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MutSα is a key component in the mismatch repair (MMR) pathway. This protein is

responsible for initiating the signaling pathways for DNA repair or cell death. Herein we

investigate this heterodimer’s post-recognition, post-binding response to three types of

DNA damage involving cytotoxic, anti-cancer agents—carboplatin, cisplatin, and FdU.

Through a combination of supervised and unsupervised machine learning techniques

along with more traditional structural and kinetic analysis applied to all-atom molecular

dynamics (MD) calculations, we predict that MutSα has a distinct response to each of

the three damage types. Via a binary classification tree (a supervised machine learning

technique), we identify key hydrogen bond motifs unique to each type of damage and

suggest residues for experimental mutation studies. Through a combination of a recently

developed clustering (unsupervised learning) algorithm, RMSF calculations, PCA, and

correlated motions we predict that each type of damage causes MutSα to explore a

specific region of conformation space. Detailed analysis suggests a short range effect for

carboplatin—primarily altering the structures and kinetics of residues within 10 angstroms

of the damaged DNA—and distinct longer-range effects for cisplatin and FdU. In our

simulations, we also observe that a key phenylalanine residue—known to stack with

a mismatched or unmatched bases in MMR—stacks with the base complementary to

the damaged base in 88.61% of MD frames containing carboplatinated DNA. Similarly,

this Phe71 stacks with the base complementary to damage in 91.73% of frames with

cisplatinated DNA. This residue, however, stacks with the damaged base itself in 62.18%

of trajectory frames with FdU-substituted DNA and has no stacking interaction at all in

30.72% of these frames. Each drug investigated here induces a unique perturbation in

the MutSα complex, indicating the possibility of a distinct signaling event and specific

repair or death pathway (or set of pathways) for a given type of damage.

Keywords: MutSα, FdU, cisplatin, carboplatin, decision tree, clustering, molecular dynamics, mismatch repair

1. INTRODUCTION

In human cells, the most prevalent binding factor is the heterodimer MutSα, formed by two
MutS homologs (MSH)—MSH2 and MSH6. MutSα initiates the repair or apoptotic pathway for
mismatched and partner-less nucleic bases [1–7]. The complex contains five functional domains:
mismatch binding, connector, lever, clamp and ATPase (Figure 1). Even though binding of
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FIGURE 1 | The MutSα complex shown here is colored by domain

classification. The color coding for the domains is blue for the mismatch

binding domain, green for the connector domain, yellow for the lever domain,

orange for the clamp domain, and red for the ATP-ase domain. The nucleic

acid strand is colored purple with an additional transparent surface around it

for clarity, and the ADP molecules present in the crystal structure [46] are

shown in a bonds representation.

damaged DNA occurs in one region, we predict using all-atom
microsecond timescale molecular dynamics (MD) simulations
and machine learning techniques, that conformational changes
and shifts in hydrogen bonding motifs across the entire complex
differentiate the heterodimer’s response to carboplatinated,
cisplatinated, and flouridated nucleic bases. These results are
consistent with several previous studies [8–18] that have
shown conformational shifts across interfaces in response to
cisplatinated and carboplatinated DNA damage, using short-time
(≤10 ns) molecular dynamics with more conventional analysis.
However, our present study provides more quantitative details
from long-time molecular dynamics (multiple runs of 250 ns)
as well as a study of the response to FdU, adding additional
insights from novel applications of machine learning techniques.
From this investigation, we provide insight into the mechanisms
signaling repair or apoptosis by MutSα.

Carboplatin [19] [cis-diammine(cyclobutane-1,1-
dicarboxylao)-platinum(II)] and cisplatin [20] [cis-
diammminechloroplatinum(II)] are both platinum-based
anticancer drugs that form platinum-DNA adducts. The
anticancer effect of these drugs is that the distortions resulting
from such adducts result in cell death [21, 22]. Cisplatin
predominately forms G-G crosslinks, whereas carboplatin
predominately forms G-X-G crosslinks. In addition to these
two types of DNA damage, we also examine MutSα’s response
to DNA with one base replaced with 5-flouro-2′-deoxyuridine
(FdU)—a type of DNA-substitution damage—which is likewise

cytotoxic [23–37]. For brevity and simplicity we will herein refer
to the simulated systems with these three types of DNA damage
as “Carbo,” “Cis,” and “FdU,” respectively.

The mechanisms of recognition, response and signaling in
the mismatch repair (MMR) pathway are not well understood
[18, 38, 39]; though, recent computational studies have made
progress into the atomic-level details [9, 10, 14, 15]. Here we
continue this progress using decision tree learning to identify
as few as two key residue interactions differentiating MutSα’s
response to three types of damage. Additionally, we apply a
recently developed unsupervised clustering technique—iMWK-
Means with explicit rescaling followed by K-Means [40] (herein
Amorim-Hennig after the algorithm’s creators)—to identify
conformational subtypes adopted by the MSH2-MSH6 complex
across simulated responses to the three types of damage. We have
previously detailed the particular effectiveness of this clustering
techniques on MD simulations of stable systems [41]—such
as a structured, functional protein. To bolster confidence in
the relatively novel application of these analysis techniques, we
compare the specific hydrogen bonding motifs suggested by the
decision tree models here to results of previous experimental
results and theoretical work. We also point out overlap with
and differences from more traditional analysis techniques (see
Sections 2 and 4).

2. MATERIALS AND METHODS

2.1. Force Field Parameters
The CHARMM27 force field [42–44] was used for the entire
complex. Due to the relative novelty of the cisplatinated,
carboplatinated and fluorinated uracil-containing DNA,
additional parameters based on pre-existing carboplatin,
cisplatin, and FdU parameters were used in topology generation
and simulation [8, 17, 23, 30, 45].

