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We investigate the applicability of the path integral of non-equilibrium statistical

mechanics to non-equilibrium damage phenomena. As an example, a fiber-bundle model

with a thermal noise and a fiber-bundle model with a decay of fibers are considered.

Initially, we develop an analogy with the Gibbs formalism of non-equilibrium states.

Later, we switch from the approach of non-equilibrium states to the approach of

non-equilibrium paths. Behavior of path fluctuations in the system is described in terms

of effective temperature parameters. An equation of path as an analog of the equation

of state and a law of path-balance as an analog of the law of conservation of energy

are developed. Also, a formalism of a free energy potential is developed. For fluctuations

of paths in the system, the statistical distribution is found to be Gaussian. Also, we find

the “true” order parameters linearizing the matrix of fluctuations. The last question we

discuss is the applicability of the phase transition theory to non-equilibrium processes.

From near-equilibrium processes to stationary processes (dissipative structures), and

then to significantly non-equilibrium processes: Through these steps we generalize the

concept of a non-equilibrium phase transition.

Keywords: damage, path approach, fluctuations, fiber-bundle model, statistical physics

PACS. 62.20.M—Structural failure of materials—89.75.-k Complex systems—05. Statistical physics,

thermodynamics, and nonlinear dynamical systems.

INTRODUCTION

One of the most important aspects in the modern theory of damage phenomena is the possibility to
describe damage occurrence on the base of the formalism of statistical physics. Many approaches
have been developed [1–24], and surveys of developments can be found in [25–30]. However, the
majority of these studies are devoted to equilibrium or near-equilibrium damage occurrence. In our
study, we consider a non-equilibrium damage process (a cascade, an avalanche) far from the point
of a quasi-static state.

Once the analogy between damage mechanics and statistical physics had been discovered, it
immediately became clear that any damage phenomenon can be described as a phase transition,
where damage growth represents the appearance of another phase and the point of material failure
is the point of the phase transition. The best way to illustrate this similarity is to compare the phase
diagrams in Figure 1. There are debates in the literature [3–13, 21, 22, 24, 29–35] about whether
this phase transition is of the first order or of the continuous order. The reason for this uncertainty
is that spinodal points are very similar to critical points in the sense that in their vicinity a system
switches its behavior from the laws intrinsic only to this particular system to universal power-law
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scaling. However, there is no doubt that any structure under load
is in the metastable state since there always exists a nucleus of the
critical size. In other words, by breaking enough of the material
with external forces, we can always cause material failure. This
is a clear indication of metastability, because there is no critical
nucleus (no matter how big it is) for stable states.

To discuss our approach, we involve the fiber-bundle model
(further, FBM) as the most illustrative representative of models
with damage. However, the applicability of the approach we
develop lies beyond the one-dimensional formulation of the FBM
and can be easily generalized to two or three-dimensional damage
phenomena.

For all possible approaches, an analogy between statistical
physics and damage phenomena should rely on mapping of one
type of fluctuations on another. In this sense, damage exhibits
more complex behavior than classical thermodynamic systems
of statistical physics due to the presence of two different forms
of disorder: quenched and annealed. Therefore, to perform the
aforementionedmapping, these two forms of disorder are usually
studied apart from one another.

The influence of quenched disorder on the model behavior
is generally observed where the dynamical timescale of fracture
is much faster than the timescale of fluctuations. In this case,
“frozen” initial disorder in a model plays the crucial role. This
type of disorder, employed in the FBM, has been studied by
many authors [8, 16, 28, 29, 31–85]. In particular, in our
previous studies [21, 22, 30], we introduced quenched disorder
by means of the fiber strength variability and for the ensemble of
constant strain we were able to map the fluctuations observed on
thermodynamic fluctuations in statistical physics.

Another type of behavior is exhibited when a FBM is
influenced by the annealed disorder. One of two approaches
is generally employed: the disorder is introduced in the model
formulation either by means of a phenomenological rate of
fiber failures with time [29, 86–109] or by the direct input of
a stochastic or thermal noise into the state of stress of a fiber
[23, 110–118].

Annealed disorder generates fluctuations which are closely
related to their thermodynamic analogs in statistical physics.
Indeed, adding stochastic noise to a fiber load seems to be quite
similar to the statistical fluctuations of, for example, gas pressure
acting on a piston. However, as it was recently discovered
[119–123], annealed fluctuations in damage phenomena
exceed thermodynamic fluctuations by orders of magnitude. In
particular, it was found that the effective temperature required
to provide the annealed behavior observed in experiments is 10
times higher (about 3,000 K) than the real temperature during
the tests. This discrepancy is explained by complex interactions
of quenched and annealed types of disorder which are present
simultaneously in the model [18, 113–118, 122, 124].

In our study, we continue our previous research [23, 125,
126] and investigate a FBM with annealed damage evolution.
In Section Model, we introduce models which we will use
to illustrate our approach. In Section The Classical Gibbs
Approach of States, we develop an analog of the classical Gibbs
approach for non-equilibrium states. However, this approach
has its restrictions which we discuss in Section Restrictions of

FIGURE 1 | Phase diagrams of (A) a damage phenomenon, (B) a liquid-gas

system, and (C) a magnetic system.

the Classical Gibbs Approach of States. In Section Statistical
Mechanics of the Path Integral Approach, we consider a path
integral, when instead of non-equilibrium states of the system
we investigate non-equilibrium paths. We map fluctuations of
damage on the main concepts of statistical mechanics, such
as temperature, entropy, free energy potential, and the law of
conservation of energy. However, we find that these concepts are
no longer associated with the energy characteristics of the states
of the system but are defined over the space of all possible paths.
Also, we investigate the behavior of fluctuations for this approach
and find “actual” order parameters which diagonalize the matrix
of the probability distribution. In the conclusions, we discuss
how our theory leads to the description of non-equilibrium phase
transitions.

MODEL

Damage is a complex phenomenon. The basic principles of
damage are often completely disguised by the secondary side
effects of its appearance. Therefore, to investigate the main
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concepts of non-equilibrium behavior, it is reasonable to consider
initially a simple model.

In this paper, as an illustration, we consider an annealed FBM.
We assume that the number N of fibers in the model is constant
and infinite in the thermodynamic limit. Intact fibers all carry the
same strain εf which is identically equal to the strain ε of the total
model: εf ≡ ε. The stress of each intact fiber is assumed to have
a linear elastic dependence on the strain until a fiber failure: σf
= Eεf . In this paper, we consider constant strain ε = const as an
external boundary constraint of the model. The case of constant
stress can be considered in a similar way (the redistribution of
the load complicates the analytical solution but does not change
the applicability of the path integral). The Young modulus E
here is assumed to be the same for all fibers; however, the stress-
strain dependence for the total model is non-linear because of
fiber failures. We introduce an “intact” order parameter L as the
fraction of intact fibers (unity minus the damage parameter).
Everywhere further we assume that at the initial time t = 0 all
fibers are intact: Lt= 0 = 1.

As a first modification of the FBM, we consider an annealed
fiber-bundle model with noise [23, 110–118] (further, NFBM).
Each fiber has thermal fluctuations of its energy characteristics.
From statistical mechanics, we know that a piston, which works
as a gas boundary and is supported by a spring, has oscillations
due to the equipartition of energy. In particular, the elastic energy
of the spring fluctuates as if a white Gaussian noise were added to
the stress of the spring. Similarly, we assume that the stress of
each fiber σf has an addition 1σf of a white Gaussian noise with

zero mean and standard deviation
√
kBT. As it was discussed in

Section Introduction, the temperature here may not correspond
to the temperature during the experiment but may be several
orders higher [119–123].

