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This work reviews the current progress of tight-binding methods and the recent

edge-modified mean-field Hubbard model. Undercoordinated atoms (atoms not fully

coordinated) exist at a high rate in nanomaterials with their impact overlooked. A

quantum theory was proposed to calculate electronic structure of nanomaterials by

incorporating bond order-length-strength (BOLS) correlation to mean-field Hubbard

model, i.e., BOLS-HM. Consistency between the BOLS-HM calculation and density

functional theory (DFT) calculation on 2D materials verified that (i) bond contractions and

potential well depression occur at the edge of graphene, phosphorene, and antimonene

nanoribbons; (ii) the physical origin of the band gap opening of graphene, phosphorene,

and antimonene nanoribbons lays in the enhancement of edge potentials and hopping

integrals due to the shorter and stronger bonds between undercoordinated atoms;

(iii) the band gap of 2D material nanoribbons expand as the width decreases due to

the increasing under-coordination effects of edges which modulates the conductive

behaviors; and (iv) non-bond electrons at the edges and atomic vacancies of 2D material

accompanied with the broken bond contribute to the Dirac-Fermi polaron (DFP) with a

local magnetic moment.

Keywords: Hubbard model, tight-binding, 2D material, nanoribbon, BOLS, edge effect, electronic structure

INTRODUCTION

2D Materials demonstrate extraordinary properties compared with bulk material and attract
overwhelming attentions. For example, band gap (EG) occurs of graphene nanoribbons(GNRs)
while bulk graphite is a good conductor; EG expands monotonically with the inverse of ribbon
width of GNR [1] and, bare or Hydrogen ended [2]; unexpectedmagnetism [3–6] and quantum hall
effect [7, 8] were detected at the edge and defect sites of GNRs while bulk graphite is diamagnetism;
few-layered phosphorene [9, 10] shows high carrier motilities of 1,000 cm2V−1s−1, and a high
current on/off ratio of up to 105 at room temperature; Antimony(Sb), non-hygroscopic, gray metal
with a layered structure similar to that of BP [11]. Antimonene is stable at high temperature as high
as 1,000K [12] and becomes semiconducting when it is a one atomic layer [13].

Once the size of nanomaterials decreases, the ratio of under-coordinated atoms located at
surface, edges, and defects increase compared to the total atomic number. Under-coordination
effects induce tunability to the properties of nanomaterials, in contrast with the constant properties
in bulky species. For example, the quantities such as the Young’s modulus, melting point, dielectric
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constant, and the extensibility of a solid can change with the
solid size [14–16]. The binding energy of core electronic levels
also generally shift to energies that are lower (larger in absolute
value) than those of the bulk as size decreases or when the atom
locates around under-coordinated sites such as surface, edge, and
nano-islands [17].

The involvement of the broken bonds and the non-bonding
states make the materials at the nanoscale much complicated
and hardly to be understood. Some experimental and theoretical
studies have been conducted on size dependent properties
of noble metal nanostructures, electronic structure of metal
nanoparticles and GNRs, and the water anomalies in literature.
However, fundamental progress in theory is still lagging far
behind the experimental and theoretical exploitations. Recently,
bond order-length-strength (BOLS) correlation derived non-
bonding electron polarization theory [16, 18, 19] were proposed
to address those problems and obtained great success [20,
21]. Under the light shed by BOLS theory, we will explore
the mysteries brought by broken bond and non-bond of
nanomaterial.

Multi-scale computational modeling of materials is becoming
a reliable tool to underpin scientific investigations and to
complement traditional theoretical and experimental approaches
[22–24]. At the atomic scale, the ab initio approaches were
developed to model the material purely based on Quantum
mechanics law without fitting from experimental data, such as
Hartree-Forck theory and density functional theory (DFT) [25,
26]. At the large scale above ∼1,000 atoms, the classical force
field of MD is fit for simulations. Tight-binding (TB) approach,
although developed earlier than DFT [27], is developing fast in
recent decades and widely used in the investigation of system
of 100–1,000 atoms as reviewed in articles [28–30]. However,
under-coordinated modifications at edge, defect and surface
sites to conventional TB method are usually neglected in low-
dimensional systems or investigated case by case [31, 32].

Edge modification can be presented in the edge Hamiltonian
matrix element as a function of distance between edge atoms
by fitting distance-dependent TB parameters [33]. Edge effects
were also modeled for a specific system, like graphene,
from the geometrical perturbation [34], curvature-strain [35,
36], and enhancement of hopping integral at edge [37]
and so on.

By extending the BOLS mechanics, a quantum theory of
BOLS-corrected Hubbard model (BOLS-HM) was proposed
with applications for 2D materials graphene, phosphorene,
and antimonene nanoribbons of electronic, lattice vibronic,
catalytic, and magnetic properties of the material under
consideration.

In this themed report, we firstly reviewed the current
progresses of TB calculations (conventional TB, density
functional TB, spin-polarized Hubbard model, and edge
states), and proposed our BOLS-HM model. Then, the
applications of BOLS-HM model on the electronic structure
and magnetism of GNRs, EG expansion of phosphorene,
and electronic properties of antimonene were reviewed
and discussed. Finally, we summarized the themed
report.

