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Collagens form the fibrous component of the extracellular matrix in all multi-cellular

animals. Collagen type I is the most abundant collagen present in skin, tendons,

vasculature, as well as the organic portion of the calcified tissue of bone and teeth.

This review focuses on numerous receptors for which collagen acts as a ligand,

including integrins, discoidin domain receptors DDR1 and 2, OSCAR, GPVI, G6b-B,

and LAIR-1 of the leukocyte receptor complex (LRC) and mannose family receptor

uPARAP/Endo180. We explore the process of collagen production and self-assembly,

as well as its degradation by collagenases and gelatinases in order to predict potential

temporal and spatial sites of action of different collagen receptors. While the interactions

of the mature collagen matrix with integrins and DDR are well-appreciated, potential

signals from immature matrix as well as collagen degradation products are possible but

not yet described. The role of multiple collagen receptors in physiological processes and

their contribution to pathophysiology of diseases affecting collagen homeostasis require

further studies.

Keywords: bone, cathepsin K, collagen type I, discoidin domain receptors, integrins, leukocyte immunoglobulin-

like receptor complex, matrix metalloproteinases, uPARAP/Endo180

INTRODUCTION

Collagen is the most abundant protein present in mammals, and forms the fibrous component
of the extracellular matrix in all multi-cellular animals. In humans, different collagen types are
present in connective tissues, including tendons, bones, and dentin, and play critical roles in
defining the form and mechanical properties of diverse organs, such as bones, blood vessels, skin,
and eyes [1]. In addition to classical fibrillar collagens forming uninterrupted triple helical fibrils,
new families of collagen have been characterized as fibril-associated collagens with interrupted
triple helices (FACITs), membrane-associated collagens with interrupted triple helices (MACITs),
and multiple triple-helix domains and interruptions (MULTIPLEXINs) consisting of triple helical
regions interspersed with non-helical domains (for recent in depth reviews of different types of
collagen see Shoulders and Raines [2] and Ricard-Blum [3]). The most common fibrillar collagens
are collagen types I, II, and III. Collagen type I is present in skin, tendons, vasculature, as well as
organs such as lungs, heart and others, and forms the main component in the organic portion of
the calcified tissue of bone and teeth [1, 3]. Collagen type II is the primary constituent of cartilage
and collagen type III forms reticular fibers, commonly found alongside collagen type I [4]. While
many consider fibrillar collagen biology as a textbook topic, it remains an active and exciting field
of research. In particular, the recent discovery of numerous receptors for which collagen acts as a
ligand indicates a much wider potential role for collagen than just a structural molecule. In this
review we focus on collagen type I, and provide an overview of collagen receptors, highlight recent
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advances in collagen type I synthesis and degradation, discuss
potential cellular signaling that can be induced by collagen, and
its role in bone matrix physiology and pathology.

COLLAGEN RECEPTORS

Extracellularmatrix proteins are well-known to interact with cells
by directly binding to cell surface receptors [5]. Diverse families
of receptors, including integrins, receptor tyrosine kinases, and
immunoglobulin-like receptors have now been shown to use
collagens as their cognate ligands (Figure 1).

Integrins
Integrins are defined as cell adhesion structures, which are
important in development and pathological processes. Integrins
play critical roles in signaling, migration and survival of different
cells (recently reviewed in depth by Barczyk et al. [5] and
Iwamoto and Calderwood [6]). The signaling by these receptors
is considered bi-directional, involving outside-in and inside-out
signaling [5]. Integrins function as heterodimers, which in
humans include one of 18 distinct α subunits and one of eight
distinct β subunits, and are type I transmembrane glycoproteins
with large extracellular and short cytoplasmic domains [6]. Four
different integrin heterodimers (α1β1, α2β1, α10β1, and α11β1)
have been demonstrated to bind collagen. In particular, α1β1
and α2β1 integrins have been most extensively studied. These
integrins bind to both collagen types I and IV, however their
affinities differ: α1β1 has a higher affinity for collagen type IV,
while α2β1 preferentially binds to collagen type I [5, 7]. Integrin
α2β1 has been reported to be one of the main collagen binding

FIGURE 1 | Schematic representation of the stages of collagen turnover creating different forms of collagen (blue), different collagen receptors

families (red) and individual receptors, and the cellular outcomes for collagen receptor-mediated signals (purple).

integrins present in bone and is critical for bone resorbing cells,
osteoclasts. In these cells, α2β1 integrins affect the attachment of
the cell to the bone surface and help form a sealing zone around
the area to be resorbed, allowing formation of the localized highly
acidic environment necessary for bone degradation [7–9].