The probability density function of the noise is

p(1σf ) =
1

√
2πkBT

e
− 1σ2

2kBT (1)

and the cumulative distribution function is

P(1σf ) =
1

√
2πkBT

1σf
∫

−∞

e
− x2

2kBT dx. (2)

Each fiber has an a priori assigned strength threshold s which we
choose to be the same for all fibers and not to change during
the model evolution. A fiber can break only when its stress σf
= Eε + 1σf exceeds its strength s. We consider discrete time-
steps dt of the model evolution. At each time-step, the probability
of a fiber breaking is 1 − P(s − Eε) and the probability of a
fiber staying intact is P(s − Eε). Here we assume that there are
no correlations of noise among adjacent fibers. Also, in spite of
the fact that the time interval dt between the consecutive time-
steps is assumed to be small, it is supposed to be much larger
than the duration of any noise correlations. Therefore, we assume
that there are no correlations of the noise in time either. Another
assumption we utilize is that although the time interval between
consecutive time-steps has zero limit, the thermodynamic limit

of infinite number of fibers N → +∞ is taken first. Therefore,
although only the small fraction of fibers breaks at each time-step,
the number of broken fibers is much higher than unity.

Although, we assume the noise to be Gaussian, this does not
play any role in our model due to the fact that s, E, and ε are the
same for all fibers as well as for all systems in the ensemble and
are some constants. Therefore, the noise value 1σbreak = s − Eε

at which fibers break is fixed so that P(s− Eε) and 1− P(s− Eε)
are two constants as well.

The second modification of the FBM which we consider
(following the original terminology, a model with “breaking
kinetics”) is an annealed decay fiber-bundle model [86–109;
further, DFBM]. There is no thermal noise in this model. Instead,
each (so far intact) fiber has a priori assigned probability pf dt of
failing during the time interval dt and probability (1 − pf dt) of
staying intact.

Here, pf is the decay rate which is constant during model
evolution. The duration of the time-step dt is considered to be
fixed as well. Therefore, pf dt and (1−pf dt) are some constants, as
well as 1− P(s− Eε) and P(s− Eε) respectively, which represent
fixed probabilities of a fiber breaking or staying intact during a
time-step. In this sense, equating pf dt and 1− P(s− Eε), we can
map the DFBM on the NFBM. However, some care should be
exercised when we say pf dt = 1−P(s−Eε). Here, we consider dt
to be the duration of the time interval during which the Gaussian
noise loses its correlation with the value of the noise at the
previous time-step and “switches” to a new value. An illustrative
example is the output of the Gaussian random generator which
provides a discrete set of uncorrelated i.i.d. numbers. In this
sense, the duration of dt is not arbitrary but is dictated by the
physical processes responsible for the correlations in the noise.
Hence, we cannot say here that the considered probabilities are
proportional to dt.

The issue can be illustrated with the aid of extreme statistics.
If we observe a fiber during a long time interval τ consisting of
N >> 1 time-steps dt, the probability of the fiber staying intact

during this time interval is PN(s − Eε) = e
τ
dt
ln P(s−Eε), which is

clearly not linear with time. Therefore, ourmapping of theNFBM
onto the DFBM is introduced only for one time-step. In this
sense, we will consider only one of these models (the DFBM for
the approach of states at Sections The Classical Gibbs Approach
of States and Restrictions of the Classical Gibbs Approach of
States, which is more convenient for this as it is a model with
a well-known solution; the NFBM for the approach of paths
at Section Statistical Mechanics of the Path Integral Approach
since it is more illustrative of the generalization to more complex
model formulations), assuming, however, that all results are valid
for the other model as well.

Before going further, we should clarify that we do not consider
the healing of fibers: Once a fiber has broken, it stays broken
forever. However, our formalism easily allows healing to be
added to the model formulation. We need only, in addition to
P(s − Eε) and 1 − P(s − Eε), to introduce the probability of
a broken fiber healing. All formulae can be easily generalized
for this case as well, but due to the complexity of the results
already present for the simpler model, we leave it for further
studies.
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THE CLASSICAL GIBBS APPROACH OF
STATES

The classical Gibbs approach is formulated in terms of states.
To develop its analog for damage phenomena, we need to give
some definitions: what we refer to as a non-equilibrium state (or
a fluctuation). In more details, this approach is discussed in [30],
Chapter 2.

Let us imagine a FBM where we observe separate fibers. As to
a microstate {n} we will refer to a particular microconfiguration
when for each fiber of the model we prescribe whether it is intact
or broken. For example, for a system with N = 3 fibers, one of
the microstates is { x x | } where by two symbols “x,” we denoted
that the first two fibers of the model are broken, while the symbol
“|” means that the third fiber is still intact. For a model with only
three fibers, it is easy to list all the possible microstates: { | | | },
{ | | x }, { | x | }, { x | | }, { | x x }, { x | x }, { x x | }, { x x x }.

What is the probability of observing a particular microstate in
the ensemble of identical systems? For the DFBM, the solution is
well-known as the solution of radioactive decay. The probability
of a fiber failing at time t during time interval dt is e−pf tpf dt and

the probability of a fiber failing before the time t is
t
∫

0

e−pf tpf dt =

1− e−pf t . Therefore, the probability of observing a microstate {n}
with L intact and (1 - L) broken fibers at the time t is

wensemble
{n} =

(

e−pf t
)NL(

1− e−pf t
)N(1− L)

. (3)

We used here the superscript “ensemble” to emphasize that this
probability is dictated by the ensemble considered.

We can rewrite the distribution (Equation 3) as

wensemble
{n} =

1

Zensemble(t)
e−NL/T

eff (t) (4)

where we denoted Teff (t) ≡ ln−1
(

epf t − 1
)

. Formula (4) could
become identical to the Gibbs probability distribution if we
called Teff (t) the effective temperature. Then Zensemble(t) =
(

1− e−pf t
)−N

plays the role of the partition function of the
ensemble as we will prove later in Equations (9–11).

We see that the probability distribution of microstates is
Gibbsian with the effective temperature changing with time; this
allows us to call our ensemble as being “effectively” canonical.
Similar to a thermodynamic system with the limited spectrum
(like an Ising model), the effective temperature can be both
positive and negative, choosing intact states for fibers in the
beginning of the model evolution but switching this choice to
broken once at later times.

As to a fluctuation [L] (a macrostate [L]) we will refer to
the union of all microstates corresponding to the given value
of parameter L: [L] ≡

⋃

{n}:L{n} = L

{n}. For example, in the case

of a model with three fibers, we observe fluctuation [L = 1/3]
when we observe one of the three microstates: { | x x }, { x | x },
or { x x | }. For the model with arbitrary N, the number g[L]
of microstates, corresponding to the fluctuation [L], is called
the statistical weight of this fluctuation. It can be found as the

combinatorial number of outcomes when we distributeNL intact
fibers and N(1− L) broken fibers among N fibers:

g[L] =
N!