2.2. Structures
Simulations are based on the X-ray structure of the human
MSH2/MSH6 protein complex with heteroduplex DNA, RCSB
PDB ID 208B [46]. The structure used in our simulations has a
truncated N-terminus. Residues that were excluded by truncating
the N-terminus are unstructured, and—while they do play a role
in nuclear transport [47]—they do not seem to have any other
function. Thus, it is not expected that the truncation of the
N-terminus will affect the behavior of the protein complex in
these simulations. Hydrogen atoms were added using the hbuild
facility of CHARMM [48] since x-ray structures lack hydrogen
atoms. In all of the systems, the MSH2 sub-complex contains 855
residues, the MSH6 sub-complex contains 974 residues, the DNA
fragments contain 30 bases, and there are two ADP molecules
bound to the system.

The cisplatinated, carboplatinated, and matched fluorinated
uracil DNA structures were built using the mismatched
DNA structure [46] as a template. In the cisplatinated and
carboplatinated DNA, the platinum atoms cross-links two
adjacent guanine bases. FdU is incorporated into the DNA as a
non-canonical base, which impedes replication in vivo [23, 29,
31]. These cross-linked structures were fitted into the binding
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pocket of the MutSα complex to maximize the structural overlap
with the mismatched DNA structure, followed by rotations and
translations to minimize the energy of the initial structure using
the coordinate manipulation and energy minimization features
included in CHARMM [42–44].

2.3. Solvation Conditions
All of these systems were then fully solvated in a cubic water box
of size 138Å by 138Å by 138Å with explicit TIP3P water using the
VMD package [49, 50]. After solvation, the systems were ionized
using the VMD autoionize package to 0.15 mol/L NaCl.

2.4. Simulation Configuration
Here, we used ACEMD [50], a simulation program specifically
designed for molecular dynamics simulations taking place on
GPUs. The molecular dynamics simulations were performed on
Acellera Metrocubo workstations with Titan GPUs. These GPUs
have 2,688 cores operating at 837 MHz for a theoretical floating
point speed of 1.5 Teraflops and allowed for 11.5 ns per day on a
single GPU for simulations of MutSα.

To begin our simulations, the water molecules in all
systems were minimized for 100 cycles of conjugate gradient
minimization, with a small harmonic force constant on all
protein atoms. This minimization ensures that the TIP3P water
atoms were distributed in a physical way, which prevented the
introduction of perturbations due to any initial un-physical
configurations of water atoms such as steric clashes. All systems
then underwent a small 250 ps simulation in order to reach
thermal equilibrium using Berendsen pressure regulations with
isotropic position scaling [43, 51]. These simulations used
Berendsen pressure with ACEMD default parameters (target
pressure of 1.01325 Bar relaxation time of 400 fs) and Langevin
damping (0.1/ps) for temperature control [50].

Equilibration was performed by assigning atoms velocities
from a Boltzman distribution for a given temperature every 1,000
cycles in 25 K increments from an initial temperature of 0 K to a
final temperature of 300 K. Production runs were performed on
all systems using 4 fs timesteps, which required hydrogen mass
repartitioning, as implemented in ACEMD [50]. To calculate
VdW and electrostatic forces, we used a cutoff distance of 9Å
with a switching distance of 7.5Å. For longer range interactions,
we calculated electrostatics using a smooth particle mesh Ewald
(SPME) summation algorithm [52, 53]. We ran two simulations
of 250 ns each system (i.e., 500 ns per system), saving data every
2,500 time steps (10 ps).

2.5. Processing and Analysis
To expedite memory and time-intensive analysis techniques,
we resampled all trajectories, keeping every tenth frame (i.e.,
100 ps per frame). We also removed water and counter-ions
prior to analysis. To focus on internal motions of the protein-
DNA complex, we aligned all frames in a given trajectory to the
trajectory’s first frame via rigid body rotations and translations
to minimize the RMSD of protein alpha carbon positions. This
alignment was carried out with the RMSD trajectory tool in
VMD [49].

2.5.1. Hydrogen Bond Detection
We concatenated trajectories of common atoms from all six
resulting simulations into one trajectory file (15,000 frames
comprising 1.5µs). In this concatenated trajectory, we detected
hydrogen bonds between polar atoms using the Python [54]
package MDAnalysis [55, 56]. As input parameters, we defined
a hydrogen bond as having a maximum heavy atom to heavy
atom distance of 3.2Å and a maximum heavy atom to hydrogen
to heavy atom angle of 120 degrees—an intermediate strength
hydrogen bond [57]. We focused on various subsets of the
complex’s hydrogen bonds, as detailed in the Section 3.

We parsed the output of the MDAnalysis hydrogen bond
detection algorithm into a Pandas DataFrame [58] for easy
conversion to a comma separated value file compatible with
Matlab and the Statistics and Machine Learning Toolbox therein.
For those wishing to reproduce our hydrogen bond detection and
parsing, we have made our processing scripts and the underlying
data available for free online via figshare [59].

2.5.2. Decision Tree Learning
Using the output of the hydrogen bond detection and processing
scripts [59] and Matlab’s Statistics and Machine Learning
Toolbox, we trained a binary classification tree using the presence
of residue-residue hydrogen bonds in each frame as input
features and the name of damage type associated with each
frame as the responses. We have used the same terminology
as the Matlab documentation to describe this process so that
readers who investigate the Matlab decision tree manual pages
and help files will be able to easily match our usage to Matlab
documentation.

The input features were in the form of a two-dimensional
matrix with a row representing a trajectory frame and a column
representing a possible hydrogen bond interaction. Each entry
in the matrix was a 1 or 0 indicating the presence or absence
of the specific hydrogen bond in that particular trajectory
frame. The input responses, or known correct labels, were the
name of the damage in the simulation from which a given
frame came. Specifically, each frame from simulations with
cisplatinated DNAwas labeled “cis;” each frame from simulations
with carboplatinated DNA was labeled “carbo;” and each frame
from simulations with FdU-substituted DNA was labeled “FdU.”

The Matlab command “fitctree” outputs a binary classification
decision tree with branching nodes that show the binary—yes or
no—presence of features that lead to a specific response. In the
case of our data sets, the decision tree differentiates the three
types of damage based on the presence or absence of certain
hydrogen bonds (see Section 3). This machine learning technique
allowed us to determine which residue-residue interactions
distinguished MutSα’s response to the three types of simulated
damage.

