shown that a system
at criticality is identified by a value of 3 = 1. In the column
3NSDP of Table 1 we present the value of the largest eigenvalue
for weight matrices under NSDP mechanisms. As it can be seen,
the value of 3 is very close to unity for systems under this type of
synaptic modulation. This implies that although initialized with
random weights the system self-organizes into a configuration of
the weight matrix such that it gives rise to a largest eigenvalue 3

close to unity, which implies that the system is at criticality.
Moreover, we present the evolution of the largest eigenvalue3

for networks of sizeN = 128 in Figure 3B. Our systems start with
random synaptic couplings which results in a largest eigenvalue
3 ≪ 1, however as NSDP mechanisms start to modulate the

FIGURE 3 | (A) Value of exponent γ of the power-law distribution of avalanche

sizes of systems under NSDP. The value of the exponent lies close to −1.5

(black solid line) as it has been reported elsewhere for systems at criticality.

The speed of convergence to this value depends on network topology. (B)

Evolution of the largest eigenvalue 3 associated to the matrices of synaptic

weights for networks of 128 nodes. The value settles around unity once NSDP

mechanisms take place. This implies that the system is at the critical state.

synaptic weights, the value of 3 increases and settles around
unity, which identifies the critical state in the system.

The convergence to a largest eigenvalue close to unity depends
on topology. Here we observe a situation similar to that of the
convergence to a low error regime and to the exponent γ = −1.5.
In-degree scale-free networks converge faster than any other type
of network to 3 = 1. This can be explained by the presence of
absorbing hubs in the network.

4.3. Distribution of Avalanche Lifetimes
Can Be Approximated by a Power-Law
A system at criticality exhibits power-law distributions of several
observables [45]. Our systems under NSDP exhibit distributions
of avalanche durations that can be approximated by power-laws
whose exponent τ lies in the interval [−2.2,−1.6] depending on
network type. This is shown in Figure 4A for scale-free networks
of 256 nodes. It has been pointed out in experimental settings
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TABLE 1 | Largest eigenvalue 3 of matrix W of synaptic weights for systems under NSDP mechanisms (3NSDP), STDP mechanisms (3STDP), and both

NSDP and STDP mechanisms (3STDP+NSDP).

Type Subtype Size 3NSDP 3STDP 3STDP+NSDP

Out-degree scale-free Low Mean CC 128 0.99 ± 0.011 0.27 ± 0.009 1.02 ± 0.04

256 1.006 ± 0.004 0.45 ± 0.007 1.026 ± 0.04

512 1.01 ± 0.003 0.7 ± 0.005 1.05 ± 0.02

High Mean CC 128 0.95 ± 0.011 0.26 ± 0.01 1.049 ± 0.12

256 0.96 ± 0.007 0.43 ± 0.01 1.03 ± 0.04

512 0.97 ± 0.009 0.63 ± 0.01 1.03 ± 0.02

In-degree scale-free Low Mean CC 128 0.99 ± 0.008 0.21 ± 0.005 1.02 ± 0.05

256 0.99 ± 0.003 0.4 ± 0.006 1.08 ± 0.036

512 1.008 ± 0.004 0.62 ± 0.006 1.008 ± 0.014

High Mean CC 128 0.96 ± 0.012 0.23 ± 0.013 1.006 ± 0.102

256 0.98 ± 0.012 0.408 ± 0.016 1.07 ± 0.04

512 0.95 ± 0.013 0.61 ± 0.01 1.04 ± 0.04

Random 128 1.02 ± 0.005 0.28 ± 0.004 1.16 ± 0.02

256 1.027 ± 0.007 0.48 ± 0.003 0.98 ± 0.008

512 1.03 ± 0.001 0.77 ± 0.001 1.14 ± 0.001

It has been found analytically that Λ = 1 is associated with a system at criticality [46]. The synaptic weight matrices of our networks have Λ ≈ 1 due to finite-size effect. (We present

mean values and standard deviations).

as well as analytically that the exponent τ of critical avalanche
durations lies close to−2 [10].

This fact is also related to the observation of a power-law
correlation between avalanche sizes and their durations of the
form S ∼ Dβ . This has been reported as a signature of
criticality [14–16].