PRINCIPLE

The starting point for any discussion of the tight-binding
method for electronic and atomic structure calculations must be
Slater and Koster [27]. TB method is developing fast in recent
decades and widely used in the investigation of large system as
reviewed in articles [28–30] and books [38, 39]. TB method is
a parameterized and semi-empirical calculation method which
can deal with much larger system with typically two to three
orders of magnitude faster than ab initio methods do [29]. TB
parameters and codes have been developed by various groups,
such as Harrison [40], Papaconstantopoulos with NRL-TB code
[28], Bowler with DensEL code [41], and Seifert with DFTB code
[30, 42].

Table 1 summarized the TB methods of Slater and Koster
[27], Harrison [40], Papaconstantopoulos with NRL-TB code
[28], Bowler with DensEL code [41], and Seifert with DFTB
code [30, 42]. The comparison is considered from basis set,
applicable system, parameterization of Hamiltonian matrix,
electron-electron interaction, and self-consistent charges. It can
be seen from the table that in early years (before 1990’s) TB
parameters were mainly fit from experiments but now are mainly
from DFT results. There still lacks a TB method designed to
nanomaterial and under-coordination system.

The main advantage of BOLS-HM is that it is designed
for nanomaterial and under-coordination systems, since BOLS
correlation theory focuses on the bond length, energy, elastic,
electronic, optic, dielectric, and other properties of under-
coordination system. Besides, BOLS-HM not only improves the
Hamiltonian matrix element, it can also predict the physical
and chemical properties of nanostructures such as the splitting
between the bonding and anti-bonding band of GNR and of
valence d band of noble metals, induced by the enhancement
of Hamiltonian integrals and by the localized electron-electron
repulsions.

Conventional TB
TB is firstly based on two assumptions: Born-Oppenheimer
approximation [38, 39] and Single electron approximation [27].
Without considering electron-electron interaction, the simplest
TB Hamiltonian of one electron in a unit cell is written as:

HTB
0 (r) = − h̄2

2m
∇2 + V(r) = Hatom(r− Ri) + Vcry(r) (1)

where the first term is the kinetic energy T of electron and V(r) is
the periodic potential from ion-cores, which can be divided into
atomic potential Vatom(r) and crystal potential Vcry(r).

As Slater and Koster stated in the paper [27]:

“In fact, if we were going to use n atomic orbitals per unit cell,
we could make any n linear combinations of the original orbitals,
form Bloch sums of these modified orbitals, and solve a secular
problem using the modified Bloch sums, and in every case come
out with the same answer in the end. The advantage in one choice
of atomic orbitals over another is convenience in calculating the
matrix components or solving the secular equation...”
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TABLE 1 | Comparison of current TB methods with BOLS-HM.

Basis set System Hamiltonian matrix

parameter

Electron-electron

interaction

Self-consistent charge

Slater Löwdin orthogonal

orbitals

Periodic system “Disposable constants”

firstly proposed

No No

Harrison LCAO; Augmented

plane wave for metals

Periodic system Fit from experiments No No

NRL-TB code Augmented plane wave Periodic system Fit from DFT Embedded atom method No

DensEL code LCAO Surface structure Fit from DFT No No

DFTB code LCAO Periodic and non-periodic

system

Fit from DFT Electron repulsion and

exchange-correlation

Yes

BOLS-HM LCAO Nanomaterial

under-coordination system

Fit from BOLS correlation Hubbard repulsion term Yes

Thus, choosing a proper basis set, although cannot change the
final answer, can indeed make the calculation much simpler and
of more efficiency. Bloch [43] provided the formal mechanism
for dealing with periodic systems, such as crystals, by means of
the Bloch sum in form of LCAO.

Solution of energy states of Equation (1) is transferred to an
eigenvalue problem of: HTB

0 ck = εkSck, with overlap integral
matrix Sivjv′ =

∫

φ∗iv · φjv′dr and Hamiltonian matrix element:

HTB
ijvv′ =







1iv ifi = j, v = v′

tijvv′ if i and j are neighbors
0 otherwise

(2)

where, tijvv′ is the off-diagonal element between vth orbital at
ith atom and v′th orbital at the equivalent nearest jth atoms.
However, the atomic orbitals, φv,i(r − Ri), are not ideal for the
purposes of analysis, as the orbitals on different atomic sites are
not orthogonal to one another.

Löwdin [44] provided a scheme for creating an orthogonal
basis set, Löwdin functions, which are defined as

uv,i =
∑

j,v′
S
−1/2
ivjv′ φjv′ (3)

where S is the overlap matrix.
While Bloch functions are periodic and non-localized,

Wannier functions [45] construct orthogonal “atomic” wave
functions which can take non-periodic terms into account.
Wannier function can be expressed as Wannier [45]:

av,i(r− Ri) = N−1/2
∑

k

exp(−ikRi)ψv,k(r) (4)

where ψv,k(r) is the Bloch sum.
Unlike other basis set which are expanded in k-space,Wannier

function is a real-space basis set and can be a powerful tool in the
study of the electronic and dielectric properties of materials [45].

Besides the above, many other excellent basis sets have also
been proposed and widely applied in the electronic structure
modeling of materials, such as linear muffin-tin orbital (LMTO)
proposed by Slater [46] and used in LMTO-TB calculation [47,

48] and Gaussian-type orbital (GTO) proposed by Boys [49]. To
choose a proper basis set for a system is an important part in
saving time and improving the efficiency and accuracy in the
electronic structure calculations.