(NL)!(N(1− L))!
. (5)

To simplify this expression, we apply Stirling’s approximation

N! ≈
(

N

e

)N

O
(

Nα
)

(6)

and in the limit N >> 1 we discard the slow power-law
dependenceO (Nα) onN in comparison with the fast exponential
multiplier (N/e)N :

N!≈ln

(

N

e

)N

. (7)

The special notation for the logarithmic accuracy, “ ≈ln,” stands
here to denote the accuracy to the order of an arbitrary multiplier
with the power-law dependence on N (for detailed examples, see
[30], Chapter 2).

Applying Stirling’s approximation with the logarithmic
accuracy to Equation (5), we find

g[L]≈ln L
−NL(1 − L)−N(1− L). (8)

Let us now prove that Zensemble(t) =
(

1− e−pf t
)−N

is indeed the
partition function of the ensemble. By definition, the partition

function is the sum of exponential functions e−NL/T
eff (t) over all

microstates:

Zensemble(t) ≡
∑

{n}
e−NL{n}/Teff (t) (9)

Grouping microstates by fluctuations [L], since all microstates of
the same fluctuation have equal values of L, we can write:

Zensemble(t) =
∑

[L]

g[L]e
−NL/Teff (t). (10)

Substituting here Teff (t) ≡ ln−1
(

epf t − 1
)

and the statistical
weight from Equation (5), we easily prove the required statement:

Zensemble(t) =
N
∑

NL= 0

N!

(NL)!(N(1− L))!

(

1

epf t − 1

)NL

1N(1− L)

=
(

1

epf t − 1
+ 1

)N

=
(

1− e−pf t
)−N

. (11)

To find the probability Wensemble
[L] (t, L) of observing a fluctuation

[L] in the ensemble (to observe a system with the given fraction
L of intact fibers), we multiply probability (Equations 3, 4) of the
corresponding microstates by the number (Equation 8) of these
microstates:

Wensemble
[L] = g[L]w

ensemble
{n}∈[L] ≈ln

(

e−pf t

L

)NL(
1− e−pf t

1 − L

)N(1−L)
.

(12)
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To attribute a microstate {n} to a particular fluctuation [L], we
will write either {n} ∈ [L] or {n} : L{n} = L. There is no difference
between these two notations, and we will utilize the one that will
be more convenient at the moment.

The dependence Wensemble
[L] on NL has a very narrow

maximum due to the “wrestling” of two exponentially fast
dependences: g[L] and wensemble

{n}∈[L] . The absolute width of this

maximum is of the order of
√
N while the relative width is of

the order of 1/
√
N. The most probable fluctuation (which will

be observed most commonly) is determined by the maximum of

this probability. Equating the derivative to zero,
∂Wensemble

[L]

∂L

∣

∣

∣

∣

0

= 0

or
∂ lnWensemble

[L]

∂L

∣

∣

∣

∣

0

= 0, we find the equation of state:

L0 = e−pf t (13)

The probability distributionWensemble
[L] is normalized by unity:

1 =
∑

[L]

Wensemble
[L] =

∑

[L]

g[L]w
ensemble
{n}∈[L] . (14)

Let us multiply this equality by the partition function:

Zensemble ≡
∑

{n}
e−NL{n}/Teff (t) =

∑

[L]

g[L]e
−NL/Teff (t), (15)

where we have again substituted the sum over microstates {n} by
the sum over fluctuations [L]. The number of non-zero terms in
this sum is of the order of

√
N (the width of the maximum of

Wensemble
[L] ):

Zensemble = g[L0]e
−NL0/T

eff (t)O
(√

N
)

. (16)

Applying the logarithmic approximation (neglecting slow
power-law dependencies and keeping only fast exponential
dependencies), we prove the classical result of statistical
mechanics that a partition function equals its maximal term:

Zensemble≈ln g[L0]e
−NL0/T

eff (t). (17)

Dividing this equation by Zensemble, we find another important
relationship:

wensemble
{n}:L{n} = L0

≈ln
1

g[L0]
(18)

that the probability of microstates corresponding to the most
probable fluctuation [L0] is the inversed number of these
microstates (the principle of the equivalence between the
canonical and microcanonical ensembles).

Equality (Equation 18) can be found without multiplying
(Equation 14) by Zensemble. Only in this case, we arrive at the
equation

1 = g[L0]w
ensemble
{n}:L{n} = L0

O
(√

N
)

≈ln g[L0]w
ensemble
{n}:L{n} = L0

(19)

which states that there are about
√
N fluctuations under the width

of the maximum of Wensemble
[L] with the probability similar to the

most probable fluctuation [L0]. Thereby, the probability of [L0] is
of the order of 1/

√
N which returns us to Equation (18).

Let us introduce the partial partition function (of a
fluctuation)

Z[L] ≡
∑

{n}∈[L]
e−NL{n}/Teff (t) = g[L]e

−NL/Teff (t) (20)

when we sum the exponential functions not over all microstates
but only over microstates of the particular fluctuation. Then,
probability (Equation 12) of observing the fluctuation is directly
related to the partial partition function of this fluctuation:

Wensemble
[L] = g[L]w

ensemble
{n}∈[L] =

Z[L]

Zensemble
. (21)

Next, let us consider averaging in the ensemble:

〈

f
〉ensemble ≡

∑

{n}
f{n}w

ensemble
{n} =

∑

[L]

f{n}:L{n} = Lg[L]w
ensemble
{n}:L{n} = L

=
∑

[L]

f{n}:L{n} = LW
ensemble
[L] . (22)

As an example, we consider averaging of L:

〈L〉ensemble =
∑

[L]

LWensemble
[L] . (23)

Here the probability distribution Wensemble
[L] is the very fast

dependence comparing to slow dependence L. Besides,Wensemble
[L]

is normalized by unity. Therefore, it plays the role of a delta-
function δ(L− L0), and we immediately find:

〈L〉ensemble ≈ L0 (24)

The definition [L] ≡
⋃

{n}
{n}:L{n} = L

of a fluctuation [L] can be

presented in terms of non-equilibrium probability distributions
which we developed in details in [30], Chapter 2 as the
generalization of the Leontovich approach of non-equilibrium
states [127, 128]. We observe a fluctuation [L] when in the
ensemble we observe a system with the given fraction L of intact
fibers. It is like in statistical physics to observe fluctuations of gas
density when, for example, the gas has gathered spontaneously
all its molecules in the left half of its volume while there are
no molecules in another (right) half of the volume. We call it
a fluctuation (a macrostate). But to determine the properties of
this state, it is not enough to observe it for a microsecond as a
microstate. To study this state, we isolate the gas in the left half
of the volume by a virtual boundary and observe for some time
before releasing it. But what does this additional isolation mean?
It means that the gas visits only the microstates corresponding to
our fluctuation and does not visit other microstates.