In addition to supplying the most likely label at the terminus
(leaf ) of each path in the decision tree, Matlab estimates the
probability of each type of damage for any frame that follows
this path. In this case, we used a uniform prior probability in
calculating estimated probability for each leaf (the default option
in Matlab’s “fitctree” function). Therefore, estimated probabilities
reported here were calculated by [the number of frames in a given
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system that follow a given path] divided by [the total number of
frames across all systems that follow that path].

For training these classification trees, we used all default
parameters, specifying only the features (hydrogen bond
trajectories) and responses (damage types) as inputs. Matlab
2016a—used here—outputs an interactive decision tree plot that
allows users to explore various levels of pruning. Pruning reduces
the depth of the decision tree, collapsing data points in the
removed level into the place in the next highest level that creates
the least amount of loss (classification error). Using the text-
based commands “prune” and “loss” in the Matlab Statistics
and Machine Learning toolbox, a user can calculate the percent
of mislabeled frames given a certain pruning level. We use
these commands to simplify decision trees given various error
tolerances (see Section 3).

As an example of how to read the flow chart figures reporting
the output of the decision trees, Figure 2 indicates the damage
type predicted by two-level decision tree as the damage type with
the highest estimated probability along with the probability of
other types of damage. That is, decision output from Matlab
pruned to 2 remaining levels would label a frame with both
a Thr781-ADP and a Ala517-Cyt hydrogen bond as “Cis.”
Using these highest likelihood labels, Matlab would correctly
label 80% of the frames (20% loss or classification error). In
the MD data, 94.7% of frames with these two hydrogen bonds
were in the Cis trajectories, 4.0% were in FdU trajectories, and
1.3% were in Carbo trajectories. Residues (or bases) involved
in the interactions described in the flow chart are in VDW
representation. The description of the interaction is shown
directly adjacent to residues involved so that the readermay easily
see the domain and specific location of the relevant residues.

Note that these trees were fitted on all data points (as opposed
to training on one subset and validating on another), as our goal
in using this machine learning technique was to uncover in a
programmatic, reproducible manner which residue interactions
distinguished the types of damage in our simulation data. We
then investigate the error created by various levels of pruning
(see Section 3) to find two or three key residues that are key
in differentiating the types of damage. For these particular
analysis goals, there would be no benefit to separate training and
validation sets.

For those wishing to reproduce our analysis, we have
scripted this analysis process and made those scripts along
with the underlying data available only for free online
(https:// figshare.com /articles/ Scripts_ and_Data_ for_MSH26_
Damage_Response_article/4003266) via figshare [59]. For those
interested in the theoretical details of decision tree learning, there
are many recent, excellent reviews and introductory chapters
[60–63].

2.5.3. Non-parametric Clustering
Using a recently developed unsupervised learning technique,
which is made effectively non-parametric by the the use of
sensible defaults, we explored overlap and dissimilarities of
MutSα’s conformational response to the three types of damage
simulated here. Amorim-Hennig [40] clustering requires the user
to select a distance metric in the form of a Minkowski Weight
[40, 64]. Here we chose a Minkowski weight of 2, corresponding

to Euclidean distance. We have previously detailed the particular
effectiveness of this clustering method on MD data [41] and have
made Python scripts for applying this method to MD trajectories
available for free online via figshare [65].

2.5.4. Correlated Motion and PCA
Using Pearson Correlation, we calculated a correlated motion
matrix of protein alpha carbons for each system and for the
concatenated trajectory of all simulations. By diagonalizing
the resulting matrices, we performed Principal Component
Analysis (PCA), which reduces the number of coordinates from
3 × number of atoms to just a few components capturing the
majority of dynamic variance in the simulations (see Section 3).
By projecting the original trajectories onto the eigenvectors
representing the two highest-variance (largest eigenvalues)
principal components, binning the the projections with a two-
dimensional histograms, and converting to free energy values
with

1G = −kT ln
P

P0

(where k is Boltzmann’s constant, T is temperature (here 300 K),
P is the population of a given bin and P0 is the population of the
highest populated bin), we estimate a free energy landscape for
the protein’s dynamics.

To aid comparison across systems, we first calculated principal
components for the concatenated trajectory of two simulations
for each of three damage types (6 simulations) to create a
common basis set. We then projected coordinates from each
system individually, producing a free energy landscape for each
of the three damage types in a common space.

2.5.5. RMSF
For additional validation of the the machine-learning-based
classification (based on hydrogen bonds) and clustering analysis
(based on atomic coordinates) and to examine the changes in
relative flexibility of each MutSα and DNA residues in response
to varying the type of DNA damage, we calculate the per residue
Root Mean Square Fluctuation (RMSF) of each backbone alpha
carbon using

RMSF =

√

√

√

√

√

1

N

N
∑

tj=1

(

Eri
(

tj
)

− Eri
′
)2

where N is the total number of frames, tj is an instance in time, Eri
is the position of atom i, and Eri

′ is the position of that atom in the
average structure.

2.5.6. Coordinate Parsing and Distance Calculations
For RMSF analysis and non-parametric clustering we read atom
positions into computer memory and performed all necessary
distance calculations using the MDTraj Python package [66].
For PCA calculations, we read atomic coordinates into
Matlab 2016a using MatDCD (www.ks.uiuc.edu/Development/
MDTools/matdcd/) and produced free energy plots using in-
house Matlab scripts, which we have made avaialble online via
figshare [67].
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FIGURE 2 | Based on the presence of two hydrogen bonds Thr781 on MSH6 to an ADP molecule and Ala517 on MSH2 to Cyt4 on the damage DNA our

decision tree, fitted on hydrogen bonds between the protein and the bound nucleic acids (including ADP), correctly labels the type of damage in 80%

of MD frames (and mislabels the other 20%). How to read all such figures: The flow chart shown here indicates the damage type predicted by two-level decision

tree as the damage type with the highest estimated probability (see Section 2) along with the probability of other types of damage. That is, decision output from

Matlab and pruned to 2 remaining levels would label a frame with both a Thr781-ADP and a Ala517-Cyt hydrogen bond as “Cis.” In the MD data, 94.7% of frames

with these two hydrogen bonds were in the Cis trajectories, 4.0% were in FdU trajectories, and 1.3% were in Carbo trajectories. Residues (or bases) involved in the

interactions described in the flow chart are in VDW representation. The description of the interaction is shown directly adjacent to residues involved so that the reader

may easily see the domain and specific location of the relevant residues.