Density-Functional TB Method
As discussed, the single-electron Hamiltonian HTB

0 only
considers the potential energy from ion cores in crystal and
neglects the interaction among electrons.

The total energy of a system of M electrons in the field of N
nuclei at positions Ri may be written within DFT as a functional
of a charge density n(r) [50]:

E =
∑

v

< 9v(r)| −
h̄2

2m
∇2 + V(r)+ 1

2

∫

n(r′)

|r− r′|dr
′|9v(r) >

+ EXC[n(r)]+
1

2

N
∑

i,j

ZiZj

|Ri − Rj|
(5)

where the first sum includes kinetic energyT and potential energy
V(r) from crystal ion-cores and potential energy from other
electrons Ve, the second term is the exchange-correlation (XC)
contribution, and the last term covers the ion-ion core repulsion,
Erep.

For 0th order density-functional tight-binding (DFTB),
charge-density n(r) which should be solved by self-consistent
field (SCF) method in DFT is now approximated by the input
charge-density n0(r). And the total energy EDFTB0 becomes,

EDFTB0 =
∑

v

< 9v(r)| −
h̄2

2m
∇2 + V(r)+ 1

2

∫

n0(r′)

|r− r′|dr
′

+ VXC[n0]|9v(r) > + 1

2

N
∑

i,j

ZiZj

|Ri − Rj|

=
∑

v

< 9v(r)|HKS
0 |9v(r) > + Erep (6)

This non-self-consistent-charge (non-SCC) DFTB approach has
been successfully applied to various problems in different systems
and materials [33]. Moreover, second-order SCC-DFTB [50] has
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also been included n(r) = n0(r) + δn(r) in the corresponding
Hamiltonian terms in Equation (6), and also been widely used
and accepted [51]. However, DFTB [50] is purely parameterized
by DFT results without considering experimental results and
complicated to be realized.

Spin-Polarized Hubbard Model
In incompletely filled electron shells with narrow energy bands,
the correlations between electrons are too strong to be neglected
as done in conventional TB. The Coulomb repulsion between
electrons at the same atomic site will change the band structure
significantly. The Hubbard model, named after Hubbard [52],
includes the onsite repulsion which stems from the Coulomb
repulsion between electrons at each atomic site in Hamiltonian.
Using the real-space Wannier functions av,i(r − Ri) as basis set,
Hamiltonian is expressed in second quantization form as [52]:

H =
∑

i,σ

1ic
+
i,σ ci,σ +

∑

<i,j>,σ

tij(c
+
i,σ cj,σ + c+j,σ ci,σ )

+
∑

ijkl,σ

< ij|1/r|kl >c+i,σ cj,−σ c
+
k,σ cl,−σ

With < ij|1/r|kl >

= e2
∫

aσ (r− Ri)
∗a−σ (r− Rj)aσ (r′ − Rk)

∗a−σ (r′ − Rl)

r− r′

drdr′ (7)

where spin sign σ = ±1/2 and c+i,σ andci,σ are the creation and
annihilation operator in Wannier representation, indicating to
create and to annihilate an electron at the lattice vector Ri. The
first and second terms are the same as the HTB

0 . The last term
is the inter-electron potential energy, which is usually a multi-
center integral. Hubbard [52] indicated that the single center
integral U =< ii, σ |1/r|ii,−σ > is about 10 eV, much greater
than other two-center, three-center integrals. Thus, the simplified
Hamiltonian becomes:

H =
∑

i,σ

1ic
+
i,σ ci,σ +

∑

<i,j>,σ

tij(c
+
i,σ cj,σ + c+j,σ ci,σ )+

∑

i,σ

Uni,σni,−σ

(8)
where ni,σ = c+i,σ ci,σ represents the particle-number operator at
siteRi and spin σ . Equation (8) is called Hubbard model with last
term Uni↑ni↓.

Hubbard model plays a significant role in the conductor-
insulator transition of metal and magnetism of narrow band
[53]. For example, Hubbard-Mott insulators [54] are a class
of materials that should conduct electricity under conventional
band theories, but are insulators when measured (particularly
at low temperatures). This effect is due to electron-electron
interactions in narrow bands which are not considered in
conventional band theory. The Coulomb repulsions of semi-
localized electrons in narrow bands are strong enough to split
the band into two subbands and generate the Mott band gap
[55]. This situation is very similar to nanomaterials with limited
quantity of electrons and semi-localized electrons at edge and
surfaces.

Shockley and Tamm Edge States
At the surface, the termination of a crystal obviously causes
deviation from perfect periodicity. Surface states that are
calculated in the framework of near-free electron approximation
are called Shockley states [56] and those from a tight-binding
model are called Tamm states [57]. However, there is no
real physical distinction between the two terms, only the
mathematical approach in describing surface states is different.

A simplified model of the crystal potential in one dimension is
used: the periodic crystal potential jumps abruptly to the vacuum
level Vg at surface, as shown in Figure 1.

The one-dimensional surface wave function at E state can be
expressed as:

9(x) = A exp

[

−
√

2m(Vg − E)
x

h̄

]

(9)

The Shockley states and the Tamm states are suitable to describe
periodical systems. However, the simplification of the stepped
potential prevents the method applied in nanomaterials or
imperfect surface where the change of multi-well potential at
surface should be considered.