Receptor Tyrosine Kinases
The two discoidin domain receptors, DDR1 and DDR2 are
receptor tyrosine kinases activated specifically by fibrillar
collagens I–III and V, but not by individual α-chains, denatured
collagen, de-glycosylated, or degraded collagens [10]. A distinct
characteristic of these receptors is their slow and sustained
activation upon stimulation. Binding of the discoidin receptors
to triple helical collagen leads to tyrosine autophosphorylation
with unique activation kinetics, which is followed by receptor
internalization [11, 12]. Imbalance or dysregulation of DDR1 has
been implicated in the development of diseases such as fibrosis,
atherosclerosis, arthritis, and cancer [10]. DDR1-null mice
are predisposed to osteoarthritis and temporomandibular joint
disorder [13], but are protected from atherosclerosis and smooth
muscle mineralization [14]. DDR1 function can be controlled
by ADAM10-mediated ectodomain shedding [15]. DDR2 is
involved in pathological scarring processes such as wound
healing, arthritis, and cancer [16, 17]. DDR2-deficient mice
exhibit dwarfism due to reduced proliferation of chondrocytes
[18].

Leukocyte Receptor Complex (LRC)
The leukocyte receptor complex (LRC) consists of a large group
of cell surface receptors, essential for a diverse number of
immune functions, including antiviral immunity, autoimmunity,
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and response to grafts [19]. A typical characteristic of these
receptors is the occurrence of pairs of antipathetic receptors,
which bind to the same ligands but generate opposing
signaling responses [20]. The majority of LRC receptors
are primarily expressed by immune cells and play diverse
roles in modulating their activity [19, 20]. The stimulatory
receptors have short cytoplasmic tails and generate positive
signals through immunoreceptor tyrosine-based activation
motifs (ITAM) present on the required adapter proteins, FcRγ,
DAP10, and DAP12. The inhibitory receptors are characterized
by long cytoplasmic tails, which contain immunoreceptor
tyrosine-based inhibitory motifs (ITIM) [19, 20]. Of interest,
collagen has been recently demonstrated to act as a ligand for
a number of stimulatory and inhibitory receptors in this family,
including osteoclast associated receptor (OSCAR), GPVI, and
LAIR-1 [21–23]. The structural basis for collagen recognition
by the immune receptors has been investigated in a number
of studies [24–27], however some controversy regarding the
alignment of collagen-recognition sites among different receptors
exists.

OSCAR and GPVI are stimulatory receptors that are activated
by collagen. OSCAR is particularly important for osteoclast
differentiation, as it acts as a critical co-stimulatory receptor for
osteoclast formation and function [23, 26–28]. GPVI is mainly
found in platelets and binds to collagen during the process
of blood coagulation [21]. The binding of collagen to OSCAR
or GPVI results in the recruitment of ITAM-containing FcRγ

chains. For OSCAR, the main downstream effect of activation is
the initiation of calcium signaling, which is critically important
for activation of a key osteoclastogenic transcription factor,
nuclear factor of activated T-cells (NFAT) c1. Activation of GPVI
leads to the binding of Syk to the FcR-γ chain, which causes an
activation of Syk proteins and tyrosine phosphorylation. At the
same time, phospholipase C γ2 (PLCγ2) also becomes activated
[29, 30].