In Figure 4B we show this behavior for in-degree scale-
free networks of size N = 128 and high mean clustering
coefficient. Each blue dot in this plot is an avalanche denoted
by its size and its duration, whereas the red straight line is
the best-fit approximation to the data with an exponent β =

1.4 in this particular example. This apparent linear trend in
double logarithmic axes reveal a power-law relationship between
avalanche sizes and durations.

It has been pointed out that the exponent β that relates
avalanche size to avalanche duration can be predicted by the
following expression [14]:

β =
τ − 1

γ − 1
(5)

where τ is the exponent related to avalanche durations, and γ

is the exponent related to avalanche sizes. The exponent β then
is used to verify the data collapse for avalanche shapes (see next
section) [14, 48].

4.4. Avalanche Shapes and Data Collapse
In this section we present the average avalanche shape under the
regime of NSDP. The shape of an avalanche is defined as the
number of nodes involved in an avalanche per time step, or better
said, per avalanche time (or step). In our model all avalanches
start with only one node becoming active, this corresponds to

the first avalanche step. In subsequent time steps we record the
number of nodes that become active and average them until
the avalanche stops. There are avalanches that involve a single
node and therefore occur in a single time step, but also there are
avalanches that span to the whole network and that take more
than one time step to develop. By the end of each simulation we
end up with the number of nodes that on average become active
in the second avalanche time, the third avalanche time, and so on.

The plot of avalanche step and the average numbers of nodes
involved in each step defines the shape of the avalanche for a
given network. The maximum avalanche duration corresponds
to the largest number of time steps in which an avalanche takes
place for a given network and size.

In Figure 5 we present the average avalanche shapes for
in-degree scale-free networks of sizes 128, 256, and 512 and
low mean clustering coefficient. The similarity of the avalanche

shapes among different system sizes suggests a fractal structure
underlying the avalanche dynamics. This is expected to occur
in a system at criticality [14, 44, 45]. However, our analysis

differs from that of Refs. [14, 48] as these authors consider
the average number of nodes involved in a single avalanche
conditioned on avalanche duration, whereas we consider all
avalanches during a simulation, and average the number of nodes
involved for a particular avalanche time-step. The particular
shape of the avalanches in our systems, which differs from an

inverted parabola [14, 45], might be the result of these three
factors: the consideration of all avalanches without conditioning
on avalanche duration when averaging avalanche time-step
and the number of nodes involved, the model dynamics,
and the heterogeneous structure of the networks considered.
However, confirming such claim is beyond the scope of this
paper.
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FIGURE 4 | (A) Distribution of avalanche durations in log-log plots for

scale-free nets of all sizes considered under the NSDP protocol. This

distribution also exhibits a decreasing linear trend for more than a decade

which implies that can be approximated by a power-law. (B) Linear

relationship on logarithmic axes between avalanche sizes and durations for

in-degree scale-free nets of 128 nodes and high mean CC. This behavior

implies a power-law correlation of the form S ∼ Dβ . In blue dots we present

our data whereas in red we present the best-fit approximation. A relationship

of this type is a signature of criticality.

In the inset of Figure 5 we show an example of the data
collapse resulting from the avalanches shown in the main outset
figure. To obtain such data collapse each curve is divided by its
duration which gives a normalized avalanche time, and then the
heights of the curves are rescaled by their duration raised to the
exponent β linking the exponents of avalanche sizes and their
durations (Equation 5) [14, 45, 48].

The fact that avalanche shapes from different system sizes can
be re-scaled to match each other with certain accuracy not only
suggests a fractal nature of the avalanche dynamics but also gives
an insight of how avalanches might look in larger system sizes
than the ones considered here.

This concludes our examination of the critical state for our
systems under the synaptic modulation of NSDP. As synaptic
weights were initialized uniformly at random, and the system
reached the critical state as a result of node activity based solely

FIGURE 5 | Average avalanche shape for all networks and sizes

considered under the regime of NSDP. The similarity of shapes among

different sizes suggest the possibility of data collapsing in these systems. This

fact implies that avalanches possess a fractal structure which is also a

signature of criticality. Inset: data collapse for avalanche shapes shown in main

figure. Data collapsing reveals the fractal nature of avalanches in a system at

criticality.

in the two rules that define our NSDP mechanism, we conclude
that this model exhibits SOC.