BOLS-Corrected Hubbard Model
The BOLS is an extension of the “atomic coordination number
(CN)—atomic size” correlation mechanism of Goldschmidt,
Pauling, and Feibelman to energy domain. The shorter
and stronger bonds between undercoordinated atoms provide
significant modification to atomic cohesive energy (Ec) and
associated properties when the fraction of the undercoordinated
atoms is increased. The consequence of the broken bond follows
the BOLS correlation [14, 16]:















cz = di/dB = 2/
{

1+ exp [(12− z) / (8z)]
}

(

Bond Strain
)

c−m
z = Ei/EB

(

Bond Strength
)

zzBc
−m
z = Eic/EBc

(

Atomic Cohesive Energy
)

(10)

FIGURE 1 | Simplified one-dimensional potential model.
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where m is the bond nature indicator; subscript i and B denote
the ith under-coordinated atom and bulk value, respectively. zzB
= z/zB is the reduce coordination with zB = 12 being the bulk
standard. First equation indicates that: as the CN z decreases,
bond length (di) becomes shorter compared with bulk value (dB);
the curve of z-d dependence is illustrated in Figure 2A, compared
with measurements of Au particles, carbon nanotubes, Pt, Ir, Ti,
Zr, and Zn chains [14]. The second equation indicates the single
bond energy increases by c−m

z as length decreases. The atomic
cohesive energy Ec will change as the sum over all the bonds of
the atom.

Figure 2B illustrates the BOLS correlation and the quantum
trapping of potential and energy [14, 16]. Instead of single
potential well of Quantum confinement, multi-well quantum
trapping happens to nanostructures. At the edge and surface of
nanostructures (particle, rod, chain, etc.), the remaining bonds of
the under-coordinated atoms to contract spontaneously with an
association of bond strength gain up to two inter-atomic layers.
The localized strain in turn causes potential well depression with
a consequence of localized densification of charge, energy and
mass, which is called as Quantum trapping of the charge and
energy.

Any detectable quantity localized nearby the broken bonds
can be formulated by the above parameters of bond strain
(d), bond energy (E), and atomic cohesive energy (EC) change
as shown in Equation (10). The BOLS theory has enabled
unification of the unusual performance of detectable quantities
Q(z), such as mechanical, thermal, acoustic, chemical, electronic,
dielectric, ferroelectric, optic, and magnetic properties and the
transport dynamics of electrons, phonons, and photons at the
skins of nanostructures of various shapes, as summarized in Sun
[14] and listed in Table 2.

Q of a nanostructure can be expressed as a function q(m, z,
d, EB), as sampled in Table 2. Properties of a nanosolid with size
(K) depends on shape (τ), and bond nature (m) [16, 60]. BOLS
correlation has already been verified of bond identities in the
metal nanoparticles, metal surfaces, carbon nanotubes, graphene
nanoribbons, etc. [61, 62].

Applying variational principle to the TB Hamiltonian,
Hamiltonian matrix element of secular equations
becomes:

HTB
ijvv′ =























∑

j
eik·(Rj−Ri)

∫

φ∗iv(r− Ri) ·

(Hatom + Vcry) · φjv′ (r− Rj)dr (1−, 2− D)
∫

φ∗iv(r− Ri) · (Hatom + Vcry) ·
φjv′ (r− Rj)dr (0− D)

(11)
where Vcry is the ion-cores’ potential subtracting the ith atomic
potential.

Writing φiv(r − Ri) as |iv >, as far as the v and v′ orbitals are
concerned, the Hamiltonian matrix element HTB

ijvv′ becomes:















































1iv =< iv|Hatom + Vcry|iv >=
εv + α

(

Diagonal Elements
)

tijvv′ =



























∑

j
eik·(Rj−Ri)< iv|Vcry|jv′ >

= f (r) · βijvv′
(

Off - diagonal
)

< iv|Hatom + Vcry|jv′
>= βijvv′

(

0 - D Off - diagonal
)

with,

{

α =< iv|Vcry|iv >
(

Onsite integral
)

βijvv′ =< iv|Vcry|jv′ >
(

Hopping integral
) (12)

TABLE 2 | Formulation of the measurable quantities on the bonding

parameters [14].

Detectable quantity (Q) q(z, m, d, Ei )

Critical temperature (Tc) ∝ zEi

Young’s modulus (Y ) ∝ Eid
−3

Core level shift (Ev (z)−Ev (0)) ∝ Ei

Raman optical shift(ω) ∝ z
d

(

Ei
µ

)1/2

FIGURE 2 | (A) The BOLS correlation mechanism (solid line) formulated from the atomic “CN-radius.” The formulation has been further verified by the measurement

(scattered symbols) from Au particles, carbon nanotubes, Pt, Ir, Ti, Zr, and Zn chains [14]. (B) Schematic illustration of the broken-bond induced potential trapping at

the terminating edges up to two inter-atomic layers [58, 59]. Reprinted with permission of Sun [14].
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where the diagonal element1i consists of the eigen-energy εv =
< iv|Hatom|iv > of the vth level plus the onsite integral α. βijvv′ is
the hopping exchange integral of the nearest neighbor jth atom.
f (r) is the periodic factor,

∑

j
eik·(Rj−Ri). Since the atomic orbitals

of a same atom are orthogonal to each other, < iv|Hatom|iv′ >
= 0; also, due to the localization of atomic Hamiltonian, <
iv|Hatom|jv′ >= 0.