The inhibitory receptor LAIR-1 was also shown to be
activated by collagen [31]. Another inhibitory receptor G6b-
B may also act as a collagen-binding receptor, although the
existing evidence is weaker [32]. Both LAIR-1 and G6b-B
were first identified to be expressed on megakaryocytes and
platelets and to negatively regulate their function [22, 33]. LAIR-
1 was also found to be present during osteoclastogenesis and
to inhibit this process [34]. LAIR-1 is activated by triple helical
collagen, specifically when it encounters the triplet (GPO)10
(glycine-proline-hydroxyproline)10, also known as “collagen
related peptide” [31]. LAIR-1 contains two ITIMs, which upon
phosphorylation recruit SHP-1 and SHP-2 phosphatases. These
phosphatases directly dephosphorylate Syk, Zap70, and PLCγ,
preventing ITAM-mediated stimulation of protein kinases and
calcium signaling [22, 31]. G6b-B was suggested to be activated
by collagen fragments, such as the collagen-related peptide, likely
relevant to the microenvironment of damaged epithelium [32,
33]. G6b-B contains one ITIM as well as a newly described
immunoreceptor tyrosine-based switch motif (ITSM) [33, 35].
In contrast to ITIM, which generally signals through activation
of phosphatases, ITSM interferes with ITAM-mediated signaling
by using adaptor molecules. An important characteristic of this

motif is the ability to switch between stimulatory and inhibitory
signals and to bind SHP1, SHP2, SHIP, and p85 [36]. In platelets,
G6b-B interferes with positive signaling induced by collagen
binding to GPVI [37].

uPARAP/Endo180
The urokinase plasminogen activator receptor-associated protein
(uPARAP/Endo180), a member of the mannose receptor family
of type I transmembrane glycoproteins, is a multi-domain
transmembrane glycoprotein. Characteristically this family of
proteins includes an N-terminal, cysteine-rich/ricin B like
domain, a fibronectin type II domain, and a series of 8–10 C-type
lectin-like domains. This mesenchymal cell surface receptor has
an important function in collagen internalization [38–40]. In
addition, uPARAP/Endo180 was shown to aid in the initial
adhesion of fibroblasts to collagen and to accelerate themigration
of these cells on a fibrillar collagenmatrix [38, 39, 41, 42]. In bone,
this receptor is highly expressed on osteoblasts and osteocytes at
sites of endochondral and intramembranous ossification during
development [38].

Thus, multiple receptor families can bind collagen and induce
a variety of cellular effects. Although the repertoire of cellular
responses affected by collagen receptors appears to be similar,
with adhesion, migration and survival being prominent on the
list, it is interesting that the receptors can bind to different
forms of collagen, including large triple helical fragments, matrix-
incorporated collagen fibrils, and small collagen fragments. Next,
we will consider the process of collagen turnover and identify the
physiological stages during which different forms of collagen can
act as effectors of receptor-mediated signaling.

POTENTIAL SIGNALING INDUCED
DURING COLLAGEN SYNTHESIS BY
OSTEOBLASTS

In hard tissues, collagen is produced by highly specialized cells
of mesenchymal origin, termed osteoblasts in bone tissue and
odontoblasts for dentin. All fibrillar collagen molecules are
formed from three polypeptide chains, termed α chains, which
are wound into a right-handed triple helix to form a cord-like
structure. The triple helical regions of collagen are characterized
by the presence of a glycine residue at every third position
(Gly-X-Y)n, the other two positions being rich in proline or
hydroxyproline. Since glycine residues only have a hydrogen
atom as their “side chain,” the polypeptide can pack itself into
a super helical structure [1, 43]. The triple helices of collagen
type I are formed from two α1 chains and one α2 chain, which
are the products of the different genes, COL1A1 and COL1A2.
Osteogenesis imperfecta (OI) is a heritable disease characterized
by high bone fragility. The large majority of patients with OI
have disease-causing dominant mutations in one of the two
genes that code for collagen type I alpha chains, COL1A1 and
COL1A2 [44]. Interestingly, a number of patients with the clinical
presentation of OI were found to have normal collagen type I, but
mutations in other proteins with previously unknown function.
Investigation of these proteins, which include cartilage-associated
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protein (CRTAP), prolyl 3-hydroxylase 1 (P3H1), cyclophilin B
(CyPB), pigment epithelium-derived factor (PEDF), heat shock
protein 47 (HSP47), and FK506 binding protein 65 (FKBP65),
resulted in a greater understanding of the regulation of collagen
type I production and assembly [45, 46].