The same purpose can be achieved by considering non-
equilibrium probability distributions [30]. Distribution
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(Equations 3, 4) is dictated by the ensemble boundary conditions
similar to the pressure and temperature dictated by the boundary
conditions for the gas. However, a system may disregard these
orders and behave independently. Imagine students who are
ordered to read one paper a week on average. One student works
hard and may read five papers a week on average while another
one does not study at all. Similar, a systemmay fluctuate violating
orders from the ensemble. For the gas, it means that the system
stays in the left half of its volume (have non-zero probabilities
only for those microstates which do not have molecules in the
right half). For our system with damage, it means that only
those microstates have non-zero probabilities which possess the
correct value of the intact fiber fraction L while probabilities of
other microstates are zero:

w{n} =
{

1/g[L], {n} : L{n} = L
0, {n} : L{n} 6= L

. (25)

To find the entropy of the fluctuation, we apply Gibbs definition
and arrive at Boltzmann’s entropy:

S[L] ≡ −
∑

{n}
w{n} lnw{n} = ln g[L]. (26)

For the equilibrium probability distribution, this transforms into:

Sensemble ≡ −
∑

{n}
wensemble
{n} lnwensemble

{n}

= −
∑

[L]

g[L]w
ensemble
{n} lnwensemble

{n}

= −
∑

[L]

Wensemble
[L] lnwensemble

{n} , (27)

where we have substituted the sum over microstates {n} by the
sum over fluctuations [L]. In the right-hand side of Equation (27),
the dependence lnwensemble

{n} is a slow, power-law dependence on

NL while Wensemble
[L] is the exponentially fast dependence, acting

like a delta-function due to its normalization
∑

[L]
Wensemble

[L] =

1. Therefore, utilizing Equation (18), we immediately find
Boltzmann’s expression for the equilibrium entropy as well:

Sensemble = − lnwensemble
{n}:L{n} = L0

= ln g[L0]. (28)

The non-equilibrium free energy potential (the effective
Helmholtz energy) of a fluctuation may be introduced as

F[L] ≡ NL− Teff S[L] = −Teff lnZ[L]. (29)

For the equilibrium free energy we find

Fensemble ≡ NL0 − Teff Sensemble = −Teff lnZensemble. (30)

Instead of free energy, we can define the action of free energy on
a fluctuation (this will remove the asymmetry of temperature; for
details, see [30, Section 2.16]):

A[L] ≡ NL/Teff − S[L] = − lnZ[L] = − ln
(

ZensembleWensemble
[L]

)

.

(31)

We see that the action of the free-energy is directly related to
the probability distribution of fluctuations and its minimization
is equivalent to the evolution from states of low probability to
highly probable states.

The ensemble action of free energy is:

Aensemble ≡ NL0/T
eff − Sensemble = − lnZensemble. (32)

All other results, generally developed for the canonical ensemble,
are applicable here as well (for details, see [30], Chapter 2).
However, our purpose in this manuscript is to suggest possible
approaches to solve an arbitrary system, not as simple as the
DFBM. Therefore, we provided here the classical Gibbs approach
of states only to the purpose to highlight differences with the
proposed below path integral approach.

RESTRICTIONS OF THE CLASSICAL
GIBBS APPROACH OF STATES

In the previous section, we were lucky that our system had an
analytical solution. This was the consequence of the fact that we

were able to find a priori the probability
t
∫

0

e−pf tpf dt = 1 − e−pf t

of a fiber failing before time t. For the case of an arbitrary system,
we generally know the distribution of probabilities only for one
time-step. In other words, if at time ti a system with probability
wensemble
{ni} is in a microstate {ni} with NLi intact fibers, we know

that the probability of this system at the next time-step ti+1 being
in a microstate {ni+1} with NLi+1 intact fibers is

wensemble
{ni+ 1} = wensemble

{ni}
(

1− pf t
)NLi+ 1

(

pf t
)N(Li−Li+ 1). (33)

In fact, we utilized here the general Gibbs formula
dwensemble
{}
dt

(t) =
F
[

wensemble
{} (t′), t′ ≤ t

]

that the evolution of the distribution of

probabilities of microstates is determined by some functional
dependence on the history of the model. To obtain the
distribution of probabilities of the microstates at time t we
have to integrate this equation over all possible paths among
all previous configurations [e.g., 129, 130]. We have to integrate
all possible intermediate configurations; these configurations
are interconnected by the tremendous number of different
paths; each path can have its own probability or be prohibited
(irreversible damage in the case of the FBM, when a broken
fiber cannot become intact again). Therefore, the integration of
combinatorial sums becomes cumbersome.

This approach corresponds to the classical Gibbs non-
equilibrium statistical mechanics, when microstates of a
system are identified with the system’s microconfigurations
and macrostates of a system are identified with the system’s
macroconfigurations. However, we know that the probabilities
for Markov processes are associated not with the states but with
the paths among these states (for the first-order Markov process,
the probability of a path A-B-C-D is P (D|C)P (C|B)P (B|A)P (A)

while to find the probability of the system arriving after
three steps at state D we should have three sums involved:
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FIGURE 2 | The graph among A, B, C, and D states.

∑

X1 ,X2 ,X3

P(D|X3)P (X3|X2)P (X2|X1)P(X1), see Figure 2).

Therefore, it is much easier to find a distribution of the
probabilities only for a macrogroup of paths than for all the
paths leading to a macrostate. In the Gibbs approach, the states
of a system were chosen as bases, although we see that everything
points to the fact that as bases we should choose not the states
but the paths [125, 126, 131–142]. We will see how we can
develop such an approach in the next section. The benefit of this
approach will be that its bases will not include integrals of the
states for the previous evolution of the system but, in contrast,
will be this evolution itself.

STATISTICAL MECHANICS OF THE PATH
INTEGRAL APPROACH

In the previous sections and in our previous publications [21,
22, 30], we identified microstates of a system with system’s
microconfigurations and macrostates of a system with system’s
macroconfigurations. However, this approach worked well
only for equilibrium statistical mechanics. For non-equilibrium
statistical mechanics, we should develop another approach [126].

As an illustration, we consider the case of the NFBM and
assume that the process consists of ν time intervals of duration
dt, from t0 = 0 to tν = ν · dt. For each time-step ti as an order
parameter we choose the value of the intact parameter Li at this
time-step. For the total process the order parameter is the total
history of the intact parameter L(t) ≡ L0,..., Lν . We assume that
the process always starts from zero damage L0= 1, so the quantity
L0 will not be variable in the ensemble. We assume that broken
fibers cannot become intact again; therefore, increments of the
intact parameter 1Li ≡ Li − Li− 1 are always negative.

At each time-step ti, a particular system in the ensemble
has its own value of the intact parameter Li and is in one
of the microconfigurations {ni} corresponding to this intact
parameter. The next possible microconfiguration for this system
at the time-step ti + 1 can only be a microconfiguration in

which all the broken fibers remain broken. This makes our
system a Markov process of order 1. For the total process from
t0 = 0 to tν = ν · dt, we construct all possible chains of
microconfigurations. Each such chain, as a possible sequence
of particular microconfigurations {n0}, {n1}, ..., {nν}, will be
referred to as a micropath {n0} → {n1} → ... → {nν} (further,
we will abbreviate this notation as {n0} → {nν}). For example,
for a system with N = 3 fibers, one of possible micropaths is
{|||} → {|x|} → {xx|} → {xx|} → {xxx} where symbol “|”
denotes an intact fiber while symbol “x” denotes a broken fiber.