CN Imperfection Induced Quantum Trapping
According to the BOLS correlation theory, CN imperfection
at edges of low-dimensional nanostructures or at surface
skin of 0-D nanoparticles causes the remaining bonds of
the under-coordinated atoms to contract spontaneously with
an association of bond strength gain, which in turn causes
potential well depression with a consequence of localized
densification of charge, energy, and mass. BOLS considered that
the shorter and stronger bonds between undercoordinated atoms
provide significant modification to the Hamiltonian matrix
elements.

Since BOLS considered the effective CN of three layers from
surface or edges, the modification to potential multi-well at
three-layer edges is adopted. As illustrated in Figure 2A, the
broken-bond induces potential trapping at the terminating
edges up to three atomic layers. Compared with the Tamm
model approximating original periodic potential jumping to
vacuum level, as shown in Figure 2B, BOLS consideration
of the quantum entrapment of potential multi-well at
“surface skin” better describes the real nanomaterial observed
experimentally [58].

Enhancement of Onsite and Hopping Integrals
In the present BOLS-HM, we took the following relations of
effective coordination number (z), bond length (d), single bond
energy (E), potential (V), and Hamiltonian integrals α an βijvv′
into consideration, the modification of under-coordinated site i
to the bulk B can be expressed as,















































Cz(zi) = di(zi)
diB

= 2

1+ exp
(

12− zi
8zi

)

(

Bond Contract
)

C−m
z = Ei(zi)

EiB
= V(zi)

VB

(

Bond Energy; Potential
)

α(zi)
αB

= <ϕi(r)|V(zi)|ϕi(r)>
<ϕi(r)|VB|ϕi(r)>

∼= V(zi)
VB

∼= C−m
z

(

Onsite Integral
)

βij(zi)
βijB

= <ϕi(r)|V(zi)|ϕj(r)>
<ϕi(r)|VB|ϕj(r)>

= Ei(zi)
EiB

= C−m
z

(

Hopping Integral
)

(13)
Cz is the bond contraction coefficient and m is a constant of
bond nature indicator. As the effective CN becomes imperfect
at the edge, the edge bond will be shortened by Cz and
strengthened byC−m

z ; and the potential well of the neighbor atom
will become closer and deepened in energy space proportional
to bond energy. BOLS-HM considers the relative ratio of a
quantity at under-coordinated atom and in bulk. Since the main
contribution of Vcry to the ratio of integral at ith atomic site is
the atomic potential from the neighbor jth atom Vij, the α(zi)
and βij(zi) are both considered as C−m

z proportional to the

bond energy and potential well depression compared to those of
bulk.

Determining the bond nature indicator m is accomplished
by the consistency between predictions of BOLS correlation
theory and experimental results on the various quantities
as shown in Table 2. For example, based on the Young’s
modulus [63, 64], the melting temperature [65, 66] of carbon
nanotube and the energy shift of C1s level of grapheme [67],
we obtained the bond nature parameter m = 2.56 of carbon.
Figure 3 compares the relation between hopping integrals
and the C-C bond length derived by BOLS-HM and obtained
by TB fitting from DFT results [33]. It should be noted that
DFT treats low dimensional systems with vacuum slabs;
while BOLS-HM develops the relations from the consistency
between BOLS correlation theory and the experimental
results.

Onsite Repulsion Effects
Since limited amount of electrons exist in nanomaterial
compared with tremendous amount of electrons in bulk, the
electron-electron repulsion at each atom, especially at edge sites,
will induce considerable changes to electronic structure. As
discussed, the Hubbard model [52] includes the onsite repulsion
which stems from the Coulomb repulsion between electrons at
each atomic site in Hamiltonian by introducing the Hubbard
term Uni↑ni↓.

BOLS-HM considers the relation of di and Ui as:







Cz(z) = di(zi)/diB
(

Bond Contraction
)

Ui ∝ di(zi)
−3 (

Volume
)

Ui(zi)/U j(zj) = [Cz(zi)/Cz(zj)]
−3 (

Repulsion Energy
)

(14)
where ith atom locates at edge sites and jth atom at the interior
with coordination number of zj. Hubbard U is the onsite
repulsion energy which should contain the information of the
relative ratio of the electron density, [Cz(zi)/Cz(zj)]

−3.

FIGURE 3 | Correlation between the βij and the bond length d derived

by BOLS–TB compared with previous TB fitting from the DFT results

[33].
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APPLICATION OF BOLS-HM IN 2D
MATERIALS

Electronic Structure of Graphene
Nanoribbons
Challenges
The principle for the EG expansion with width is not clear, apart
from the EG disparity between experiments and calculations.
Either the carrier confinement [68–70] or the edge energy
pinning couldn’t be changed by EG expansion and it also
couldn’t be observed [37] when calculations for the edge and
for the interior were identical which were computed by hopping
integrals employed in band structure. At the edge, the hopping
integral is extremely greater comparing with the integral in
the GNR interior [69]. It’s obvious that the EG is determined
intrinsically by the crystal potential and hence the Hamiltonian
matrix, but the density and energy of carriers in GNR is of a
great importance to the transport dynamics though from our
proposition.