5. SPIKE-TIMING-DEPENDENT
PLASTICITY

Once we verified that our long-term plasticity rule allows the
system to reach the critical state autonomously, we became
interested in studying whether this type of plasticity could
coexist with other plasticity mechanisms such as spike-timing-
dependent plasticity (STDP). STDP is an asymmetric learning
rule in brain networks that captures the temporal correlations
between pre- and post-synaptic neurons, which has been
proposed as a mechanism for learning and memory in the
brain [49]. STDP is a local rule responsible of long-term
synaptic modulation that emphasizes the precise timing of each
individual spike, it also incorporates and extends the essential
mechanism of Hebbian learning by including the notion of long-
term potentiation (LTP) and long-term depression (LTD) of
synapses based on the differences in activation times for pre-
and post-synaptic neurons [50]. Potentiation is achieved when
the pre-synaptic node fires shortly before the post-synaptic one.
Depression is achieved when the opposite occurs, namely, the
post-synaptic neuron fires shortly before the pre-synaptic unit.

We implement STDP mechanisms in our model through the
following set of equations:

wij(t + 1) = wij(t)+ 1wij(1t) (6)

where1t = tpost−tpre denotes the difference between the spiking
times of pre- and post-synaptic neurons, and:

1wij(1t) =

{

ap exp
{

−1t
Tp

}

if 1t ≥ 0

−ad exp
{

1t
Td

}

if 1t < 0
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where parameters ap and Tp set the amount and duration of
LTP, whereas ad and Td set the amount and duration of LTD. In
our experiments we set ap = ad = 0.1. Observations of STDP
in brain tissue suggest that the time window for potentiation is
typically shorter than the depression time window [49], for that
reason we let Tp = 10 time steps and Td = 20 time steps.
However, it also has been observed that the time-window and the
amount of potentiation/depression vary across species and brain
structures [50]. A single theoretical model of synaptic plasticity
cannot account for all experimental facts [51].

Before applying STDP mechanisms into the system we allow
criticality to set in for a period of time in function of system
size by fine-tuning the value of the weights wij for each network.
For networks of 128 nodes, we let the system reach the critical
state for 106 time steps before introducing STDP mechanisms.
For sizes 256 and 512 we do likewise for 2 × 106 and 3 × 106,
respectively. This allows for rare avalanches that span to the
whole system to coexist with smaller avalanches which occur
frequently. Afterwards, we introduce STDP mechanisms for the
same amount of time in which we drove the system to criticality
without STDP. By the end of each simulation we end up with
systems whose first half of the time were driven to criticality,
whereas their second half were under STDP and NSDP regime.

When we introduce STDP mechanisms into a system whose
dynamics are already at criticality, we observe that the critical
regime vanishes as a consequence of the synaptic modulation
induced by the activity of the neurons in the network. This
behavior is captured by the shape of the avalanche size
distribution, which no longer features a straight line (Figure 6A),
as well as in the increasing error in the 1γ curve (Figure 6B),
which measures the deviation from the data to the best matching
power-law distribution. In Figure 6 we present an example of
this behavior for in-degree scale-free networks of size N =

512 and low mean clustering coefficient. Also, the departure
from criticality post-STDP is captured by the largest eigenvalue
associated to the matrix of synaptic weights. Once STDP
mechanisms set in, the value of 3 is less than unity (see column
3STDP in Table 1).

However, if we combine STDP mechanisms with NSDP
mechanisms, the synaptic modulation resulting from the activity
of nodes in the system allows the system to stay in the critical
regime. We can verify the status of the critical state by looking
at the value of the largest eigenvalue 3 when STDP is used in
combination with NSDP mechanisms. Column 3STDP+NSDP in
Table 1 shows the value of the largest eigenvalue for systems
under STDP mechanisms combined with NSDP mechanisms.
Here, we observe that the value of the largest eigenvalue is close
to unity, unlike the case where STDP was applied solely in the
system. In Figure 6 we show how the avalanche size distribution
is well approximated by a power-law when STDP is applied in
combination with NSDP (blue dashed lines).