Let us assume that for a micropath {n0} → {nν} the sequence
of the configurations has the evolution of the intact parameter
L(t)≡ L0,..., Lν . Then the probability of this micropath is

wensemble
{n0}→{nν } = (1 − P)N|1L1|PN(L0−|1L1|)

...(1 − P)N|1Lν |PN(Lν−1−|1Lν |)

=
(

1 − P

P

)N(1−Lν )

P
N

ν
∑

i= 1
Li− 1

(34)

as the probability of N|∆Li| fibers failing and of NLi ≡ N(Li−1 −
|1Li|) fibers staying intact, where P ≡ P(s – Eε) is constant.
This probability wensemble

{n0}→{nν } is dictated by the ensemble and,
in particular, by the value of P. This constraint is a model
input and acts similarly to the temperature prescribed in the
canonical ensemble. In the canonical ensemble, an external
medium dictates the distribution of the probabilities for different
paths but a system actually can be not in equilibrium with
the dictated distribution and realizes some other probability
distribution w{n0}→{nν } for its paths. Therefore, we used here
the abbreviation “ensemble” to emphasize that this probability
distribution corresponds to the requirements stated regardless of
possible fluctuations.

As to the macropath [L0] → [L1] → ... → [Lν] (further,
we will abbreviate this notation as [L0] → [Lν]) we will refer
to a subset of all micropaths {n0} → {nν} corresponding to the
specified evolution of the intact parameter L(t): [L0] → [Lν] =

⋃

{n0}
{n0}→{nν }:L{ni}=Li

→ {nν}. For example, for the system with N = 3

fibers macropath [1]→ [1/3]→ [1/3]→ [0] unites micropaths
{|||} → {|xx} → {|xx} → {xxx}, {|||} → {x| x} → {x| x} →
{xxx}, and {|||} → {xx|} → {xx|} → {xxx}. In fact, macropath
states that the system passes during its evolution the prescribed
values of L but does not specify particular microstates.

The probabilities of micropaths corresponding to amacropath
[L0] → [Lν] are all equal one to another and are given by
Equation (34); the number of these micropaths is

g[L0]→[Lν ] =
(NL0)!

(N|1L1|)!(N(L0 − |1L1|))!
.

(NL1)!

(N|1L2|)!(N(L1 − |1L2|))!
.

... ·
(NLν−1)!

(N|1Lν |)!(N(Lν−1 − |1Lν |))!
(35)

as a combinatorial choice of N|1Li| failed fibers among NL i− 1

initial fibers. We can cancel (NLi)! in the numerators and
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(N(Li − 1 - |1Li|))! in the denominators to obtain

g[L0]→[Lν ] =
(NL0)!

(NLν)!
ν
∏

i= 1
(N|1Li|)!

≈ln(Lν)
− NLν

ν
∏

i= 1

|1Li|−N|1Li|,

(36)

where the notation “≈ln” means that in the thermodynamic limit
N→+∞ all power-law multipliers are neglected in comparison
with the exponential dependence on N.

The probability of the system having amacropath [L0]→ [Lν]
(to move among macroconfigurations with the specified L(t)) is

Wensemble
[L0]→[Lν ]

=
g[L0]→[Lν ]
∑

n= 1

wensemble
{n0}→{nν } = g[L0]→[Lν ]w

ensemble
{n0}→{nν }. (37)

Maximization of Wensemble
[L0]→[Lν ]

over all the possible macropaths

gives the most probable macropath L(0)(t):

Wensemble

[L(0)0 ]→[L(0)ν ]
= max

L1 ,...,Lν

Wensemble
[L0]→[Lν ]

. (38)

Dependence L(0)(t) is the dependence of L which we will observe
generally in the ensemble.

The function Wensemble
[L0]→[Lν ]

, given by Equation (37), is the

product of g[L0]→[Lν ] and wensemble
{n0}→{nν }. Both these functions

contain exponentially fast dependences on N (N is infinite in the
thermodynamic limit). Therefore, in the space of all paths, the
function Wensemble

[L0]→[Lν ]
has a very narrow maximum at the most

probable macropath [L(0)0 ] → [L(0)ν ]. As we will see below, the

absolute width of this maximum is proportional to
√
N while the

relative width is proportional to 1/
√
N. Therefore, the number

of different macropaths [L0] → [Lν] under the width of this
maximum has a power-law dependence on N while the number
g[L0]→[Lν ] of micropaths {n0} → {nν} corresponding to each of
these macropaths [L0] → [Lν] has the exponential dependence
onN. Therefore, for the normalization of the functionWensemble

[L0]→[Lν ]
with the logarithmic accuracy we obtain

1 =
∑

[L0]→[Lν ]

Wensemble
[L0]→[Lν ]

≈lnW
ensemble

[L(0)0 ]→[L(0)ν ]

≡ g
[L(0)0 ]→[L(0)ν ]

wensemble

{n0}→{nν }∈[L(0)0 ]→[L(0)ν ]
. (39)

This provides

g
[L(0)0 ]→[L(0)ν ]

≈ln 1/w
ensemble

{n0}→{nν }∈[L(0)0 ]→[L(0)ν ]
. (40)

In other words, the probability of each micropath of the most

probable macropath [L(0)0 ]→ [L(0)ν ] has the order of the inverted
number of these micropaths.

Next, let us consider averaging over the space of all possible
paths:

〈

f
〉ensemble

(t) ≡
∑

{n0}→{nν }
wensemble
{n0}→{nν }f{n0}→{nν }. (41)

As an example, we again consider averaging of L:

〈L〉ensemble(t) ≡
∑

{n0}→{nν }
L{n0}→{nν }w

ensemble
{n0}→{nν }

≡
{

L0, t = t0
∑

{n0}→{nν }
L{ni}w

ensemble
{n0}→{nν }, t = ti = (42)

=
{

L0, t = t0
∑

[L0]→[Lν ]
g[L0]→[Lν ]Liw

ensemble
{n0}→{nν }, t = ti .

Of course, in the thermodynamic limit, 〈L〉ensemble(t) coincides
with the most probable macropath: 〈L〉ensemble(t) ≈ L(0)(t).

Probability distribution (Equation 34) is the distribution
dictated by the ensemble. However, we can also consider
other distributions w{n0}→{nν } which do not obey the
ensemble requirements. Next, as a fluctuation we consider the
macropath [L0] → [Lν]. The number g[L0]→[Lν ] of micropaths
corresponding to this macropath is given by Equation (36).
Again, to observe this macropath, we need to “isolate” our
system in this macropath. This is achieved by considering the
probability distribution w{n0}→{nν } such that only the micropaths
belonging to the considered macropath [L0] → [Lν] have
non-zero probabilities:

w{n0}→{nν } =
{

1/g[L0]→[Lν ], {n0} → {nν} ∈ [L0]→ [Lν]
0, {n0} → {nν} /∈ [L0]→ [Lν]

. (43)

Here we assumed the equiprobability of all micropaths of the
system isolated in the macropath. Actually, this may not always
be true but depends solely on how we build fluctuations as an
instrument of our investigation.

The entropy of the considered macropath is

S[L0]→[Lν ] ≡ −
∑

{n0}→{nν }
w{n0}→{nν } lnw{n0}→{nν } = ln g[L0]→[Lν ].

(44)

We should emphasize here that the entropy introduced is the
“dynamical” entropy of the distribution of probabilities for the
paths and must not be confused with the classical Gibbs entropy
associated with the distribution of probabilities for the states
(configurations). In our notations, the classical Gibbs entropy
would be S{n}(t) ≡ −

∑

{n}
w{n}(t) lnw{n}(t) as the average at time

t over the probabilities w{n}(t) of microconfigurations at this
time. On the contrary, the path entropy is associated with the
probabilities w{n0}→{nν } of micropaths of the total process and
cannot be attributed to system’s characteristics at a particular
time t.