2.6. Structure Visualization
We produced all structure images using VMD and Tachyon [68].
For figures indicating conformational uncertainty using shadows,
we individually rendered the representative (solid) structure and
each frame in the shadows. We then combined the output image
files using Pillow, a fork of the Python Image Library. The images
provide both a representative conformation for cluster as solid
with shadows showing the full width of the distribution so as
to avoid deceiving a viewer into thinking the cluster is a single
conformer. The representative structure in each visualization is
that with the smallest RMSD from the average of all structures
in the cluster. Additional technical details of this visualization
style and the underlying statistical reasoning for producing them
has been previously detailed [69]. Our scripts for producing such
images are available online via figshare [70].

3. RESULTS

3.1. Hydrogen Bonds and Decision Trees
Fitting a decision tree to the binary hydrogen bond trajectory
of interactions between protein residues and nucleic bases
(including adenine on the two ADP residues) from the
concatenated data of all systems yielded a decision tree with
37 levels of depth that correctly labels the type of damage

in 99.82% (i.e., 0.18% loss) of MD frames (Supplementary
Figure 1). Pruning by 12 levels yielded a tree with 1% loss
(Supplementary Figure 2), and pruning by 31 levels yielded 5%
loss (Supplementary Figure 3). That is, using binary knowledge of
the presence of at most 9 hydrogen bonds we correctly label the
damage type in 95% ofMD frames. In fact, with knowledge of just
two sets of interacting residues, our decision tree—pruned to two
levels of depth—correctly labels the damage type in 80% of frames
(Figure 2). These two interactions that have the largest influence
in differentiating the type of DNA damage are (1) hydrogen
bonding between Thr781 on MSH6 and an ADP molecule and
(2) Ala517 on MSH2 and Cyt4 on the damaged DNA.

For comparison, a similarly pruned decision tree fitted on only
hydrogen bonds between the protein and damaged nucleic acid
double strand correctly labeled 74% of frames (Supplementary
Figure 4). A similarly pruned decision tree fitted on only
hydrogen bonds between the protein and the two ADPmolecules
correctly labeled 69% of frames (Supplementary Figure 5).

Fitting a decision tree on the binary hydrogen bond trajectory
of interactions between the two protein monomers (MSH2-
MSH6) from the concatenated data of all systems yielded a
decision tree with 39 levels of depth that correctly labels the
type of damage in 99.91% (i.e., 0.09% loss) of MD frames
(Supplementary Figure 6). Pruning by 17 levels yielded a tree
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with 1% loss (Supplementary Figure 7), and pruning by 30 levels
yielded 5% loss (Supplementary Figure 8). That is, using binary
knowledge of the presence of at most 4 hydrogen bonds we
correctly label the damage type in 95% ofMD frames. In fact, with
knowledge of just three sets of interacting residues, our decision
tree—pruned to two levels of depth—correctly labels the damage
type in 82% of frames (Figure 3). The three interactions that have
the largest influence in differentiating the type of DNA damage
are (1) hydrogen bonding between Thr858 onMSH6 and Phe826
on MSH2, (2) Asn390 on MSH6 and Gln718 on MSH2, and (3)
Glu7 on MSH6 and Arg382 on MSH2.

Fitting a decision tree on the binary hydrogen bond trajectory
of interactions between protein residues and any other residue
(including another protein residue) or base (damaged double
strand or either ADP molecule) from the concatenated data of
all systems yielded a decision tree with 21 levels of depth that
correctly labels the type of damage in 99.96% (i.e., 0.04% loss)
of MD frames (Supplementary Figure 9). Pruning by 10 levels
yielded a tree with 1% loss (Supplementary Figure 10), and
pruning by 15 levels yielded 5% loss (Supplementary Figure 11).
That is, using binary knowledge of the presence of at most 3
hydrogen bonds we correctly label the damage type in 95% of
MD frames. In fact, with knowledge of just two sets of interacting
residues, our decision tree—pruned to two levels of depth—
correctly labels the damage type in 86% of frames (Figure 4). The
three interactions that have the largest influence in differentiating

the type of DNA damage are (1) hydrogen bonding between
Thr858 on MSH6 and Phe826 on MSH2, (2) Asn390 on MSH6
and Gln718 on MSH2, and (3) Glu7 on MSH6 and Arg382 on
MSH2.

3.2. RMSF
Calculating the root mean square fluctuation of protein alpha
carbons in each simulated system indicates that damage type
correlates to to a change in mobility of certain MutSα regions
(Figure 5). While all three systems show a spike around residue
1450 (Asn599 in the the clamp domain of MSH6), when MutSα
is exposed to carboplatinated DNA, this mobility expands to
MSH6 residues between Ala579 and Lys670, which involves both
the clamp the lever domains (Figures 5A,D). Cisplatinated DNA
evokes a similarly unique response, causing a spike in mobility of
MSH6 residues between Lys9 andMet49 in themismatch binding
domain (Figures 5B,D). In the Cis system, we also see a spike for
MSH2 residues between Lys235 and Leu270 (Figures 5B,D) in
the connector domain. This spike is larger for the FdU system
(Figures 5C,D). As an additional response to FdU, we also see
stabilization of residues in the ATP-ase domain of MSH6.

