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We extend the list of theories featuring a rigorous interacting ultraviolet fixed point by

constructing the first theory featuring a Higgs-like scalar with gauge, Yukawa and quartic

interactions. We show that the theory enters a perturbative asymptotically safe regime

at energies above a physical scale 3. We determine the salient properties of the theory

and use it as a concrete example to test whether scalars masses unavoidably receive

quantum correction of order 3. Having at our dispose a calculable model allowing us

to precisely relate the IR and UV of the theory we demonstrate that the scalars can be

lighter than 3. Although we do not have an answer to whether the Standard Model

hypercharge coupling growth toward a Landau pole at around 3 ∼ 1040GeV can be

tamed by non-perturbative asymptotic safety, our results indicate that such a possibility is

worth exploring. In fact, if successful, it might also offer an explanation for the unbearable

lightness of the Higgs.

Keywords: asymptotic safety, beyond standard model physics, naturalness, QFT, fundamental interactions

1. INTRODUCTION

The Large Hadron Collider (LHC) data at
√
s = 13 TeV confirm the Standard Model (SM) and

give strong bounds on supersymmetry, on composite Higgs and on other SM extensions that were
put forward to tame the quadratically divergent corrections to the Higgs mass in a natural way. The
existence of natural solutions apparently ignored by nature challenges even anthropic approaches.
This unsettling situation calls for reconsidering the issue of naturalness.

The bulk of the physical corrections to the SM observables are only logarithmically sensitive to
a potential UV physical scale because they stem from marginal operators. Physical corrections to
the Higgs mass are small in the SM, and can remain small once it is extended to account for dark
matter, neutrino masses [1], gravity, and inflation [2]. This is true up to possible power-divergent
corrections that may offset the lightness of the Higgs. As well-known, the Higgs propagator5(q2)
at zero momentum q = 0 receives a quadratically divergent correction, which is often interpreted
as a large correction to the Higgs mass. Writing only the top Yukawa one-loop contribution,
one has

5(0) = −12y2t
1

i

∫

d4k

(2π)4
k2 +m2

t

(k2 −m2
t )

2
+ · · · (1)

The photon too receives at zero momentum a quadratically divergent correction. In QED one has

5µν(0) = −4e2
1
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This is not interpreted as a large photon mass because
it is presumed that some unknown physical cut-off regulates
divergences while respecting gauge invariance, that forces the
photon to be massless. Similarly, the graviton propagator receives
a quadratically divergent correction 5µν,ρσ (0): in part it can
be interpreted as a cosmological constant, in part it breaks
reparametrization invariance.

The fate of the Higgs mass is not clear. Some regulators
(such as dimensional regularization) respect all these symmetries
and get rid of all power divergences, including the one that
affects the Higgsmass. Other regulators (such as Pauli-Villars and
presumably string theory) do not generate a photon mass nor a
graviton mass and generate a large Higgs mass, given that it is
only protected by scale invariance, which is not a symmetry of
the full theory.

One possibility is that the SM is (part of) a theory valid up
to infinite energy, such that no physical cut-off exists. Then,
once that Equation (2) is interpreted to mean zero, the same
divergence in Equation (1) must be interpreted in the same way.
Furthermore, in a theory with dimension-less parameters only,
one can argue that

∫

d4k/k2 = 0 by dimensional analysis. Gravity
itself could be described by small dimension-less parameters [2–
4], such that it makes sense to extrapolate the SM RGE above the
Planck scale.

In this context, one possibility is devising realistic weak-
scale extensions of the SM such that all gauge, Yukawa, and
quartic couplings flow to zero at infinite energy [3, 4]. However
hypercharge must be embedded into a large non-abelian group,
in order to be asymptotically free: naturalness then demands new
vectors at the weak scale, which have not been observed so far.