Hamiltonian of GNRs
As far as the π and π∗ orbitals of the C 2pz electrons are
concerned, the Hamiltonian matrix elements are















1i = ε2pz+ < 2pz|Vcry|2pz >= ε2pz + α
(

Diagonal Elements
)

tij = fij(x) · < 2pzi|Vcry|2pzj >= fij(x) · βij
(

Off− diagonal Elements
)

(15)
where the onsite energy 1i is the sum of the exchange integral
and the eigen-energy of the pz electron, ε2pz . V is the crystal
potential and Vi is the ith intra-atomic potential; α is the onsite
exchange integral of negative value; βij is the hopping integral
and fij(x) =

∑

j
exp[ik · (Xi − Xj)]. Considered structures of

armchair-edge GNR (AGNR) and reconstructed zigzag-edge
GNR (RecGNR) are shown in Figure 4. Since periodic direction
is along x axis, wave vector k is parallel to x.

FIGURE 4 | Illustration of structure of (A) AGNR and (B) RecGNR edges.

The reconstructed edge consists of 7- and 5-atom rings. Periodic direction is

along x axis and ribbon width in y axis. The hopping integrals are indicated as

β, β 1, and β 2. N indicates the counting of ribbon width; the numbers also

mark the atomic position. Reprinted with permission from Zhang et al. [71].

BOLS-HM Parameter for Graphene
The following relations of effective coordination number (z),
bond coefficient (Cz), single bond energy (E), potential (V), and
hopping integral were be taken into consideration in the present
BOLS-HM.






























βij(zi) =< ϕi (r) |V − Vi|ϕj(r)
>∝ Ei(zi)

(

Overlap integral
)

β1
β

= Cz(2)
−2.56

Cz(3)
−2.56 = 1.49

(

Bare edge integral
)

β2
β

= Cz(2.5)
−2.56

Cz(3)
−2.56 = 1.17

(

Bare edge-interior integral
)

β3
β

= CzH
−2.56 = 1.11

(

H-edge integral
)

(16)
Abbreviation of the bond contraction coefficient is Cz . CzH

corresponds to the C-C bond length coefficient terminated
with H. Subscripts B corresponds to bulk. From the measured
melting point [65, 66] of carbon nanotubes, elastic modulus
[63, 64], and the C1s electron binding energy shift [67], we have
obtainedm= 2.56.

In conducting the edge-modified TB calculations, the βij are
enlarged by C(z)−2.56 for under-coordinated atoms, as shown in
Figure 4. The β1 and β2 (reduced from βij, β for the bulk) at
the edge are proportional to the bond energy. Therefore, β1 >
β2 > β = 2.4 eV. The H-end edge bond contraction coefficient,
CH , is defined as the bond length ratio between GNR edge and
interior, and taken as 96% according to DFT relaxation results
[68]. Hence, the Hamiltonian as an example, of AGNR is

H =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A B C D E F
1′ β1f

∗
1 β2f2 0 0 0 · · ·

β1f1 1′ 0 β2f
∗
2 0 βf1

β2f
∗
2 0 1 βf1 βf ∗2 0

0 β2f2 βf ∗1 1 0 βf2
0 0 βf2 0 1 βf ∗1
0 0 0 βf ∗2 βf1 1

...
. . .

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

With

f1 =
∑

B
exp(ik · dBA) = cos(k/

√
3)+ i sin(k/

√
3)

f2 =
∑

C
exp(ik · dAC) = cos(k/2

√
3)+ i sin(k/2

√
3)

The first Brillion zone is k ∈
(

π/
√
3

)

[−1, 1]. The direction of
k is along the x axis.

√
3a is the lattice constant of the unit cell of

AGNR.
Considering Hamiltonian matrix, state vector matrix Ck =

|cv(k), cv′ (k), ... > at a specific k point applies the equation:

CT
kHCk = 6 (17)

where 6 is a diagonal matrix with diagonal elements of εv,εv′ ,
etc.. Ck is an orthogonal matrix with < cv(k)|cv′ (k) > = 0.
Through diagonalizing the Hamiltonian Matrix, by using
QR (orthogonal and upper triangular matrix decomposition)
iteration [72], Arnoldi Iteration [73], or Jacobi method [74], the
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eigen-energies and eigen-vectors can be obtained at each k point.
High symmetry k-points are usually calculated first such as Ŵ
point at the center of Brillouin zone and M point at center of an
edge of simple cubic.

EG Opening GNRs
In Figure 5, band structures of bare and H-end RecGNR-8 are
compared clearly. Both BOLS-HM and DFT calculation results
are plot. By the method of BOLS-HM and DFT, a very small EG
(∼0.1 eV) is generated near Ŵ point. EG indeed is dominated by
the quantum entrapment of electrons at edges. The bond which
is dangling results in an additional state at the Fermi level. The
electron entrapment could pin and polarize the non-bonding
electron locally [19]. Dangling bonds generates localized energy
state near EF (blue line), but does not determine EG [2, 75].

Figure 6 compares size-dependent EG (N) calculated by
conventional TB and by BOLS-HM scheme. AGNR with or
without hydrogenation were both considered by BOLS-HM. EG
is always zero when N = 3p+2 (p is a natural number) calculated
by TB. EG opens with or without hydrogenation calculated by
BOLS-HM, accord with the EG observations of DFT calculation
[68, 76] and STM results [77]. Hydrogenation does not determine
the EG opening, but the hopping integral enhancement does.