3.3. PCA and Binding Site Structures
Using an aligned trajectory of coordinates concatenated from all
simulations (6), we created a common basis set for projecting
coordinates of all systems into a two-dimensional space. We use

FIGURE 3 | Based on the presence of three hydrogen bonds Thr858 on MSH6 to Phe826 on MSH2, Asn390 on MSH6 to Gln718 on MSH2, and Glu7 on

MSH6 to Arg382 on MSH2 our decision tree, fitted on hydrogen bonds between the two protein monomers, correctly labels the type of damage in

82% of MD frames (and mislabels the other 18%). For guidance on how to read this figure, see Section 2 and the caption of Figure 2.
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FIGURE 4 | Based on the presence of two hydrogen bonds Thr858 on MSH6 to Phe826 on MSH2 and Arg220 on MSH6 to ASP215 also on MSH6 our

decision tree, fitted on hydrogen bonds between any protein residues and any other residue or base (including another protein residue), correctly

labels the type of damage in 86% of MD frames (and mislabels the other 14%). For guidance on how to read this figure, see Section 2 and the caption of

Figure 2.

the two principal components that explain the highest amount
of variance (totaling 43%). Projecting both the concatenated
trajectory of all simulations and separately the coordinates from
each simulated system (Carbo, Cis and FdU), we see that each
system explores a distinct segment of the reduced-dimension
space (Figure 6).

The free energy surface created by projecting the concatenated
trajectory of all simulations (Figure 6A) is of course, fictitious, as
no single system could visit all coordinates on the surface. That
is, no system would be ergodic in the space used to create that
surface. However, by creating this landscape using coordinates
from all trajectories, we can see the kinetic overlap—or lack
thereof, among the three systems. For reference, we mark the
coordinates of the crystal structure on the fictitious free energy
landscape—coordinates (10, 50) on Figure 6A.

By comparing the free energy landscape of the concatenated
trajectory (Figure 6A) to the free energy landscape of the
individual systems (Figures 6B,C), we see that while there is a
shared segment of the landscape near the coordinates of the
crystal structure, each system does explore a unique portion of
the space.

By plotting the coordinates of Amorim-Hennig heavy atom
clusters of residues with any atom within 10 angstroms of the
DNA onto the (alpha-carbon-coordinate-based) PCA1-2 space
of each system (Figures 6B,C), we see that the binding site
clustering forms a partition similar to that of the distinct wells

seen in the free energy landscape. From this overlap of partitions
we infer that the the motion of protein residues near the damaged
DNA is responsible for the various free energy wells the system
enters.

Visualizing the representative conformations of these
binding site clusters and along with the underlying structural
distributions (Figure 7), we see that each system’s binding
site enters distinct conformations for large portions of their
respective trajectories. We also see that portions of these
trajectories have significant structural overlap across systems—in
terms of the residues near the damaged DNA. Amorim-Hennig
clustering placed frames from the Carbo simulations in clusters
0 (45.86% of Carbo frames), 2 (39.90%), 7 (10.50%), 9 (0.02%),
and 10 (3.72%). Frames from Cis simulations were placed in
clusters 4 (40.36% of Cis frames), 6 (36.22%), 7 (16.18%), and
10 (7.24%). Frames from the FdU simulations were placed in
clusters 1 (36.40% of FdU frames), 3 (16.08%), 5 (22.00%), 7
(0.70%), 8 (10.94%), and 9 (13.88%).

3.4. Correlated Motions
Correlated motion analysis reveals a distinct communication
pattern associated with each type of DNA damage (Figure 8).
In response to carboplatinated DNA, we see small regions of
relatively strong correlation among residues of the lever, clamp
and ATP-ase domains (Figure 8A). These correlated regions
broaden to more residues and increase in relative strength in
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FIGURE 5 | Comparison of RMSF (A–C) of protein alpha carbons reveals generally similar regions of flexibility in each system. However, the Cis (B) and FdU

systems (C) have distinct peaks, indicating uniquely mobile regions. While the highlighted region in the Carbo system (A) is roughly the same magnitude in value as

the other systems (B,C), there are more residues within the peaked region in the Carbo system (A). This same region also has a slightly narrower but taller peak in the

Cis system (B). Additionally, we see stabilization in the ATP-ase domain of MSH6 in response to FdU-substituted DNA (C,D). For reference, residues in the highlighted

portions of the plots are shown with matching colors on the crystal structure (D) with the nucleic acid colored purple for emphasis. These regions are residues

between (A) Ala579 and Lys670 in the lever and clamp domains of MSH6 for the Carbo system, (B) residues between Lys9 and Met49 in mismatch binding domain of

MSH6, and (C) residues between Lys235 and LEu270 in the connector domain of MSH2 and between Gln919 and Ala959 of the ATPase domain of MSH6 for the

FdU system.

these domains in response to cisplatinated DNA along with
the emergence of strong correlations across monomers in the
connector and mismatch binding domains (Figure 8B). While
these correlations across the two monomers are greatly reduced
in the FdU system, we see stronger correlations in the connector
domain of MSH2 in response to FdU substitution (Figure 8C).

3.5. Phe Stacking
Phe71 and Glu73 on MSH6 have been previously implicated
in mismatch recognition and repair [8, 9, 71, 72]. Amorim-
Hennig clustering on heavy atoms of these two residues revealed
that the phenylalanine residue assumes a conformation suited
for stacking with base complimentary to the damaged base
predominantly in simulations of Carbo and Cis systems. Such

a Phe conformation for stacking occurs in in 88.74% of Carbo
frames, 91.46% of Cis frames, and 7.1% of FdU frames. A
conformation suited for stacking with the damaged base occurs
in roughly 62.18% of FdU frames (Figure 9).

4. DISCUSSION

Across all the analysis techniques detailed above, we consistently
see that each of the three drugs—carboplatin, cisplatin and
FdU—induces a distinct perturbation in MutSα. Each drug
altered the dimer’s hydrogen bond network in ways easily
distinguished by knowledge of a few key residue interactions.
All three drugs altered residue mobility across multiple domains
in distinct ways. MutSα explored a different part of its free
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FIGURE 6 | By projecting each system onto the common basis (A) set formed by decomposing the covariance matrix of the concatenated trajectory of all

systems, we see that each system—(B) Carbo, (C) Cis, and (D) FdU—enters a distinct region of the free energy map while having a common well. The crystal

structure (initial coordinates for each simulation) is marked with black star in the first panel near coordinates (10, 50). Each color-coded and labeled set of x’s is one

structural cluster, based on residues near the damaged DNA. The cluster numbers correspond to those in Figure 7. We plot these additional points here to

demonstrate how similarly binding site clustering and a PCA histogram partition of the trajectories are. From this comparison, we see that binding site motions are the

primary cause of the various free energy wells in PCA1-2 space.

energy landscape based on the type of damage in the bound
DNA. Patterns of long and short range correlated residue motion
changed dramatically across the various types of damage. Three
types of nucleic acid interaction with Phe71 on MSH6 emerged,
two of which occur in Carbo and Cis systems with the third
occurring almost exclusively in the FdU system. In this section,
we will first discuss the implications of these results for each drug
followed by general insights about the MSH26 complex gained in
our investigation.