The procollagen type I α chain genes are transcribed and
processed from COL1A1 and COL1A2 to mRNAs. Direct
translation to the pro-α1 and α2 chains occurs in the rough
endoplasmic reticulum [2]. The procollagen has extensions on
each end, termed amino and carboxyl procollagen propeptides.
These extensions increase the solubility of the peptide and
assist its movement within the cell during the process of post-
translational modification. One of these modifications is the
hydroxylation of specific proline and lysine residues [47, 48]. The
prolyl 3-hydroxylation complex is a post-translational collagen
modification system present in the endoplasmic reticulum, and
consists of CRTAP, P3H1, and CyPB. The complex modifies a
single proline residue (Pro 986) to 3-hydroxyproline on each α1
chain of type I and II collagen [49, 50]. Mutations in CRTAP,
P3H1/LEPRE1, or PPIB (the gene that encodes cyclophilin
B) strongly affect post-translational modifications of collagen
resulting in a complete absence of proline 3-hydroxylation in the
case of mutations in CRTAP, P3H1, and site-specific alterations
in the hydroxylation and glycosylation of collagen, in the case of
mutations in PPIB [49, 51, 52]. Consequently, collagen folding
is delayed [49, 52–54] and a change in fibril assembly, cross-
linking, and bone mineralization occurs [51, 52, 54]. The newly
formed hydroxylysine residues are glycosylated by the addition
of monosaccharides, such as galactose and glucose. This step is
carried out by glycosyl transferases and gives the new collagen
molecule unique chemical and structural characteristics [55]. The
C-terminal region of the procollagen molecules contains cysteine
residues that form intermolecular disulfide bonds, facilitating
the registration of the three procollagen chains. When the
appropriate alignment is reached, the three chains wrap around
each other to form a string-like structure [3]. After all the
modifications are complete and the triple helix is formed, the
molecules of procollagen are transported along microtubules,
organized in the Golgi apparatus, and eventually secreted into
the extracellular space [56]. In a homozygous patient withHSP47
missense mutation, it was demonstrated that HSP47, potentially
acting in cooperation with immunophilin FKBP65, encoded by
FKBP10, is important for proper trafficking of type I procollagen
to the Golgi [57]. Mutations in FKBP10 also cause moderately
severe osteogenesis imperfecta [58, 59] with decreased collagen
cross-linking, resulting in sparsity and disorder of collagen fibril
deposition [60].

Extracellularly, procollagen is processed by procollagen
proteases, which are responsible for removing the extension
peptides from both ends of the molecule. The N-terminal is
processed by enzymes like a disintegrin and metalloproteinase
with thrombospondin motifs (ADAMTS)-2, -3, and -14, while
bone matrix protein-1 (BMP-1) is responsible for the C-terminal
processing, resulting in the formation of N-telopeptide (NTP)
and C-telopeptide (CTP), respectively [61–63]. Mutations in the
collagen type I C-propeptide cleavage site disrupt extracellular
collagen processing, resulting in osteogenesis imperfecta [64].

Mutations in BMP1 similarly result in decreased collagen
maturation, hyperosteoidosis, and hypermineralization [65].
Interestingly, mutations in SERPINF1, the gene that encodes
PEDF, lead to osteogenesis imperfecta type VI, which has a
phenotype of a disorganized bone matrix, large amount of
unmineralized osteoid, and abnormal mineralization pattern,
similar to the phenotype observed in OI due to mutations at the
collagen type I C-propeptide cleavage site or in BMP1, suggesting
that PEDF may also play a role in procollagen processing [66–
69]. It has been noted that the rate of bone formation positively
correlates with CTP levels, which lead to its use as a marker
of osteoblastic bone formation [70, 71]. Once the triple helical
collagen molecules lacking their extension peptides are formed
in the extracellular space, the process of the fiber formation
commences [3].