Thus, NSDP allows the system to stay in the critical regime
while STDP mechanisms occur in the system. This implies that
learning and memory mechanisms could in principle occur
during criticality in neural systems as long as a compensatory
process (such as NSDP) is also present in the system. In such
a regime, a neural system could acquire the benefits of these

FIGURE 6 | (A) The shape of the distribution of avalanche sizes differs from a

straight line when STDP sets in (red, solid line), which indicates a deviation

from the critical regime. However, when NSDP is present in the system, the

synaptic modulation induced allows the system to stay in the critical regime

and exhibit a power-law distribution (blue, dashed line). (B) The error function

1γ shows an increasing trend once STDP mechanisms take place in the

system (red, solid line). However, if NSDP mechanisms are also present the

system stays in the critical regime. A situation that is observed by the low error

in the power-law fit (blue, dashed line).

two worlds, namely, the capacity of learning through STDP
modulation, and optimal information processing through critical
dynamics.

6. DISCUSSION

6.1. Retro-Synaptic Signals
NSDP is a mechanism that achieves SOC in the systems
examined. The weight modulation induced through NSDP is
sufficient to drive the system to the critical state. Interestingly,
this modulation is activity-dependent and local. Naturally, the
nodes in the system are not aware of the global state of the
dynamics such as criticality or power-law behavior; they are
programmed to maximize their node success (in response of the
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activity of their out-neighbors) as long as they are not firing too
often, that is, if their firing rate is not very high. If nodes follow
these two rules, they will reach the critical state no matter how
their synaptic weights were initialized in the first place. Moreover,
NSDP serves as a compensatory mechanism that allows the
system to stay at criticality when STDP is modulating synapses
according to the activity of the neurons. However, how realistic
is a long-term plasticity mechanism like NSDP in real brain
networks?

The work presented in here suggests the hypothesis that
through signals that carry information regarding the success of a
spike from a pre-synaptic unit in terms of the subsequent spikes
triggered at the post-synaptic neighborhood a neural system is
able to reach a critical state without external supervision or
tuning.

A signal of this kind will have to travel in the opposite
direction of an emitted spike, that is, from post- to pre-synaptic
unit, without it being a spike by itself. Rather, this type of
retro-synaptic signal will have to be some type of molecule
emitted by a post-synaptic unit at the moment it becomes active
and emits a spike. The released molecules would travel in the
extracellular medium until they are captured by vesicles in the
pre-synaptic unit, which in turn will modulate its outbound
synaptic strength in function of the seized molecules from the
post-synaptic neighborhood.

Another mechanism of retro-synaptic signal might start with
the release of molecules (other than neurotransmitters) from the
pre-synaptic unit at the moment of a spike. This molecules could
travel back to the pre-synaptic neuron carrying information
about the success of the most recent spike emitted by this unit.
For instance, if the post-synaptic unit seizes such molecules at
the moment of spiking, then the absence of those molecules in
the extracellular medium and the consequent inability of the pre-
synaptic node to catch them back would inform this neuron
that its most recent spike was successful in triggering subsequent
spikes.

In the Introduction to this paper, we mentioned some
candidate mechanisms for retro-synaptic signaling in brain
networks. In our particular context, we would require that
this messaging also implements long-term synaptic modulation
over post-synaptic units. To date, retrograde signals have been
proposed as a mechanism by which neurons compete with their
neighbors to supply their targets with appropriate information
in exchange for a “reward” that travels in the opposite direction
of the action potential. This mechanism has an analogy in the
way supply networks work in a free-market economy; and it is
also analogous to the mechanism of node-success maximisation
described in this paper. It has been suggested that this type of
competition in neural systems might allow the brain to self-
organize into functional networks [9] giving rise to some sort of
Darwinian neurodynamics.

Thus, the idea of retro-synaptic signals modulating synaptic
efficacies in function of successful spikes triggering subsequent
activity is a valid one. Moreover, as we have shown, this
mechanism of plastic modulation could be the basic ingredient
by which neural systems exhibit complex behavior such as critical

dynamics with all the benefits on information processing implied
by it.

Retro-synaptic signaling might provide a biological
interpretation of the first term of Equation (4) for the NSDP
mechanism. What about the second term which penalizes the
increment of synaptic weight if a node’s firing rate is high? How
do single neurons know if they are spiking too often? An answer
to this question can be given in terms of the depletion of synaptic
resources of a single neuron. If a neuron is spiking often, its
synaptic resources deplete, and a certain amount time is required
in order to be replenished. The interplay between depletion and
replenishment is the underlying mechanism behind the model of
Levina et al. [29] that has been shown to exhibit SOC.