4.1. Response to Carboplatinated DNA
In this study, we saw multiple kinetic and structural factors
distinguishing MutSα’s response to carboplatinated DNA. The
presence of hydrogen bonds between Thr781 onMSH6 and ADP,
Thr858 onMSH6 and Phe826 onMSH2, and Glu7 onMSH6 and

Arg382 on MSH2 were key in distinguishing the Carbo system
from the other types of simulated damage (Figures 2–4). In part,
these results indicate a given damage type induces a specific
interaction between the protein ATP-ase domain and nearby
ADP molecules. The importance of ATP/ADP binding as a
response to DNAmismatch and damage has been experimentally
demonstrated [4, 6, 11, 72–77], and the force field parameters
used in our simulations have been previously validated as
consistent with these experimental results [8–10, 17, 18, 78]. In
this present study, we add—byway of binary classification trees—
the insight of which particular residues in the ATP-ase domain
(and other domains) are most influential in distinguishing the
type of damage.

The decision tree methodology discussed in this work cannot
by itself indicate a causal link between these hydrogen bonds and
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FIGURE 7 | Visualization of structural clusters of residues with any atoms within 10 angstroms of the bound nucleic acid reveals MutSα’s local

response to various types of DNA damage. The cluster numbers here correspond to the labels in Figure 6. Amorim-Hennig clustering placed frames from the

Carbo simulations in clusters 0 (45.86% of Carbo frames), 2 (39.90%), 7 (10.50%), 9 (0.02%), and 10 (3.72%). Frames from Cis simulations were placed in clusters 4

(40.36% of Cis frames), 6 (36.22%), 7 (16.18%), and 10 (7.24%). Frames from the FdU simulations were placed in clusters 1 (36.40% of FdU frames), 3 (16.08%), 5

(22.00%), 7 (0.70%), 8 (10.94%), and 9 (13.88%). By plotting frames from these clusters on the estimated free energy landscape using the dominant principal

components (Figure 6), we see that binding site motions are the primary cause of the various free energy wells in PCA1-2 space. The solid structure in each cluster

visualization is the trajectory frame with the smallest RMSD from the average of all structures in the cluster. Shadows are all frames in the cluster, so that the reader

may gauge the width of the distribution [69].

response to damage. However, the fact that Thr781 on MSH6,
Thr858 on MSH6 and Phe826 on MSH2 so clearly separated out
the Carbo systems suggest that these residues would be good
initial candidates for future mutation studies, examining the
change in repair and apoptosis signaling when these residues are
not present. From the decision tree fitted on our MD data, we
would expect mutations of these residues to confer resistance to
carboplatin.

Calculation of alpha carbon RMSFs (Figure 5A) indicates that
MutSα’s response to carboplatinated damage involves mobilizing
more protein residues near the DNA than does its response
to the other two types of damage. Correlated motion analysis
is consistent with the RMSF results, as we see more residues
involved in the highly correlated region of the MSH6 mismatch
binding domain along with a circular blip of highlighted

correlated residues near coordinates (1,500, 600) and (600, 1,500)
in Figure 8, which are residues the clamp and lever domains
of both monomers. This cluster of highly correlated residues is
larger and has greater intensity than in the correlation matrices
of the other two systems. From these results, we see that
carboplatinatedDNAhas a greater local effect on protein residues
than the other two systems in which we see more long range,
allosteric effects.

Experimental work has shown that MutS attempts to bend
DNA through motion of the mismatch binding and clamp
domains as part of the mismatch recognition process [1, 79].
Mobilization of these same residues in the simulated Carbo
system shows overlap between the response to carboplatinated
DNA and mismatched DNA. This overlap indicates that
MutSα may sometimes enter a repair-signaling conformation
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FIGURE 8 | Analysis of correlated motions of common alpha carbons across all three systems reveals the response of the protein’s long-range

residue communication network to the three types of DNA damage. The Carbo system (A) exhibits pockets of strong correlation in the lever, clamp and

ATP-ase domains. Correlation of these regions involves more residues and is of greater intensity in the Cis system (B). In this system, we also see correlations across

monomers emerge in the connector and mismatch binding domains, which is greatly reduced in the FdU system (C). However, we see greater correlation in the

connector domain in MSH2 (but not MSH6) in the FdU system (C). For reference, the protein crystal structure colored by domain is shown in (D) with the same colors

as in Figure 1. These colors are also used on the axes of (B,C) to indicate the domain that corresponds to the residue number in (A).

in response to carboplatin rather than a death-signaling
conformation. The PCA free energy landscapes in Figures 6A,B

lend credence to this hypothesis. The Carbo system has a
shallow free energy well near the coordinates of the crystal
structure, which is known to be in a mismatch-repair-
signaling conformation [46]. That is, we see the Carbo system
entering conformations similar to the knownmismatch response.
This observation is consistent with previous computational
studies that showed a higher overlap of carboplatin-mismatch
recognition conformations (55%) than of cisplatin-mismatch
overlap (45%) [9, 10].

Additionally, PCA and Amorim-Hennig clustering
(Figures 6B, 7) indicate that while there is some structural and
kinetic overlap with the Cis and FdU systems, carboplatinated-
DNA-bound MuSα enters a region of conformation space and

principal-component space distinct from those regions entered
in the other two systems. That is, carboplatinated DNA induces
unique structures and kinetics. By examining the overlap of the
PCA free energy wells with clustering on binding site residues,
we see that the motion of binding site residues is primarily
responsible for the kinetic variance seen in PCA free energy
landscape. Available experimental data suggests that there
are distinct differences in the protein complex’s response to
carboplatin compared to cisplatin [19, 22, 38, 80, 81]. However,
experimental atomic-level details of kinetic differences are not
yet available for comparison to the MD predictions reported
here.