Receptors Potentially Activated by
Triple-Helical Collagen
Two classes of receptors, including those of LRC and ofmannose-
receptor family, have been shown respond to triple-helical
collagen which is not necessarily incorporated in the matrix
(Figure 1). In particular, the uPARAP/Endo180 receptor was
found on early osteoblast precursors as well as actively matrix-
producing osteoblasts [72, 73]. While this receptor has been
implicated in osteoblast recruitment to the remodeling sites [73],
this function can likely be attributed only to early precursors, but
not to mature cells. It is thus possible that additional regulation
may be exerted by this receptor present on mature osteoblasts.
From the LRC family, OSCAR and LAIR-1 have been shown
to be expressed by osteoclasts [28, 34]. It is possible that LAIR-
1-mediated inhibition of osteoclastogenesis contributes to the
prevention of premature activation of resorption at the sites
of freshly laid down osteoid. It is also interesting to speculate
that formation of the two fragments, NTP and CTP, during
procollagen processing may generate soluble and thus longer-
reaching signals for the receptors activated by smaller collagen
fragments. Abnormal signaling though collagen receptors can
also potentially contribute to the pathophysiology of OI, as it
commonly results in abnormal collagen modification and thus
would significantly alter receptor-ligand interactions.

FORMATION OF COLLAGENOUS BONE
MATRIX

Individual collagen molecules are first assembled into collagen
fibrils, which in turn combine to form fibers, which give the tissue
its structural properties. Collagen fibril formation begins with the
post-translational modification by the copper-containing enzyme
lysyl oxidase, which oxidizes the peptidyl lysine residues to
facilitate the formation of covalent intra- and inter-molecular
bonds, also known as crosslinks [74]. Lysyl oxidase has been
found extracellularly, intracellularly as well as in the nucleus, and
was reported to have diverse and important roles in the human
body such as developmental regulation, tumor suppression,
cell motility, and cellular senescence [74]. After the covalent
bonds are formed between the tropocollagen chains, triple helical
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molecules line up and collagen fibrils are formed. The triple
helical tropocollagen molecule is 300 nm long, 1.5 nm in
diameter, and consists of two α1(I) chains and one α2(I) chain
[75, 76]. Another enzyme important for the crosslinking of the
collagen fibers is tissue transglutaminase 2, which specifically
mediates the reaction between the side chains of glutamine and
lysine residues of adjacent fibers resulting in formation of ε(γ-
glutamyl) lysine crosslinks, covalent amide bonds that reinforce
the three dimensional structure [77, 78]. The collagen fibers are
cable-like bundles, 50–200 µm in diameter that are visible under
the light microscope [75, 76]. Collagen type I in skin and bone
is formed of the same two α1 and one α2 chains. However,
post-translational modifications and crosslinking differ between
bone and skin fibrils, giving tissue-specific properties to the final
extracellular matrix [75].

In bone, after collagen maturation is completed, matrix
mineralization during which calcium and phosphate precipitate
to form crystals of hydroxyapatite [Ca10(PO4)6(OH)2]
within the organic matrix proceeds [79]. The localization
and orientation of individual crystals is guided by specific
organic moieties on collagen type I and non-collagenous
proteins present in bone matrix [80]. Finally, bone
tissue is formed as a composite material containing a
precise mixture of macromolecules and hydroxyapatite
crystals.

Receptors Potentially Activated by
Matrix-Incorporated Collagen
The majority of the collagen receptors are assumed to be
activated by collagen present in mature matrix. The evidence for
a physiological significance of such interactions is strongest for
members of the integrin receptor family, which are well-known
for their substrate-recognition roles [81]. Positive responses,
such as support of cell adhesion, survival, migration, and
proliferation result from collagen interacting with integrin
receptors α1β1 and α2β1 [5], receptor tyrosine kinases DDR1
and DDR2 [12], LRC member OSCAR [23], and mannose family
receptor uPARAP [38]. Inhibitory cellular effects have been
observed upon stimulation of LAIR-1 with collagen [22, 32].
It is particularly interesting, that osteoclasts express both the
stimulatory collagen receptor OSCAR [28] and an inhibitory
receptor LAIR-1 [34]. However, if we assume that OSCAR and
LAIR-1 are expressed at different stages of osteoclastogenesis,
we can attempt to reconcile how contradictory collagen signals
can be perceived by these cells. We can speculate that LAIR-1
is present on early precursors, and that its role is to prohibit
osteoclast differentiation on immature matrix, while OSCAR is
expressed later during osteoclastogenesis and is engaged by the
matrix-incorporated collagen to support osteoclast formation
on the correct substrate. While extensive studies on the role
of OSCAR during osteoclast formation have been performed
[23, 26, 28], much less is known about the temporal and
spatial aspects of regulation of osteoclastogenesis by LAIR-
1. In diseases associated with abnormal collagen synthesis,
such as OI, as well as abnormal mineralization, for example
osteomalacia due to calcium and phosphate deficiency, the
structure of the mature tissue matrix is altered, which may