We have shown how different topologies reach the critical
state at different speeds, with in-degree scale-free networks being
the topology that converges faster to such state, and random
networks the topology that reaches it last. In the case of in-degree
scale-free networks, absorbing hubs might be responsible for an
increased activity within the system specially when combined
with a high mean clustering coefficient, which implies that the
small-world property is present in a higher degree. Absorbing
hubs possess a larger firing rate due to the accumulation of
activity from their in-neighborhood, which triggers constant
firing in this particular type of nodes. Clustering, which
ultimately is related to the small-world property, implies that
nodes receive and send connections from common neighbors;
this increases the chances of sustained activity within a group of
nodes which leads to an improvement of the spiking activity in
the overall network. Therefore, the presence of absorbing hubs
and the small-world property can be deemed responsible for the
speed of convergence to the critical state in in-degree scale-free
networks.

Out-degree scale-free networks contain absorbing hubs as well
although in an amount not comparable to in-degree scale-free
networks. Broadcasting hubs are not as effective as absorbing
hubs in maximizing the spiking activity within the network
not only because the success of spikes emitted by them are in
function of the membrane potential of the nodes in their out-
neighborhood, but also because the firing rate of the broadcasting
hubs might not be comparable to that of the absorbing hubs,
as the former might possess a small in-degree in combination
with a large out-degree. An analysis of the interplay between in-
degree and out-degree in the context of scale-free networks at
criticality is beyond the scope of the current study, but we refer
the reader to Hernandez-Urbina et al. [52] for a throughout
description of the topic. Lastly, random networks do not imply
a particular property of their nodes. In fact, given that their
in- and out-degree distributions follow a Poisson distribution,
nodes with large in- or out-degrees are rare, which means that
absorbing/broadcasting hubs occur rarely. Moreover, random
networks exhibit a low mean clustering coefficient that implies
that nodes are not as assembled in groups as in the other
network types considered. This leads to spiking activity that is not
comparable to that of the scale-free networks considered in our
simulations, and thus to a slower convergence toward the critical
regime.
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As for the values of parameters A, B, C, and D, we have
pointed out that they do not represent a particular property of
the living cell. The emergence of critical behavior in the systems
considered is robust for the choice of parameters described above
across all networks (scale-free and random) in a particular system
size. Further direction of work points toward an analysis of
the range of tolerance for the values of these parameters in
different network structures, as well as, a variation of the model
in which these values are also dynamic and in function of system
dynamics.

Lastly, we showed how NSDP regularizes the synaptic
modulation induced by STDP. This results in long-term plasticity
that reflects the modulation induced by learning and memory
(STDP), and at the same time provides the synaptic requirements
for the network to self-organize toward the critical regime
(NSDP). However, we should point out that NSDP is not
reversing the weight modulation induced by STDP per se. Both
plasticity learning rules have their own action mechanisms:
STDP alters the weights at the synaptic output of a pre-synaptic
node capturing the temporal correlations existing between the
spikes of this node and nodes in its out-neighborhood; whereas
NSDP alters the weights at the synaptic output of a pre-synaptic
node in function of its node success and its firing rate. Thus,
NSDP is allowing for STDP modulation to occur at the right
amount required for the system to maintain the critical state
of its collective dynamics. Otherwise STDP would destroy the
critical state by favoring clustered local activity which in turn
would make large avalanches non-existent [53]. This behavior is
captured by the deviation in the1γ curve and the deviation from
unity of the largest eigenvalue 3 associated to the weight matrix.

6.2. The Backpropagation Algorithm
The backpropagation algorithm is an extensively used method
to train artificial neural networks (ANNs) in supervised learning
scenarios in the context of machine learning. As the name
suggests, the backpropagation algorithm uses retrograde signals
to communicate the fitting error back to the network while
training an ANN. The error is then used to estimate the weight
updates at each network connection, afterwards the error is re-
estimated with the new weights and the process is repeated until
convergence. Unlike the neurons that we have considered here,
ANNs consist of non-spiking nodes, that is, non-threshold units.
Therefore, there is no direct map between ANNs and networks of
spiking nodes. Spiking nodes are all-or-none units that fire only
when their membrane potential goes beyond a certain threshold.
On the contrary, nodes in ANNs are continuous gateways whose
activation function needs to be differentiable everywhere for the
backpropagation algorithm to work.We believe that NSDP could
in principle supply the basic requirements for the design of a
backpropagation algorithm in spiking neurons.