Spin and Magnetism of GNR
Challenges
There was a puzzle about the mechanism of the edge-
discriminative generation of the (Dirac-Fermi Polarons)
DFPs [78]. The DFPs have been observed as a sharp density

FIGURE 5 | The energy dispersion of bare RecGNR-8 calculated by (A)

TB; (B) BOLS-HM; (C) DFT; The energy dispersion of H-end RecGNR-8

calculated by (D) TB; (E) BOLS-HM; and (F) DFT. Reprinted with permission

from Zhang et al. [71].

of states at Fermi energy (EF) by scanning tunneling
microscopy/spectroscopy [79, 80]. However, it is not likely
to form DFPs at a clean graphite surface, the interior of GNR,
or the armchair edge. Below the surface of graphene, the charge
density fluctuations attribute to charge donations of impurities
[81]. It has been suggested that the interlayer interaction should
generate the DFPs [82]. However, the mechanism only applies to
graphene of two or more layers [83–85]. Clarifying the principle
of the DFPs generating [86] is a burning desire.

Spin-Polarized BOLS-HM Parameters of Graphene
In the TB Hubbard model, the spin-polarized Hamiltonian can
be expressed as:

Hσ =
∑

i,σ

1ic
+
i,σ ci,σ +

∑

<i,j>,σ

βij(fijc
+
i,σ cj,σ + f ∗ij c

+
j,σ ci,σ )

+
∑

i

Uin̂i,σ n̂i,−σ (18)

Where σ is the spin with sign. fij is the periodic factor. Subscript
D denotes dangling σ -bond. The last term is the Hubbard
electron repulsion.

We establish the Hamiltonian matrix for atomic vacancy,
zigzag, armchair, reconstructed zigzag in the BOLS-HM
calculations. Owing to the truth that orbitals have different
symmetries in the z-direction [87], the hopping integral tD
between the dangling σ–electron orbital and the pz orbital of
the nearest neighbors is about −0.5 eV [88]. Spin-polarized
electronic structures are solved by self-consistent field scheme.

Local Spin Density of States
Considering spin-polarized Hamiltonian, spin-polarized
electronic structures can be obtained by diagonalizing the
Hamiltonian matrix using the mean-field method as described.
Local spin density of states (LSDOS) of spin σ at ith atom, giσ (E),
can be calculated from the spin-polarized electronic structure.

FIGURE 6 | EG vs. ribbon width (N) of the in bare and H-end AGNRs

calculated by TB and BOLS-HM. Reprinted with permission from Zhang

et al. [71].
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LDOS at ith atom [gi(E)] is calculated according to the atomic
contribution (civk) to the LCAO eigen-vector cvk and expressed
as:

gi(E) = 1

A

∑

v,k

c2ivk exp

[

−1

2

(

E− εvk
σs

)2
]

(19)

Figure 7 illustrates the calculation results of LDOS of AGNR-20.
Density distribution at each atomic position and at difference
energy can be obtained. Arrows in left panel indicates the
quantum trapping of bonding electrons and polarization of anti-
bonding states at edge sites obtained by BOLS-HM.

The BOLS-HM derived LDOS of a hydrogenated vacAGNR
(H-vacAGNR) with ribbon width N = 20 is shown in Figure 8.
A sharp resonant peak at vacancy site near EF can be observed,
which is consistent with that identified experimentally from
graphite surface vacancy [89].

Magnetism of Dirac-Fermi Polarons
As Figure 9 shows, the local spin density of states (LSDOS)
with and without hydrogenation are compared intuitively, as
well as the spin electron density in real space. Zigzag edges
and atomic defects demonstrates a spin-density as high as
0.7∼1.0 electron/Å3 of dangling σ -bond. Surprisingly, after
hydrogenation, zigzag edge still has a low magnetism, due to
the contribution of pz electrons trapped at edges. Meanwhile, we
found armchair edge exhibiting an extremely low spin-density.

The sp2 hybridization of GNR edges are shown in Figure 10

to help to understanding the results of magnetism of DFPs.
At armchair edge in Figure 10A, each edge atom loses one of
its neighbors and leaves a dangling electron. Due to the short
distance (d) between two atoms along the edge, triple bonds are
formed between two atoms and the sp2 hybrid may also change.
At zigzag edge in Figure 10B, atoms along the edge have a longer
distance (

√
3d) and leave the dangling σ bond whichmay provide

edge Dirac states.

EG Expansion of Black Phosphorene
Challenges
Few-layer phosphorene [9, 10] shows high carrier motilities,
up to 1,000 cm2V−1s−1, and a high current on/off ratio
of up to 105 at room temperature. These values make this

FIGURE 8 | The structure of vacAGNR-20 (up) and the BOLS-HM derived

LDOS of the defective AGNR (down). Reprinted with permission from Zhang

et al. [90].

FIGURE 7 | LDOS contour of AGNR-20 calculated by BOLS-HM (left) compared with conventional TB (right). C1 and C2 are the edge sites.
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FIGURE 9 | DFT-derived spin electron density and BOLS-HM derived difference LSDOS for (A) ZGNR and (B) H-ZGNR. Zigzag edge manifest a strong local

magnetism caused by both Dz and trapped edge pz electron. Hydrogenation annihilates Dz but leaves a weak magnetism. Reprinted with permission from Zhang

et al. [90].