potentially result in changes in receptor-ligand binding for
collagen receptors, contributing to the pathophysiology of these
disorders.

POTENTIAL SIGNALING INDUCED BY
COLLAGEN DEGRADATION

Bone mineral together with the organic matrix is physiologically
removed by osteoclasts. Similarly, during tooth eruption,
odontoclasts resorb the deciduous tooth roots in order to
provide space for the eruption of permanent teeth [82].
By tightly attaching to the bone matrix, osteoclasts form
a sealed phagolysosomal compartment underneath the cell,
where vacuolar type H+-ATPase in the plasma membrane of
ruffled borders releases protons to lower the extracellular pH
and dissolve hydroxyapatite mineral. Concomitantly, proteolytic
enzymes are released to digest the organic matrix [83, 84].
Proteases (also termed peptidases or proteinases) hydrolyze
the peptide bonds that link amino acids together in the
polypeptide chains forming proteins. Due to the closely packed
nature of the mature triple helix, collagens are resistant to
attack by most proteases, however, specialized proteases termed
collagenases are able to hydrolyze these molecules [76]. The
most important collagenases are the papain-like cysteine protease
cathepsin K and matrix metalloproteinases (MMP) [85, 86].
Within the MMP family, MMP-1, MMP-8, MMP-13, and
MMP-14 are specifically capable of degrading triple-helical
fibrillar collagens, while MMP-2 and MMP-9 act after the
triple helix is unwound and are termed gelatinases. MMP-
13 and MMP-9 are particularly important for bone resorption
(Table 1).

Cathepsin K
Cathepsin K, a member of the C1 peptidase family, is expressed
by osteoclasts at the cell surface adjacent to the bone and was
shown to be critical for matrix breakdown in the resorption

TABLE 1 | Collagen-degrading enzymes.

Enzyme Other designations Properties

CYSTEINE PROTEASES

Cathepsin K Cathepsin O, O2, X

(obsolete designations)

As a complex with

glycosaminoglycans cleaves triple

helix, very effective gelatinase

Zn2+ METALLOPROTEASES

MMP-1 Interstitial collagenase

Collagenase-1

Cleaves triple helix, preference for

collagen types I and III

MMP-2 Gelatinase A Type IV

collagenase

Degrades gelatin

MMP-8 Neutrophil collagenase

Collagenase-2

Cleaves triple helix, preference for

collagen type I

MMP-9 Gelatinase B Degrades gelatin

MMP-13 Collagenase-3 Cleaves triple helix, preference for

collagen type II

MMP-14 MT1-MMP Cleaves triple helix,

membrane-anchored
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compartment during bone remodeling [86, 87]. The protease
works optimally at low pH and has been shown to degrade type
I collagen [85]. Both the α1 and α2 collagen type I chains are
cleaved by cathepsin K [88]. The protein cleavage site of papain-
like cysteine proteases, including cathepsin K, is determined
by the amino acids occupying the two positions before (N-
terminal to) the cleavage site and one or two positions after the
cleavage site. Generally, a hydrophobic side chain such as valine,
leucine, or proline is found in the second residue before the
cleavage site, whereas the amino acid directly before the cleavage
site is usually glutamic acid, alanine, or glycine. Finally, in the
position after the cleavage site, the most common amino acids
are glycine, glutamic acid, and/or isoleucine [87, 89]. Overall,
it has been found that cathepsin K performs a cleavage after
helical cross-linking residues, which in collagen type I is most
likely to occur after glycine due to high prevalence of GXY
repeats [90]. Cathepsin K was shown to cleave substrates with
proline in the second amino acid position after the cleavage
site [91], which is critical for its ability to target collagen
[87, 92].