If, instead of the probability distribution w{n0}→{nν }, we
consider probability distribution (Equation 34) dictated by the
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ensemble, for the ensemble path entropy we find:

Sensemble ≡ −
∑

{n0}→{nν }
wensemble
{n0}→{nν } lnw

ensemble
{n0}→{nν }

= −
∑

[L0]→[Lν ]

g[L0]→[Lν ]w
ensemble
{n0}→{nν } lnw

ensemble
{n0}→{nν } =

= −
∑

[L0]→[Lν ]

Wensemble
[L0]→[Lν ]

lnwensemble
{n0}→{nν }. (45)

Here, the function lnwensemble
{n0}→{nν } has a slow power-law

dependence on N in comparison with the functions g[L0]→[Lν ]

and wensemble
{n0}→{nν } which have exponentially fast dependences

on N. Therefore, the dependence Wensemble
[L0]→[Lν ]

acts as a
delta-function around the most probable macropath, and
we find:

Sensemble ≈ − lnwensemble

{n0}→{nν }∈[L(0)0 ]→[L(0)ν ]
≈ ln g

[L(0)0 ]→[L(0)ν ]

= S
[L(0)0 ]→[L(0)ν ]

. (46)

In other words, the entropy of the total ensemble of paths equals
the entropy of the most probable macropath.

We can rewrite the equilibrium distribution of probabilities,
given by Equation (34), as

wensemble
{n0}→{nν } =

1

Zensemble
exp

(

− NLν/Tν − N

(

ν
∑

i= 1

Li− 1

)

/T∫

)

(47)

where Zensemble =
(

P
1−P

)N
, Tν = ln−1

{

(1− P)/P
}

,

and T∫ = −ln−1P. It is easy to see that Zensemble is

the path partition function of the system: Zensemble =
∑

{n0}→{nν }
exp

{

− NLν/Tν − N

(

ν
∑

i= 1
Li− 1

)

/T∫
}

. Tν and T∫

play the roles of effective temperatures. We see that when P is
close to unity (the probability of a fiber breaking is small), the
temperature T∫ is infinite but positive.

The definition of the temperature Tν is, to some extent,
ambiguous. Indeed, we can rewrite Equation (34) for
probabilities as

wensemble
{n0}→{nν } = (1 − P)N|1L1|PNL1 ...(1 − P)N|1Lν |PNLν

= (1 − P)N(1−Lν )P
N

ν
∑

i= 1
Li
. (48)

This gives Tν = ln−1(1 − P) which is different from
the expression Tν = ln−1

{

(1− P)/P
}

above. However, the
difference is ln(P) which is negligible in comparisonwith ln(1−P)
in the limit P→ 1.

The temperature T∫ = −ln−1P of the system is
complementary to the integral of the evolution of intact

parameter: N
ν
∑

i= 1
Li− 1 ∝ N

tν
∫

0

L(t)dt. If at the final time-step tν

the total system fails, L(tν) = 0, then the single order parameter

left is the integral N
tν
∫

0

L(t)dt.

Since our system has two effective temperatures, instead of
a free-energy potential we should define the action of the free-
energy potential to avoid the asymmetry of one temperature
chosen in favor to another. The action of the free-energy for a
macropath [L0]→ [Lν] can be defined as:

A[L0]→[Lν ] ≡ NLν/Tν + N

(

ν
∑

i= 1

Li− 1

)

/T∫ − S[L0]→[Lν ] =

= − ln

{

g[L0]→[Lν ] exp

(

−NLν/Tν − N

(

ν
∑

i= 1

Li− 1

)

/T∫

)}

= − lnZ[L0]→[Lν ], (49)

where Z[L0]→[Lν ] is the partial path partition function [23, 125,
126] of this macropath:

Z[L0]→[Lν ]

=
∑

{n0}→{nν } ∈ [L0]→[Lν ]

exp

{

−NLν/Tν − N

(

ν
∑

i= 1

Li− 1

)

/T∫

}

= ZensembleWensemble
[L0]→[Lν ]

. (50)

Therefore, for the action of the free-energy we obtain

A[L0]→[Lν ] = − ln
(

ZensembleWensemble
[L0]→[Lν ]

)

. (51)

Hence, the action of the free-energy is directly related to the
probability distribution of the fluctuations and the principle of
its minimization is equivalent to the evolution from paths of low
probability to highly probable paths.

In Gibbs equilibrium statistical mechanics, an equilibrium
state is found as a minimum of a free energy potential. For
the microcanonical ensemble, the free energy potential is the
negative entropy −S ≡< lnw{n} >≡

∑

{n}
w{n} lnw{n}; for the

canonical ensemble, the free energy potential is the Helmholtz
energy F ≡< H{n} > +T < lnw{n} >≡

∑

{n}
w{n}[H{n} +

T lnw{n}]. For the case of general ensemble in Gibbs equilibrium
statistical mechanics, the principle of the minimization of the
free energy potential always works because this potential is
always proportional to the minus logarithm of the probability
distribution of fluctuations. We see that the same principle is
valid for the case of non-equilibriummechanics as well, only now
we have to construct the free energy potential not for the states
but for the paths.

So, for the path microcanonical ensemble (for the system
isolated in a macropath), the negative dynamical entropy

− S ≡< lnw{n0}→{nν } >≡
∑

{n0}→{nν }
w{n0}→{nν } lnw{n0}→{nν }

(52)

plays the role of the free energy potential. This immediately
provides that all the micropaths corresponding to this macropath
must be equiprobable. If we compare this result with our
hypothesis (Equation 43), we see that we were right considering
micropaths as equiprobable within the macropath.
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For the path canonical ensemble, the role of the free energy
potential is played by the action of the free-energy

A ≡ < H{n0}→{nν } > /T+ < lnw{n0}→{nν } >

≡
∑

{n0}→{nν }
w{n0}→{nν }[H{n0}→{nν }/T + lnw{n0}→{nν }]

(53)

where H{n0}→{nν } is supposed to be the dynamical Hamiltonian

which appears in distribution (Equation 47) of the probabilities:

wensemble
{n0}→{nν } = exp

(

−H{n0}→{nν }/T
)

/Zensemble. This dynamical

Hamiltonian happens to consist of two parts, each corresponding

to its own temperature, H{n0}→{nν }/T = NLν/Tν +

N

(

ν
∑

i= 1
Li− 1

)

/T∫ , and does not correspond to the classical

Hamiltonian of the states because of being determined by the

rules of the memory of the process:

A ≡
∑

{n0}→{nν }

w{n0}→{nν }

[

NLν/Tν + N

(

ν
∑

i= 1

Li− 1

)

/T∫ + lnw{n0}→{nν }

]

(54)

For the most probable macropath [L(0)0 ] → [L(0)ν ], the action
of the free-energy is A

[L(0)0 ]→[L(0)0 ]
≈ − lnZ

[L(0)0 ]→[L(0)0 ]
which

coincides with the ensemble path action of the free-energy:

Aensemble ≡
∑

{n0}→{nν }

{

NLν/Tν + N

(

ν
∑

i= 1

Li−1

)

/T∫

}

wensemble
{n0}→{nν } − Sensemble =

= −
∑

{n0}→{nν }

{

− lnwensemble
{n0}→{nν } − NLν/Tν − N

(

ν
∑

i= 1

Li−1

)

/T∫

}

wensemble
{n0}→{nν } = − lnZensemble ≈

≈ − lnZ
[L(0)0 ]→[L(0)0 ]