There have been some efforts toward developing versions of
the backpropagation algorithm for networks of spiking units,
such as the SpikeProp algorithm and others [54–56]. Moreover,
recently there has been a line of research regarding the plausibility
of developing deep learning methods based on spiking
networks [57–59]. It has also been shown that deep learning
architectures based on spiking neurons outperform those based

on non-spiking neurons as the latter are expensive to implement
on serial computers [59]. Additionally, it has been shown that
neuromorphic electronic architectures based on spiking units
offer an efficient solution for developing compact sensory-motor
neural processing systems for robotic applications [58]. When
deep learning techniques are implemented in a VLSI architecture,
the system benefits from the parallel and asynchronous nature of
spiking units responding to signals coming from external sensors.

To the best of our knowledge there has not been a study
which relates deep learning methods based on spiking neurons
and SOC. We believe that NSDP could provide the link
between these two concepts, and at the same time provide a
learning algorithm based on the ideas behind backpropagation.
This is an interesting direction of research due to the
benefits on information processing that the critical regime
entails.

6.3. To Tune or Not to Tune
Lastly, we conclude this presentation by considering the question
of fine-tuning. In this paper, we have shown how systems self-
organize into a critical state through NSDP. Thus, we became
relieved from the task of fine-tuning the control parameter α, but
instead we acquire a new task: that of estimating the appropriate
values for parameters A, B, C, and D in Equation(4). Is there no
way to be relieved from tuning any parameter in the system?

The issue of tuning or not tuning depends mainly on
what we understand by control parameter. This notion, along
with the concepts of order parameter and phase transitions
are inherited from the theory of statistical mechanics. There,
a control parameter can be thought of a knob or dial that
when turned the system exhibits some quantifiable change. We
say that the system self-organizes if nobody turns that knob
but the system itself. In order to achieve this, the elements
comprising the system require a feedback mechanism to be
able to change their inner dynamics in response to their
surroundings2.

Let S be a system in which we observe critical dynamics when
the control knob is turned and left in a particular configuration.
System S requires an external entity to turn the dial in order
to make the system exhibit critical behavior in some order
parameters (e.g., critical exponents). In order to make S be able
to turn the dial by itself we would have to alter its internal
configuration, and here is where the new need for tuning emerges.
To create a new internal configuration we would have to “plug”
new connections in a particular waywhich would result in system
S⋆, which is now able to turn its own control knob. It could be
argued that we have just changed the place of fine-tuning from
control dial to internal mechanisms. If that is the case, then the
question about fine-tuning control parameters is in the realm of
definitions and semantics. System S is themodel we introduced in
Section 2, whereas S⋆ is the same model plus NSDP mechanisms.
The latter does not require an external entity to turn the dial
for the system to exhibit critical dynamics. However, its internal

2For instance, in the model by Levina et al. [29] this is achieved by the combined

action of large cascading and the replenishing of synaptic resources; in our model

this is achieved by the maximizing of node success as long as the firing rate is not

high.
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dynamics are configured in a particular way in order to allow
feedback mechanisms at the level of individual elements. Did we
fine-tune their configuration? Yes. Otherwise, we would have not
achieved what was desired, as nothing comes out of nothing. Did
we change control parameter from α to A, B, C, and D? No, the
control parameter is still intact, and now it is “in the hands” of
the system. However, the nodes know nothing about criticality;
their only objective is to maximize their success as long as they
are not spiking too much. Unlike them, when we -as external
entities- turned the dial, we had the purpose of taking the system
into (or out of) the critical regime. When we say that the control
parameter is now in “their hands” we do not mean that their
objective is to give rise to a particular collective behavior. Rather,

the control parameter (the dial) is changing as a result of their
individual objectives.

Lastly and most importantly, the new configuration stresses
the difference between global and local mechanisms. The control
parameter α (the dial) is an external quantity that observes and
governs the global (i.e., the collective), whereas NSDP provides
the system with local mechanism that have an effect over the
collective. This is the main feature of a complex system.
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