Since cathepsin K is the only papain-like cysteine protease
capable of cleaving triple helical collagen, it is of significant
interest as a pharmaceutical target [90, 93]. Structural analysis
revealed that for cathepsin K to demonstrate its collagenase
activity, a dimer has to form an oligomeric complex with a
glycosaminoglycan and dock onto a collagen molecule with its
central grove [92, 94, 95]. The presence of glycosaminoglycans
allows access to the triple helix, leading to the cutting
of the fibril into smaller sub-fibrils and a simultaneous
release of glycosaminoglycans. This process eventually results
in a progressive unfolding of the fibrils, making them less
stable and therefore accessible for further degradation [96].
Cathepsins that do not exhibit collagenase activity, such as
cathepsins L, V, S, and B have only a limited effect on
the fibril structures [96]. In addition to bone, cathepsin K
is also expressed in hematopoietic, epithelial, and fibroblast
cells, and was shown to play a role in arthritis, obesity,
schizophrenia, bone metastases, and various other pathological
conditions [89].

In humans, mutations in the cathepsin K gene were shown
to underlie the skeletal disorder pycnodysostosis, which is
characterized by osteopetrosis, bone fragility, short stature,
acrosteolysis of the distal phalanges, delayed cranial suture
closure, clavicular dysplasia, and dental abnormalities [97, 98]. In
animal models, cathepsin K deficiency results in an osteopetrotic
bone phenotype [99–101] and has been shown to predispose
mice to lung fibrosis [102], abnormal airway morphologies
[103] and deficiencies in learning and memory aptitudes
[104]. Even though the osteoclast numbers were not changed
in cathepsin K deficient mice, large areas of demineralized
bone matrix underlying the ruffled borders of osteoclasts were
frequently found, suggesting that only the degradation of organic
bone matrix is impaired in these animals [99, 100]. Once
cathepsin K cleaves the triple helix, it unwinds and becomes
available for degradation by any protease with gelatinolytic
activity. Interestingly in cathepsin K knockout mice, osteoclastic
resorption, though severely impaired, was still present [99] due

to involvement of other proteases with collagenase activity, such
as the matrix metalloproteinases [101].

Matrix Metalloproteinases
The matrix metalloproteinases (MMP), peptidase family M10,
is composed of zinc-dependent endopeptidases, also known
as the metzincin superfamily. The main task of MMPs is to
degrade extracellular matrix proteins, as well as a number of
bioactive molecules [87, 105, 106]. Within the MMP family
of endopeptidases, MMP-1, MMP-8, MMP-13, and MMP-
14 exhibit collagenase activity and are specifically capable of
degrading triple-helical fibrillar collagens [106, 107]. MMP-1
and MMP-13 are produced by osteoclasts and play important
roles in bone matrix degradation. After the triple helix is
separated, MMP-2 and MMP-9 can further cleave collagen
chains working as gelatinases. The MMP family members with
collagenase activity require at least three structural components
to successfully achieve their function: (i) a hemopexin-like C-
terminal domain, (ii) a linker or hinge region between the
catalytic and hemopexin domain, and (iii) a specific peptide
loop in the catalytic domain [108, 109]. Collagen type I is
cleaved by MMP-1, -8, and -13 at a characteristic site located
between Gly775/Ile776, three quarters of the distance from the
N-terminus, leading to the formation of two fragments—a
larger fragment of ¾ and a smaller ¼ fragment [107, 110,
111].

MMP-1, also known as interstitial collagenase or fibroblast
collagenase, is involved in the breakdown of extracellular
matrix in normal physiological processes, such as embryonic
development, reproduction, and tissue remodeling, as well as in
disease processes, such as arthritis and cancer metastasis [106,
112, 113]. Osteoblasts have been demonstrated to produceMMP-
1, whichmay affect their differentiation [114]. In addition, MMP-
1 was shown to be upregulated in response to mechanical loading
[115]. However, it is not clear if MMP-1 activity toward collagen
type I is important for osteoblasts. While MMP-1 is not generally
found to be expressed by osteoclasts, there is evidence that it
may be involved in bone resorption in pathological conditions
[113, 116, 117].

