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We investigate a kinetic Ising model with the Metropolis algorithm on the temporal

directed random q-regular graph. We introduce a rewiring time τ as a parameter of the

model and show that there is a critical τ = τ ∗ above which the model exhibits continuous

order-disorder phase transition and below which the transition is discontinuous. We

discuss our findings in a light of the very recent results obtained for a generalized kinetic

Ising model on quenched and annealed networks.
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1. INTRODUCTION

Extensive studies have shown that order-disorder phase transitions in the equilibrium Ising model
with the nearest-neighbors interactions are very robust to the type of a network. This means that
observed transitions are not only continuous but also characterized with the same set of bulk critical
exponents on quenched and annealed networks [1]. Moreover, it has been shown recently that
even for the non-equilibrium Ising model with the heat-bath dynamics on the directed random
q-regular graph (q-RRG) continuous phase transitions are observed [2]. Therefore results obtained
in Jȩdrzejewski et al. [3], showing that kinetic Ising model with Metropolis dynamics can also
display discontinuous phase transitions, were puzzling and confusing. To solve this puzzle a new
generalized model with two heat baths—one for the Ising spins at temperature Ts and second
for links of the graph at temperature TL, has been recently proposed [4]. It has been shown that
on contrary to the models investigated previously by Lee et al. [1], the kinetic model studied
in Jȩdrzejewski et al. [3] is an non-equilibrium one and corresponds to the infinite temperature
TL of links. Furthermore, it has occurred that there is a critical temperature T∗

L at which switch
from discontinuous to continuous phase transition is observed (so called tricritical point) [4].
However, the question arose if such a tricriticality could be exclusively explained on the basis of
non-equilibrium driving. In other words, would it be possible to observe such a behavior also for
other single-spin-flip dynamics (e.g., heat-bath)?

The above question has been asked and answered in Jȩdrzejewski et al. [5]. It has been shown
that on the annealed non-equilibrium network, which within the generalized model by Park and
Noh [4] corresponds to the infinite temperature of links (TL = ∞), different dynamics leads
to completely different results. For example, the model with heat-bath algorithm at TL = ∞

displays a continuous phase transition, and the critical temperature only slightly deviates from
the equilibrium one. On the other hand, the generalized Metropolis algorithm gives qualitatively
different behavior, which depends on themodel’s parameter. It has been also observed that generally
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higher flipping probabilities lead to discontinuous phase
transitions. Furthermore, based on results obtained within
generalized model with two heat-baths [4] and modified
Metropolis algorithm studied in Jȩdrzejewski et al. [5], it has
been suggested that tricriticality, i.e., switch from continuous to
discontinuous phase transitions is driven by noise.

There are many possibilities to incorporate noise into the
system. In Park and Noh [4] it has been introduced by the
additional heat-bath for links, whereas in Jȩdrzejewski et al. [5] it
has been introduced by the probability of flip in the absence of the
energy changesW0: in the originalMetropolis algorithmW0 = 1,
whereas for the heat-bath dynamics W0 = 1/2. Within the
generalized zero-temperature Glauber dynamics,W0 can change
continuously [6], which leads to very interesting results [7–9].
The idea of W0 as a parameter has been used in Jȩdrzejewski
et al. [5] and it has been shown that there is a tricritical point
W0 = W∗

0 : for W0 < W∗
0 the transition is continuous and for

W0 > W∗
0 it is discontinuous.

Here we propose another possibility to introduce noise into
the system. We investigate the model on a temporal network
and introduce rewiring time τ , as a parameter. Because τ = ∞

corresponds to quenched network and τ = 1 to TL = ∞

(i.e., annealed network), one could expect that there is a critical
time scale τ ∗ that separates these two regimes. Following very
recent studies [4, 5], we analyze a kinetic Ising model with
Metropolis dynamics on the temporal directed random regular
graph to check whether this type of noise will also lead to
tricriticality.

Temporal networks are particularly useful to model social
systems [10]. However, if the dynamics on the network is very
rapid compared to the dynamics of the contacts then there is
no need to model the system as a temporal network [10]. The
model we investigate here is not a social model, but it could be
treated as such Nyczka and Sznajd-Weron [11]. In fact, the q-
neighbor Ising model Jȩdrzejewski et al. [3], reformulated later in
terms of the kinetic Ising model on random regular graph, has
been inspired by the q-voter model of opinion dynamics [12–
15]. This is not entirely clear what it the scale of opinion changes
and definitely exploring how opinion dynamics will be influenced
by the dynamics of a network is an interesting task. However,
this is not a paper about networks. Time-varying graph is for us
merely an excuse to incorporate noise into the system and check
how it will influence observed phase transitions. Nevertheless, we
hope that our results may be also inspiring for people dealing
with opinion dynamics on networks and also for this reason we
use a graphical representation of so called spinson (spin+person)
introduced by Nyczka and Sznajd-Weron [11] to illustrate the
model in Figure 1.