= A
[L(0)0 ]→[L(0)0 ]

. (55)

At the point of the maximum ofWensemble
[L0]→[Lν ]

, we have

∂Wensemble
[L0]→[Lν ]

∂Li

∣

∣

∣

∣

∣

0

= 0 or
∂ lnWensemble

[L0]→[Lν ]

∂Li

∣

∣

∣

∣

∣

0

= 0 (56)

(where i ≥ 1 because we assume L0 to be non-variable).
For lnWensemble

[L0]→[Lν ]
= ln g[L0]→[Lν ] + Aensemble − NLν/Tν −

N

(

ν
∑

i= 1
Li− 1

)

/T∫ , we can write that

1

T∫
=

∂ ln g[L0]→[Lν ]

N∂Li

∣

∣

∣

∣

0

=
∂ ln g

[L(0)0 ]→[L(0)ν ]

N∂L
(0)
i

, i = 1, ..., ν − 1

(57)

and

1

Tν

=
∂ ln g[L0]→[Lν ]

N∂Lν

∣

∣

∣

∣

0

=
∂ ln g

[L(0)0 ]→[L(0)ν ]

N∂L
(0)
ν

at the most probable macropath. These equations could be
used as definitions of the temperatures. As both the entropy
of a macropath S[L0]→[Lν ] = ln g[L0]→[Lν ] and the ensemble
entropy Sensemble ≈ S

[L(0)0 ]→[L(0)ν ]
= ln g

[L(0)0 ]→[L(0)ν ]
have the

same functional dependence on L(t) and L(0)(t) respectively, we
obtain

1

T∫
=

∂S[L0]→[Lν ]

N∂Li

∣

∣

∣

∣

0

≈
∂Sensemble

N∂L
(0)
i

, i = 1, ..., ν − 1 and

1

Tν

=
∂S[L0]→[Lν ]

N∂Lν

∣

∣

∣

∣

0

≈
∂Sensemble

N∂L
(0)
ν

. (58)

This resembles the law of conservation of energy dE/T =
dQ←/T = dSensemble in the canonical ensemble—an equation
of “dynamical” path balance:

N

(

ν
∑

i=2
dL

(0)
i−1

)

/T∫ + NdL(0)ν /Tν = dSensemble. (59)

Differentials in this equation should be understood as the
response of the most probable macropath to the change of the
external boundary constraint P. This equation could be obtained
directly by differentiating (Equation 44) as the logarithm of
Equation (36).

To find the most probable macropath [L(0)0 ] → [L(0)ν ], we
should find when the derivatives of the probability of macropaths
(Equation 37) (or of the logarithm of this probability) with
respect to Li equal zero (Equation 56). This provides

L
(0)
i = Pi, |1L

(0)
i | = (1 − P)Pi− 1, i = 1, ..., ν. (60)

as an analog of the equation of state in equilibrium statistical
mechanics. Being consistent, we should probably call it the
equation of path.

To investigate the behavior of fluctuations, we should find the
second derivatives of lnWensemble

[L0]→[Lν ]
:

∂2 lnWensemble
[L0]→[Lν ]

∂Li∂Lj

∣

∣

∣

∣

∣

0

= − Ki,j, i, j = 1, ..., ν, (61)
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where Ki ,j is the symmetric matrix of covariance, non-zero
elements of which are

Ki,i =
N

1− P
·
{

1+ P

Pi

}

, Ki,i+1 = Ki+1,i =
N

1− P
·
{

−
1

Pi

}

,

Kν,ν =
N

1− P
·
{

1

Pν

}

. (62)

For the probability of fluctuations around the most probable
path, we obtain

lnWensemble
[L0]→[Lν ]

= lnWensemble

[L(0)0 ]→[L(0)ν ]

−
1

2

ν
∑

i,j= 1

(Li − L
(0)
i )Ki,j(Lj − L

(0)
j )+ ... or

Wensemble
[L0]→[Lν ]

∝ exp







−
1

2

ν
∑

i,j= 1

(Li − L
(0)
i )Ki,j(Lj − L

(0)
j )







.

(63)

The quadratic form Ki ,j is positively defined. This can be proved
directly. However, we see that it is easy to diagonalize the form
Ki ,j. Indeed, transforming to new coordinates

ξi = (Li − L
(0)
i )−

1− Pi

1− Pi+1
(Li+ 1 − L

(0)
i+ 1), i = 1, ..., ν− 1;

ξν = (Lν − L(0)ν ), (64)

we obtain that the new diagonal quadratic form is

K̃i,i =
N

1− P
·
{

1− Pi+1

(1− Pi)Pi

}

, K̃ν,ν =
N

1− P
·
{

1− P

(1− Pν)Pν

}

,

(65)

which is positively defined. Also, we see that the true, “diagonal”
order parameters are not Li but the quantities given by Equation
(64). For these quantities, we have

ξi = (Li − L
(0)
i )−

1− L
(0)
i

1− L
(0)
i+ 1

(Li+ 1 − L
(0)
i+ 1), i = 1, ..., ν− 1;

ξν = (Lν − L(0)ν ). (66)

In the limit P → 1 (the probability of a fiber breaking at a
time-step is much less than unity), we obtain

ξi = (Li − L
(0)
i )− (Li+ 1 − L

(0)
i+ 1), i = 1, ..., ν− 1;

ξν = (Lν − L(0)ν ) (67)

as it could be expected. Indeed, the process is the first order

Markov process and fluctuations (Li+ 1 − L
(0)
i+ 1) at the time-

step ti+1 depend on what the system really was at the previous
time-step ti and do not depend on what it were supposed to be.
But at the previous time-step the system realized fluctuations

(Li − L
(0)
i ). Therefore, the new fluctuations depend on the

previous fluctuations as if it were a reference state, from which
the new move starts. In other words, if the system had some

fluctuation (Li − L
(0)
i ) at the previous time-step, this fluctuation

is equivalent to the most probable macropath, but taken at
some other, different time. Therefore, the system forgets that
this was in fact a fluctuation and refers to it as to a new most
probable path. Therefore, all the new fluctuations (Li+1 − L

(0)
i+1)

are realized already relatively to the new, shifted, most probable
path. Similarly to how the non-equilibrium statistical mechanics
required us to move from the states to the paths, for the order
parameters we also have to move from the quantities to the
changes of the quantities. This is again the requirement of non-
equilibrium statistical mechanics. Indeed, any non-equilibrium
state is a source of some most probable path. Any fluctuation
does shift a system out from this macropath but simultaneously
initiates a new most probable macropath. The system forgets its
previous most probable path and refers to the fluctuation as if it
were the initiation of the newmost probable path. Therefore, new
fluctuations will be spread around the old fluctuation, not around
the first, forgotten, most probable path.

Fluctuations (Equation 63) are Gaussian and relative
fluctuations are proportional to 1/

√
N. Therefore, the maximum

of the function Wensemble
[L0]→[Lν ]

is indeed very narrow in the
thermodynamic limit.

It is easy to demonstrate the benefits of the path integral
approach relatively to the state approach. For example, let us
calculate the probability that at a given time tν , the model has
a given value Lν of the intact parameter. For the formalism of
states we would have to sum the probabilities of all possible
intermediate configurations and all the possible paths for ν time-
steps

Pr(tν , Lν) ∝
1
∫

Lν

dLν− 1

1/N

(NLν− 1)!(1− P)N(Lν− 1−Lν )PNLν

(N(Lν−1 − Lν))!(NLν)!