FIGURE 10 | Hybrid sp2 orbitals of carbon atom are plotted at edges of (A) AGNR and (B) ZGNR.

material a promising candidate for field-effect transistors
[91–93]. Modulating the band gap of phosphorene nanoribbon
(PNR) [94, 95] is crucial for the semiconducting applications.
Because of its anisotropy, the electronic properties are

affected considerably by the orientation of the PNRs
[96, 97], leading to promising applications. However,
the physical origin behind the EG modulation is still
unclear.
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BOLS-HM Scheme
According to BOLS-HM, the perturbation to the crystal potential
can be expressed as follows Vcry (N) = Vcry (∞) (1+1N).
Vcry (N) and Vcry (∞) denote the crystal potential of
nanomaterial size (N) and the bulk, respectively. 1N is a
size-dependent perturbation to the crystal potential. The
relationship can also be described as Froyen and Harrison [31]:

1 =
Vcry(N)− Vcry(∞)

Vcry(∞)
=

Eg(N)− Eg(∞)

Eg(∞)

=
∑

i≤ 3

γi

(

Ei

Eb
− 1

)

=
∑

i≤ 3

γi
(

C−m
i − 1

)

γi =
Vi

V
= τCiN

−1 (20)

γi is the surface-to-volume ratio, and τ is the dimensionality
with τ = 1, 2, 3 for a nanoparticle, nanoribbon, or nanofilm,
respectively. The bond index m is intrinsic to a specific material.
The expressions indicate the size-dependent Vcry and EG are a
function of shape and surface-to-volume ratio of a nanomaterial.

Figure 11 compares the DFT-derived EG vs. the ribbon
width(N) of zigzag and armchair PNRs with theoretical
prediction of BOLS-HM [98]. The m of the PNRs in Equation
(20) was optimized to be 4.60 based on the measured data. Using
the optimizedm-values, we calculated, plotted, and compared the
theoretical curves. The necessary values of the reference bandgap
energy EbZ = 0.82 eV and EbA = 0.43 eV were obtained. They
are very close to the bulk value of two typical edge materials. A
further refinement of the derived m, EbZ, and EbA values was
achieved by carefully matching the DFT calculations to the whole
nanoribbon length ranges.

Electronic Properties of Antimonene
Encouragingly, the 2D material has been found in group V
elements. Antimony(Sb), non-hygroscopic, gray metal with a
layered structure similar to that of BP [11]. Antimonene is
stable at high temperature as high as 1,000K [12] and becomes
semiconducting when it is a one atomic layer [99]. Because
there are a large number of dangling bonds and broken bonds

in the edge of antimonene nanoribbon (SbNR) [100], the bond
parameters of the surface atoms are different from the internal
atoms. Like other 2D material, the EG modulation is crucial
for its potential applications while the physical origin is not
conclusive yet.

Though antimony belongs to rhombohedral system,
hexagonal coordinate system is convenient to describe its
structure. We identify the SbNR structures by the number of
N along the ribbon orientations. Vacuum slabs of 10 Å were
inserted in the width direction and the z axis. DFT calculation
was performed by CASTEP using PBE functional. Figure 12
compares the DFT-derived EG vs. the ribbon width(N) of zigzag
and armchair PNRs with theoretical prediction of BOLS-HM.
The reproduction of these quantities confirms the importance of
the size of nanoribbons, which supports the proposals that the
origin of these novel properties is mainly due to the change of
the bond length and strength in different sizes of SbNRs.

SUMMARY

In this work, a quantum theory was proposed to calculate the
under-coordinated effects on the electronic structure of materials

FIGURE 12 | DFT-derived band gap dependence of width of the zigzag

SbNRs. The red lines correspond to the BOLS theoretical prediction.

FIGURE 11 | BOLS reproduction of the DFT calculated size-dependency of (A) zigzag PNRs and (B) armchair PNRs. Reprint with permission from Liu et al. [98].
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by incorporating BOLS correlation theory tomean-fieldHubbard
model. The whole process of BOLS-HM dealing with the
chemical bonds can be summarized as:

1. Input the effective coordination number z, the bond length
at the under-coordinated sites to calculate the increase of
bond energy, and the mortification of the inter-atomic matrix
elements according to BOLS correlation.

2. Construct the Bloch sums ψv,k(r) of wave functions for low-
dimentional nanomaterial.

3. Construct the Hamiltonian matrix with strong correlation
Hubbard model of the nanosystem.

4. Solve the spin-polarized electronic structure self-consistently
to get eigenenergy and eigenvectors Ck = |cv(k), cv′ (k), ... >
for each k point.

5. Based on the eigenenergy and eigenvector results, properties
such as Mulliken charge, Mayer bond order, local density of
states can thus be obtained.

By virtue of BOLS-HM, we clarified that (i) bond contractions
and potential well depression occur at the edge of graphene,
phosphorene, and antimonene nanoribbons; (ii) the physical
origin of the band gap opening of graphene, phosphorene,
and antimonene nanoribbons lays in the enhancement of edge
potentials and hopping integrals due to the shorter and stronger

bonds between undercoordinated atoms; (iii) the band gap of
2D material nanoribbons expand as the width decreases which
modulates the conductive behaviors; and (iv) non-bond electrons
at the edges and atomic vacancies of 2D material accompanied
with the broken bond contribute to the DFPwith a local magnetic
moment. Although, this work shows the BOLS-HM applications
on three kinds of 2D materials, the potential applications are not
limited to those materials but applied on other species such as
Mo/WS2.
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