2. MODEL

We investigate a kinetic Ising model with the Metropolis
algorithm on the temporal directed random q-regular graph
(q-RRG) of size N. We describe such a graph at time t by a
non-symmetric adjacency matrix A(t) with elements Aij(t) 6=

Aji(t), i, j = 1, ...,N. If node i can be influenced by node j at time

t then Aij(t) = 1, otherwise Aij(t) = 0 and therefore in our case:

∀i
∑

j

Aij(t) = q. (1)

Above relation means that each node i can be influenced by q
nodes but not necessary influences q other nodes. As usually, we
set Aii = 0 to avoid self-loops.

Each node of a graph is occupied by exactly one spin described
by dynamic variable Si(t) = ±1, i = 1, 2, ...,N. The state of spins
at time s(t) =

(

S1(t), S2(t), . . . , SN(t)
)

can be changed at each
elementary time step due to the interactions between spins and
thermal fluctuations. Additionally, in Jȩdrzejewski et al. [3, 5] the
adjacency matrix A(t) could change at each elementary time step,
i.e., in generalA(t+1t) 6= A(t). In this paper we introduce a new
parameter τ , which denotes a number of elementary steps during
which a graph (and simultaneously adjacency matrix) does not
change. It means that for a period of time τ1t a graph is fixed. In
Figure 1 we present an example of a system of N = 3 nodes with
degree q = 1 at three time steps: t, t + 1t, t + τ1t.

At time t a state of a system is given by:

s(t) = (+1,−1,−1) , A(t) =





0 1 0
1 0 0
0 1 0



 . (2)

In the next step t + 1t the state of spins changes s(t + 1t) =

(+1,+1,−1) 6= s(t) but adjacency matrix does not change, i.e.,
A(t + 1t) = A(t). After τ steps spins and links are changed.

The network itself evolves completely randomly, i.e., after

each τ steps we choose a new adjacency matrix at random
with the constrain given by Equation (1), whereas spin variables
change according to Metropolis algorithm, which means that
each elementary time step consists of three consecutive steps:

1. We choose randomly one spin i from the uniform distribution
U[0,N]

2. We calculate the change of the energy, that would occur after
a spin flip:

1E = E(−Si)− E(Si) = 2Si
∑

j

AijSj (3)

3. We flip a spin (Si(t + 1t) = −Si(t)) with probability:

P(1E) = min(1, exp(−1E/T). (4)

As usual one Monte Carlo step (MCS) consists of N elementary
steps, which means that 1t = 1/N. As we have mentioned,
network changes after each τ steps completely randomly.
Another approach has been used very recently in Park and Noh
[4]. They have proposed to consider a system in contact with two
heat baths: the Ising spins are in thermal contact with the heat
bath at temperature TS, whereas the links are in thermal contact
with the heat bath at temperature TL. The Hamiltonian for the
whole system including the spins and the links was given by:

H(A, s) = −
J

2

∑

i,j

AijSiSj (5)
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FIGURE 1 | Sample evolution of the system on the temporal directed random regular graph: states at time t, t+ 1t and t+ τ1t are shown.

and not only spin flips but also rewiring was carried out with a
certain probability depending on the energy difference:

1E = H(A′, s′)−H(A, s), (6)

where for brevity A′ = A(t + 1t),A = A(t), s′ = s(t + 1t), s =
s(t). This means that the probability of flipping the spin was given
by:

PS(1E) = min(1, exp(−1E/TS) (7)

and the probability to accept a new configuration of links by:

PL(1E) = min(1, exp(−1E/TL). (8)

The original q-neighbor Ising model, introduced in Jȩdrzejewski
et al. [3], is a limiting case of the above model (i.e., corresponds
to TL = ∞). In this paper we propose completely different
approach—we do not claim that the network itself is in contact
with a heat-bath. It changes randomly at regular time intervals.
Yet, we could propose a generalized model based on the model
with two heat-baths but additionally with two time scales: tS for
spins and tL = τ tS for links. In such a case the model we consider
here would correspond again to TL = ∞. This might be an
interesting idea for the future.