More specifically, from clustering on heavy atoms of Phe71
and Glu73 on MSH6 we see both the Carbo and Cis systems
distinguished from the FdU system by the stacking of Phe71’s
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FIGURE 9 | Amorim-Hennig clustering on heavy atoms of Phe71 and Glu73 on MSH6, previously implicated in mismatch recognition and repair

[8, 9, 11, 71, 72], reveals the local structural response of the protein to the three types of DNA damage. In cluster 0 through 3 (A–D), we see the aromatic

ring on phenylalanine stacking with either the damaged base (B) or the the complimentary base to the damaged base (A,C,D). Phe and Glu enter the conformation

shown in (A) in 12.28% of Carbo frames, 46.90% of Cis frames and 1.72% of FdU frames; (B) in 11.12% of Carbo frames, 8.52% of Cis frames, and 62.18% of FdU

frames; (C) in 36.88% of Carbo frames, 43.98% of Cis frames, and 5.38% of FdU frames; (D) in 39.58% of Carbo frames and 0.58% of Cis frames; (E) in 0.14% of

Carbo frames, 0.02% of Cis frames, and 30.72% of FdU frames. In these visualizations, the damaged DNA structure is taken from the cluster’s representative frame.

Damaged bases and their complimentary bases are shown as solid CPK representation with all other nucleic bases shown with shadow. Platinum atoms in frames

from Carbo and Cis systems are colored a dark gold and in VDW representation. In FdU systems, the fluorine atom is shown in VDW representation for emphasis and

is colored pink. Phe71 and Glu73 are shown in solid bonds representation. Camera perspective is adjusted in each panel to show Phe stacking (A–D) or

lack thereof (E).

aromatic ring with the nucleic base complimentary to the
damaged base. Phe71 is in a stacking conformation in 88.74% of
trajectory frames, indicating that carboplatinated DNA is highly
likely to induce this conformation. In previous experimental and
computational studies of MutSα’s response to mismatched DNA,
Phe71 was observed to stack with one of the mismatched bases
[8, 9, 11, 71, 72]. In the presence of carboplatinated DNA, we
see Phe71 stacking primarily with a base complimentary to the
damage base.

4.2. Response to Cisplatinated DNA
The binary classification trees describing the hydrogen bonding
patterns in our simulations indicate that MutSα’s response to
cisplatinated DNA is distinguished by the presence of hydrogen
bonds between Thr781 on MSH6 and ADP, and Ala517 on
MSH2 and Cyt4 on the damaged DNA. The decision tree
fitted on inter-subunit interactions (Figure 3) between the two

protein monomers indicates that the Cis system is distinguished
more by a lack of protein-protein interactions than by their
presence. That is, exposure to cisplatinated DNA disrupts the
hydrogen bonds between the two protein monomers. This result
is consistent with experimental work showing that cisplatin either
altered or removed most inter-subunit interactions [8]. This
previous study indicates that the loss or change of inter-subunit
interaction in the ATP-ase domain was particularly pronounced
with cisplatinated DNA, consistent with the decision pathway
to Cis in Figure 3. Furthermore, mutation studies focusing on
the ATPase domain have demonstrated it plays a key role in the
damage response and repair pathways [11].

While the Cis system was differentiated more by the absence
of certain hydrogen bonds than the presence, the protein
residues Thr781 and Ala517 in these hydrogen bond pairs
would be our suggested candidates for an initial mutation study.
Additionally, in a previous computational study with simulations
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on a shorter—nanosecond—timescale, the Thr781 residue was
implicated in MutSα’s response to mismatched and cisplatinated
DNA [14], indicating that this residue has a role to play across
multiple timescales.

RMSF analysis indicates that exposure to cisplatinated DNA
increases the mobility of residues in the mismatch binding
domain. A previous mutation study supplemented by MD
calculations suggested that structural response to cisplatinated
DNA is localized to the ATPase domain [8]. However, our
calculations predict the most dramatic change in the mismatch
binding domain, and in fact, Cis has the most instances and
highest valued cross-domain correlation of alpha carbon motion
(Figure 8B). This disagreement of results is likely due to the
computational power available at the time of the previous study,
which produced 1.6 ns of MD data. A decade later, we are able
to produce 300-fold more data, observing much longer timescale
events. On a 1ns timescale, the allosteric effects of cisplatin may
be localized to the ATP-ase domain; however, we predict on the
100 ns timescale that these effects spread to multiple domains.

Another experimental study shows structural changes across
the connector and lever domains in response to cisplatinated
DNA [11]. Our prediction of increased correlated motion in
these and other domains in the Cis system is consistent with the
experimental results. Other experimental studies have indicated
the MSH2 is not involved in apoptotic signaling in response
to cisplatinated DNA [11, 82]. In fact, one mutation study that
removed theMSH2ATP-ase domain entirely still observedMSH-
induced cell death in response to cisplatinated DNA [82], lending
confidence to our prediction of MutSα response to cisplatin
across other subunits in addition to the ATP-ase domain.

We also see that, similar to the Carbo system, the Cis system
explores a portion of the PCA-based free energy landscape
near the crystal structure (Figures 6A–C). These results are,
again, consistent with previous calculations indicating 45%
overlap between cisplatin-induced structures and mismatch-
induced structures [9, 10]. From these free energy landscapes
we also see some overlap of the Carbo and Cis systems near
the coordinates of the crystal structure. Therefore, we infer
that similar to the Carbo system, MutSα sometimes enters a
repair-signaling conformation in response to cisplatinated DNA.
However, the PCA free energy landscapes and heavy-atom
clustering on protein residues near the damaged DNA indicate
that both systems enter unique conformations (Figures 6, 7).
The dominant free energy wells corresponding to binding site
clusters 2 and 0 (Figure 6B) in the Carbo system are structurally
and kinetically distinct (compare Figure 6 and Figure 7) from
the dominant free energy wells of the Cis system—clusters 6
and 4, consistent with experimental studies indicating distinct
responses to carboplatin and cisplatin [19, 22, 38, 80, 81].