1
∫

Lν− 1

dLν− 2

1/N

(NLν− 2)!(1− P)N(Lν− 2−Lν− 1)PNLν− 1

(N(Lν− 2 − Lν− 1))!(NLν− 1)!
× ...×

×
1
∫

L2

dL1

1/N

(NL1)!(1− P)N(L1 − L2)PNL2

(N(L1 − L2))!(NL2)!

(NL0)!(1− P)N(L0−L1)PNL1

(N(L0 − L1))!(NL1)!
.

(68)

For the path integral, we do not need to perform these
integrations. Instead, we already know that the system follows

its equilibrium macropath [L(0)0 ] → [L(0)ν ] with the Gaussian

fluctuations of the order of 1/
√
N around it. For fluctuations of

ξν = (Lν − L
(0)
ν ) we have

Pr(tν , Lν) ∝ exp

{

−
1

2
K̃ν,ν(Lν − L(0)ν )

2
}

. (69)

Therefore, the probability that at a given time tν the model has
a given value of Lν has the Gaussian distribution around the

equilibrium path L
(0)
ν at this time.
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CONCLUSIONS

In this paper, we have developed a formalism of non-equilibrium
statistical mechanics for non-equilibrium damage phenomena.
Far from the state of equilibrium, we switched from states to
paths to base our theory on the most basic concepts which
directly determine the probability ensembles. We developed
non-equilibrium statistical mechanics for the path ensembles
and found the equation of path, the path balance equation,
the expression for the dynamical entropy and the free energy
potential. Also we showed that the ensemble of systems can
be described in terms of the effective temperatures. Although,
we used the fiber-bundle model to illustrate all the concepts
developed, we believe that our results have general applicability
for other, less simplified damage phenomena. Another important
result of this study is that we generalized the Gibbs principle of
the minimization of the free energy potential for path ensembles.
Only in this case, instead of characteristics of the states we had to
move to the dynamical characteristics in the space of all possible
paths.

The importance of the path integral approach relies on the
fact that it is the most fundamental approach for processes
far from equilibrium, the importance of which is difficult to
underestimate for damage phenomena. Instead of following the
evolution of a system among the states, we observe the paths
followed by the system which is much easier and simplifies
analytical formulae significantly [e.g., compare Equation (69)
with Equation (68)]. Imagine a city during a rush hour. To
analyze the traffic, we do not count all the cars on all the streets;
instead, we inquire about a traffic jam along one particular route
and either follow it or choose another one. The same holds
for the path approach: To study the states we need to know
how all the microstates are interconnected with one another
through the whole system phase space; to study the paths we
compare one with another and choose one which is more
probable.

However, characteristics of the path formalism are different
from the classical approach of states. The mathematics at the
base of the formalism is quite similar but the results it provides
differ very much from our intuitive thoughts influenced for
more than a century by the brilliance of the Gibbs mechanics.
Let us take, for example, the entropy. For the approach of the
states, we utilize famous formula S ≡ −

∑

{··· }
w{··· } lnw{··· } which

is applicable for any system (both thermal and not) for any
distribution of probabilities of microstates. The universality of
this formula is such that considering an arbitrary phenomenon
we may immediately conclude that one state differs from another
by how it is disordered, which is quantified by the entropy. The
whole formalism of statistical physics can be developed based on
only this one formula (see, e.g., [30], Chapter 2).

But when we come to the path integral approach, everything
should be rethought anew. The formula is the same, S ≡
−
∑

{··· }
w{··· } lnw{··· }, but the probabilities in it are no longer

related to states but to paths. And all the results require new
interpretation. What, for example, does it mean that the entropy

FIGURE 3 | The Bénard experiment for temperature gradient (A) below

the point of bifurcation, (B) at the point of bifurcation, (C) above the point of

bifurcation.

of onemacropath is higher than of another? Is it related to a more
“disordered path?”

The answers still usually appear to be absent in the literature.
Let us consider, for example, the situation where after the free
energy action minimization, we reach the conclusion that there
is not one but two most probable macropaths for the non-
equilibrium process. In other words, comparing probabilities for
all possible macropaths, we find that the probability distribution
has twomaxima instead of one. These maxima have equal heights
but correspond to two different macropaths.

Then, the system is allowed to choose between these two
paths (breaking some symmetry as an Ising model in zero
field breaks its symmetry choosing one of two phases). Does
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this mean that there is a “non-equilibrium phase transition”
from one macropath to another? In other words, if there are
two most probable macropaths with equal probabilities, should
we generalize the concept of phase transitions here as well,
considering these paths as phases?

To illustrate this concept, let us first consider the near-
equilibrium processes. The simplest example is the system of
domains of opposite phases (magnetic domains in an Isingmodel
with long-range interactions in a zero field below a critical
temperature; domains with different values of L in damage
phenomena with long-range load-redistribution). If the system
has to eliminate the domain structure to move to an equilibrium
state (when we turn on the magnetic field in the Ising model or
apply loading in the system with damage), the situation when
there are several equally probable macropaths to destroy domains
is quite possible. The system can follow one of these paths but
then due to fluctuations of a size larger than critical, it may switch
its evolution to another path.

A more illustrative example appears when we consider a
system that fluctuates not around an equilibrium state but
around a stationary process. Let us consider Bénard cells as a
classic example of dissipative structures. A thin layer of fluid is
located between two plates, where the lower plate is hotter than
the upper. Depending on the temperature gradient, the system
chooses to transfer heat by means of either heat conduction or
convection in the form of Bénard cells. Exactly at the bifurcation
point, both scenarios have equal probabilities and correspond to
the two most probable macropaths. Therefore, the case where the
free energy action minimization returns several macropaths with
equal probabilities (instead of one) is typical for the bifurcation
points in dissipative structures.

What if there are two maxima of the probability distribution
corresponding to two different macropaths, but the probability
of one of them is lower than the probability of another? Does the
first maximum correspond to a metastable phase? To illustrate

this, let us return to the Bénard cells (Figure 3). If initially
the temperature gradient was low, the heat was transferred by
conduction. If we consider two macropaths, one for conduction,
the other for convection, the probability of conduction is higher,
and the system follows the conduction macropath. When we
increase the temperature gradient, the probability of convection
increases, reaches the value of the probability of conduction at the
point of bifurcation, and even exceeds this value if we continue
to increase the temperature gradient. Therefore, conduction
becomes metastable, and the system that follows the conduction
macropath, switches to the convection macropath.

We have considered near equilibrium processes and stationary
dissipative structures. But non-equilibrium processes are in
no way limited to these two extremes. We may consider
a significantly non-equilibrium process when even the local
equilibrium is not reached and we do not have temperature or
pressure defined even locally. The formalism developed in our
study remains applicable for this general case as well, leading
to the description of non-equilibrium phase transitions even for
such complex processes far from equilibrium.

In statistical physics, many questions about the path
integral approach are still opened. And damage phenomena
are probably a crucial step for these studies due to the
intrinsic property of damage growth as being a non-equilibrium
process. Besides, damage evolution is often more illustrative
than thermodynamical models of statistical physics can provide.
We hope that the application of non-equilibrium statistical
physics to damage phenomena will be beneficial for the further
development of statistical physics itself as it has already taken
place, for example, with complex systems.
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