We are aware that the complete rewiring at every τ steps is
perhaps not the most appropriate in the context of e.g., changing
friends in social systems. Probably a continuous rewiring (at
every step but only with a certain probability) would be more
reliable. Indeed we could generalize our model by introducing
a probability of rewiring prew in a single time step. Within such
a generalization the model described above would correspond to
prew = 1. However, as we have checked, such a generalization
would only rescale results, since they depend only on τ/prew, not
separately on τ and prew. For example that behavior of the model
with τ = 100 and prew = 0.01 is exactly the same as for τ = 104

and prew = 1.

3. RESULTS

Our generalized model reduces to the q-neighbor Ising model
for τ = 1 and therefore should display a discontinuous phase

transition for q ≥ 4. On the other hand for τ = ∞ it reduces
to the equilibrium Ising model on q-RRG, which means that
should always display a continuous phase transition. This means
that somewhere in between, for a critical τ ∗ we should observe
a switch from discontinuous to continuous phase transition. The
maximum jump of the order parameter:

m =
1

N

N
∑

i= 1

Si (9)

and simultaneously the maximum hysteresis has been observed
for q = 4. Moreover, also recent papers focused on q = 4 [4, 5]
and therefore we will focus here on this value.

We investigate the model by Monte Carlo simulations and
estimate the magnetization of the system as an ensemble average
overM samples:

m =
1

M

M
∑

j= 1

mj, (10)

where mj is the stationary magnetization in j-th sample, defined
as:

mj =
1

N

N
∑

i= 1

S
j
i, (11)

here S
j
i denotes a value of an i-th spin in the j-th sample in

the stationary state. All results presented in this paper has been
averaged overM = 102 samples.

To check the type of the phase transition between ordered
(ferromagnetic) and disordered (paramagnetic) phase we start
with two types of initial conditions:

1. ordered, i.e., Si(0) = 1 for all i = 1, ...,N,
2. random, i.e., with probability 1/2 initial value of spin Si(0) = 1

and with complementary probability Si(0) = −1.

As long as the phase transition is discontinuous we should obtain
two temperatures below which the system is ordered and above
which m = 0: T1 for the ordered initial conditions and T2 for
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FIGURE 2 | Dependence between the stationary value of magnetization m and temperature T for two types of initial conditions: random (red) and ordered (blue).

Panels from top left to bottom right show results for growing rewiring times τ . It is seen that hysteresis decreases with increasing τ and for large τ phase transition is

continuous.

the random initial conditions. For τ > τ ∗ spinodal lines T1,T2

should collapse to a single line of a continuous phase transition
T∗ = T1 = T2.

In Figure 2 we present dependence between the stationary
value of magnetization m and temperature T for two types
of initial conditions for the system size N = 104. It is seen
that indeed for small τ results depend on initial conditions.

With increasing τ hysteresis decreases and eventually the

phase transition between ordered ferromagnetic and disordered

paramagnetic phases becomes continuous. It is worth to recall

here, that the real phase transitions and simultaneously real

size of hysteresis are defined only in the thermodynamic

limit N → ∞. If simulated system is too small one

can mistakenly draw a conclusion of the continuous phase

transition because the hysteresis increases with the system size

(see Figure 3). This phenomenon is probably well known to
all researchers that are specialized in numerical analysis of
the phase transitions but we hope that results presented in
Figure 3 and the above comment will be instructive for the
newcomers in the field. From Figure 2 one can determine
spinodal lines T1(τ ) and T2(τ ) and this allows to estimate the
critical value of τ = τ ∗ above which the transition switches to
continuous.

It is seen in Figure 3 that with increasing τ spinodal lines are
approaching each other and eventually tricritical point is reached
at τ ∗. Tricritical behavior for q = 4 has been also observed by
Park and Noh [4] withing the Ising model on fluctuating network
with two heat-baths and for the generalizedMetropolis algorithm
[5].

We would like to stress here that determining the exact value
of the critical temperature T∗(τ ) for intermediates value of 1 <

τ < ∞ and hence the critical rewiring time τ ∗ is far from
being trivial. In equilibrium statistical mechanics, the standard
procedure to identify the universality class and to estimate the
critical temperature within the Monte Carlo simulations would
be to calculate the reduced fourth order cumulant of the order
parameter, widely known as the Binder cumulant, which for the
Ising model reduces to Landau and Binder [16]:

U4 = 1−
m4

3 < m2 >2
. (12)

Drawing curves forU4 as a function of a temperature for different
sizesN one can determine the transition point from the common
intersection point.