The key phenylalanine residue enters a stacking conformation
with the base complementary to the cisplatin-containing base in
91.46% of trajectory frames with cisplatinated DNA (Figure 9).
Stacking of Phe71 with the strand opposite the damaged base
in response to cisplatinated DNA was predicted by a previous
computational work [8]. Experimental mutation of this Phe
residue to Ala indicated that the Phe residue is not necessary for
cisplatin-induced apoptosis [8]. Therefore, whatever the in vivo
role of Phe71 stacking with the complimentary base in response

to cisplatined DNA might be, it is clearly not critical for death
signaling as suggested by early simulation work [8].

4.3. Response to FdU-Substituted DNA
The binary classification trees describing the hydrogen bonding
patterns in our simulations indicate that MutSα’s response
to FdU-substituted DNA is distinguished by the presence of
hydrogen bonds between Thr858 on MSH6 and Phe826 on
MSH2, Gln718 and Asn390, and Arg220 and and ASP215
(Figures 2–4). We suggest these residues as initial candidates
for a future mutation study. Additionally, across all three
decision trees, FdU consistently had the highest likelihood,
indicating that FdU was the most cleanly separated and easily
distinguished system in terms of hydrogen bond motifs. This
ease of differentiation makes intuitive sense, as FdU-substitution
is a distinctly different type of damage from the metal-DNA
cross-linked adducts of cisplatin and carboplatin.

Exposure to FdU-substituted DNA increases the mobility of
residues in the connector domain of MSH2 and decreases that
of the ATP-ase domain of MSH6 (Figure 5C). The increased
mobility of the connector domain is consistent with the localized
increase in correlated motions (Figure 8C). We also see that the
MSH2 connector domain has greater overall correlation with all
domains relative to the other two systems (Figure 8), further
indicating the MSH2 connector residues are key in MutSα’s
response to FdU. This MSH2-focused, increased-mobilization
response to FdU but not carboplatin or cisplatin is consistent
with experimental work showing that MSH2 is not involved
in the response to platinum DNA damage [82]. Furthermore,
the original work reporting the crystal structure for MutSα
bound to mismatched DNA indicates conformational shifts in
the connector domain [46]—similar to the increased flexibility
of the connector domain predicted by our MD calculations—in
response to FdU (Figures 5C,D). That is, the FdU-response of
MutSα appears to be repair-signaling. This inference is consistent
with other experimental studies showing MMR is able to repair
fluorouracil-containing DNA [27, 34, 83–87].

At first blush, this inductive conclusion seems at odds with
the known cytotoxicity of flouridated uracils [23–32, 34–37].
However, there are two facets to consider. First, the experimental
studies showing that MMR pathways can repair FdU-substituted
DNA suggest cytotoxicity is caused by secondary events—such
as depletion of the thymine pool or futile cycling in thymineless
conditions—leading to apoptosis [23, 26–31, 34, 83, 87, 88].
Additionally, our heavy-atom clustering of Phe71 and Glu73
indicates that Phe enters a stacking conformation similar to
that observed in MMR. We observe this mismatch-repair-like
stacking with the damaged base—as opposed to its complement
[8, 9, 71, 72]—in roughly 2/3 of FdU frames with no stacking in
the remaining 1/3. From these calculations, we infer that FdU
does not always cause repair signaling, but may be inducing a
death-signaling conformation roughly 1/3 of the time.

If FdU is inducing a repair-signaling conformation, our PCA
free energy landscapes and binding site clustering results indicate
it is distinct from the mismatch-repair-signaling conformation in
the crystal structure [46] used here for initial coordinates. The
free energy landscapes show no exploration of the region near
the PC1-2 coordinates of the crystal structure (Figures 6A,C).
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Therefore, we would predict that if solved, a crystal structure of
MutSα bound to FdU-substituted DNA would have significant
structural differences from that of the structure bound to
mismatched DNA despite the fact that both systems are capable
of signaling a repair pathway.

4.4. Conclusions
Across all three systems, we saw evidence of MutSα entering
repair conformations for some fraction of MD frames. These
results do not necessarily mean that the heterodimer would
signal repair in response to all types of damage; instead, they
may indicate that the protein is searching for the appropriate
conformation to respond to the type of damage, and that search
involves exploring repair conformations in addition to death-
signaling. From all analysis techniques, we see indications that
each system explores its own portion of conformation space
(Figures 2–7) and engages in unique kinetics (Figures 6, 8),
indicating distinct perturbations induced by each type of damage.

OurMD calculations and binary decision tree fittings establish
hydrogen bond motifs as clear distinguishing characteristics of
MutSα’s response to each type of DNA damage. With knowledge
of just 2 or 3 hydrogen bonds, these decision trees can correctly
label the damage type up to 86% ofMD frames, further indicating
that each type of damage is inducing its own, unique response
and likely signaling a unique cellular response pathway (or set of
pathways) in vivo.

We also see from Amorim-Hennig clustering that Phe
stacking with bases on the bound damaged DNA has some role
to play in responding to each type of damage. Though, that role
is not ultimately critical to the signaling of the repair or death
pathways. We also find the similarity between the phenylalanine’s
response to FdU and its known response to mismatched DNA
striking (Figure 9), especially given that PCA indicates that FdU
never explores the mismatch-repair-signaling portion of PC1-2
space (Figure 6).

The predictions from MD calculations presented here are
consistent with the available experimental data. However,
through the “computational microscope” [89, 90] of MD, we
both contribute atomic level details of known MutSα damage
responses and suggest areas of further investigation for future
experimental studies on aspects of damage response that
have not been previously investigated. We also present novel
applications of decision tree learning and the recently developed
Amorim-Hennig clustering technique to MD data, hoping to

inspire not only further research on MutSα’s damage response
but also wider usage of these machine learning techniques for
systematically and reproducibly analyzing macromolecular data.
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