MMP-13 is involved in the degradation of extracellular
matrix for tumor invasion and metastasis [84] and is a
critical collagenase MMP for osteoclastic bone resorption [86].
Mutations in MMP-13 cause metaphyseal anadysplasia 1, which
includes the Missouri type of spondyloepimetaphyseal dysplasia,
a spectrum of diseases characterized by defective growth and
severe skeletal changes that resolve spontaneously with age
[118, 119]. This protease is more aggressive to collagen type II
than to type I, therefore the effects are more prominent in the
joints [120, 121]. In animal models, overexpression of MMP-
13 produces arthritis with cartilage erosion [122]. Knockout of
MMP-13 shows temporary anomalies in cartilage resorption in
long bone growth and fracture healing. While these animals have
a normal lifespan and sufficient fertility, microscopic analyses
of the skeletal system verified profound defects in the growth
plate cartilage with a clear intensification in the hypertrophic
chondrocyte zone and a delay in primary ossification [121, 123].
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Gelatinases
The main gelatinase expressed and released by osteoclasts
is MMP-9 [124]. MMP-9 participates in dissolution of bone
collagens working inside the sealing zone located underneath
the osteoclast, in concert with collagenases MMP-13 and
cathepsin K [125]. MMP-9-deficient animals exhibit a skeletal
development phenotype, and chondrocyte apoptosis [126].
In addition, vascularization and ossification of cartilage is
significantly delayed [126]. The role of MMP-9 in bone
resorption is not clear, however it was demonstrated that
in the absence of MMP-9 osteoclastic recruitment is delayed
and that MMP-9 is required for osteoclast invasion into
the discontinuously mineralized hypertrophic cartilage [127].
Mutations in MMP-9 result in metaphyseal anadysplasia 2,
which is phenotypically indistinguishable from metaphyseal
anadysplasia 1 due to mutations in MMP-13 [119]. A dominant,
more severe phenotype of metaphyseal anadysplasia was found
to be associated with deactivation of both MMP-13 and MMP-
9 [119].

Receptors Potentially Activated by
Degraded Collagen
Physiological degradation of collagen can result in production of
shorter triple-helical proteins, along with single strand fragments
of different molecular weight [86, 128]. Such fragments can
potentially activate the receptors of LRC, GPVI, LAIR-1, and
G6b-B, as well as uPARAP/Endo180. Since LAIR-1 is expressed
by osteoclasts [34] and uPARAP/Endo180 by osteoblasts [129],
it is possible that such signals mediate temporal and spatial
coordination of collagen matrix formation and degradation.
In addition, formation of circulating fragments, such as
those used as biomarkers of bone resorption [130], raises a
possibility of long-distance signals generated during collagen
degradation. In pycnodysostosis and metaphyseal anadysplasia,
mutations in cathepsin K and MMP-9 and MMP-13 result
in altered collagen degradation, thus producing different
collagen fragments, potentially interfering with collagen receptor
signaling.

CONCLUSIONS

Collagen is the main component in many tissues in the human
body, particularly in bone tissue where this protein forms 90–95%
of the organic matrix. Even though collagen is one of the
best studied molecules, many questions remain regarding its
physiology as highlighted by a high number of poorly understood
disorders associated with collagen production and degradation,
including genetic diseases such as osteogenesis imperfecta and
metaphyseal anadysplasia, and inflammatory disorders such as
arthritis and periodontitis. From the perspective of its temporally
and spatially controlled self-assembly, collagen is a fascinating
molecule that undergoes many precise, yet not fully understood
transitions from its initial translation product to the final mature
fiber. Moreover, bone tissue is remodeled continuously, which
brings into focus the importance of a regulated degradation of
collagen, as well as other components of the extracellular matrix.
The collagen substrate structural signals mediated by integrins
have been well-appreciated since the 1980s. The discovery of
numerous novel receptors for collagen highlights the possibility
of previously unknown aspects of collagen biology. The role of
these receptors in physiological processes and their contribution
to pathophysiology of diseases affecting collagen homeostasis
require further studies.
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