However, it is far from being obvious if the powerful cumulant
intersection method can be applied in non-equilibrium systems.
For example it cannot be used to absorbing phase transitions [6].
Nevertheless, we have decided to calculateU4 for several values of
τ to check if this method works for our non-equilibrium model.
Until now we have measured the rewiring time τ in elementary
steps. However, if we want to compare results for different sizes
the rewiring time τ should be measured in Monte Carlo steps
instead of elementary steps and therefore τ is given in MCS in
Figure 4. It is seen in Figure 4 that the method works pretty
well for τ ≥ 5MCS. It works even for τ ≈ 1MCS. Although
the intersection is not perfect it allows to estimate the critical
temperatures, e.g.,T∗(τ = 1MCS) ≈ 2.3 andT∗(τ = ∞) ≈ 2.49,
which agrees pretty well with results presented in Figures 2–4
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FIGURE 3 | Spinodal lines T*(τ ), i.e., dependencies between transition temperatures T1 and T2 and the rewiring time τ above which an order parameter m = 0 for

two types of initial conditions, random (x) and ordered (+) respectively. Between these lines both phases—paramagnetic and ferromagnetic—coexist.

FIGURE 4 | Binder cumulant, i.e., the reduced fourth order cumulant of the order parameter defined by Equation (12), as a function of temperature T for several

values of the rewiring times τ measured in the Monte Carlo steps for N = 1,250 (red), N = 625 (green), N = 312 (blue) and L = 161 (magenta).
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suggest that τ ∗ is of the order of 1MCS but to determine the
precise value of the tricritical point τ ∗ is not so easy.

It should be noticed here that the critical temperature for
large values of τ (i.e., almost quenched network) approaches
T∗ ≈ 2.49, which is a significantly lower value that one
given by the analytical formula derived by Dorogovtsev et al.
for the equilibrium Ising model on networks with an arbitrary
distribution of connections [17]:

J

T∗
=

1

2
ln

(

〈k2〉

〈k2〉 − 2〈k〉

)

, (13)

where J is a coupling constant. For q-RRG degrees k of all nodes
are equal to q, i.e., < k2 >= q2 and < k >= q. Moreover, we
have assumed that J = 1 and thus the critical temperature should
be equal:

T∗(q) = 2

[

ln

(

q

q− 2

)]−1

, (14)

which for q = 4 gives T∗(4) = 2.88. However, as noticed by
Lipowski et al., an Ising model on the directed network is a non-
equilibrium model [18] and therefore this is not surprising that
our results differ from those obtained by Dorogovtsev et al. [17].
Moreover, our result is consistent with the results for the Ising
model on undirected q-RRG, because it has been shown that
for the Ising model with the Metropolis dynamics the critical
temperature for the annealed network is significantly lower than
for the quenched network [5]. Yet another result should be
commented here, namely the critical temperature for the Ising
model on directed q-RRG with the heat-bath dynamics [2]. In
particular for q = 4 the critical temperature has been reported
to be close to 3.089, which again is significantly larger value than
T∗ obtained here. Again, this is not very surprising in the light of
recent findings by Jedrzejewski et al. because it has been shown
numerically and analytically that the critical temperature for the
Ising model on the annealed q-RRG with the heat bath dynamics
is significantly larger than for the samemodel with theMetropolis
algorithm.

4. CONCLUSION

The aim of this paper was to check how the random rewiring
of a network influences phase transitions in the kinetic Ising
model with Metropolis algorithm on q-RRG. It has been shown
in Jȩdrzejewski et al. [3] that if a network is rewired in every
elementary time step then an order-disorder phase transition
becomes discontinuous for q ≥ 4, which has been a puzzling
result. Therefore we decided to rewire the network not in every
elementary step, but every τ steps and see how this would
influence results. We have expected that for large τ the model
will reproduce results of the equilibrium Ising model on the
quenched q-RRG. However, we did not have an intuition if the
quenched limit will be observed only for τ = ∞ or maybe for
any τ > 1, or above some critical value τ ∗. It has occurred that
indeed τ ∗ exists but its value is comparable with a length of a
single Monte Carlo step. This means that results of the kinetic
Ising model on the temporal q-RRG, which changes randomly
after each Monte Carlo step, are almost identical with results for
the model on the static q-RRG. We have presented here results
only for q = 4, but our conclusions are valid also for other
values of q > 3. For q = 3 the phase transition is always
continuous and there are no phase transitions for q = 1 and
q = 2 [2, 3].
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