The other possibility is that the SM itself might be
asymptotically safe. The hypercharge gauge coupling gY becomes
non-perturbative at 3 ∼ 1040 GeV, hitting a “Landau pole.” It
is not known what it means. It might mean that the SM is not
a complete theory and new physics is needed at lower energy.
Otherwise gY and other couplings might run up to constant non-
perturbative values as illustrated in Figure 1, such that the SM
enters into an asymptotically safe phase. In fact, this possibility
was envisioned very early on in the literature [5, 6] triggering
lattice studies [7–9] as well as non-perturbative analytic studies
such as the one of Gies and Jaeckel [10]. It is fair to say, however,
that the fate of the SM depends on non-perturbative effects which
are presently unknown; see [11–17] for attempts to compute the
non-perturbative region and for related ideas.

Tavares, Schmaltz and Skiba [18] proposed an alleged no-go
argument, according to which Landau makes Higgs obese: i.e.,
scalars generally receive a mass correction of the order of the
would-be-Landau pole scale 3. In the SM case, this would mean
that, whatever happens at 1040 GeV, the Higgs mass receives a
contribution of order 1040 GeV, so that an asymptotically safe
Higgs (where asymptotic safety kicks above3) cannot be natural.

Later, Litim and Sannino (LS) [19] presented the first four-
dimensional example of a perturbative quantum field theory
where all couplings that are small at low energy flow to
a constant value at higher energy persisting up to infinite
energy. This model involves a gauge group SU(Nc) with large
Nc, a neutral scalar S and vector-like charged fermions, with

asymptotically safe Yukawa couplings and scalar quartics. The
model realizes Total Asymptotic Safety (TAS). Another equally
relevant property of the model is that without the scalar it
cannot be perturbatively safe [19, 20]. Scalars are required to
dynamically render the theory fundamental at all scales without
invoking supersymmetry, which would keep scalars massless
independently of their dynamics.1 In fact supersymmetry makes
it harder to realize an asymptotically safe scenario [28, 29]
both perturbatively and non-perturbatively. Furthermore, the
LS model, on the line of physics, connects two fixed points, a
non-interacting infrared free one (the theory at low energy is
non-abelian QED-like) to an interacting ultraviolet fixed point.
Remarkably the model shares the SM backbone since it features
gauge, fermion and needed scalar degrees of freedom, albeit it
still misses a gauged Higgs-like state. We therefore extend the
LS model in section 2 to further feature a Higgs-like charged
scalar H. We rigorously demonstrate that the theory enters
a perturbative asymptotically safe regime at energies above a
physical scale 3. We also show that we can determine the RGE
flow linking ultraviolet and infrared physics precisely.

In the Appendix (Supplementary Material) we explore
theories featuring chiral fermions and show that it is possible to
achieve asymptotic safety for the gauge and Yukawa couplings
while safety for scalar couplings is challenging.

Having at our disposal a calculablemodel similar to the SM, we
carefully re-consider the naturalness issue in this class of theories
in order to offer an answer to the question: Does the Higgs-like
scalar H acquire a mass of the order of the scale 3? In section 3
we do not find any such contribution, de facto, re-opening the
issue. We discuss possible caveats and offer our conclusions in
section 4.

2. ASYMPTOTICALLY SAFE MODELS WITH
AN HIGGS-LIKE SCALAR

Litim and Sannino considered a model with gauge group SU(Nc)
and gauge coupling g; NF vector-like fermions ψi ⊕ ψ̄i in the
fundamental plus anti-fundamental, and N2

F neutral scalars Sij
with Yukawa couplings Sijψiψ̄j. The number of flavors NF can

be fixed to make the one-loop gauge beta function β
(1)
g small.

Large Nc, NF allows to make β
(1)
g arbitrarily small, guaranteeing

perturbative control. The new key feature with respect to the
analogous construction by Banks and Zaks [30] is that the
Yukawa couplings can (non-trivially) make the two-loop gauge

beta function negative 2, such that, together with β
(1)
g > 0, g

1It is important to note that scalars without the simultaneous presence of gauge

and fermion interactions, are not ultraviolet safe as a large body of analytic and

first principle lattice results has demonstrated [21–27].
2 It was indeed shown for the first time in Antipin et al. [31], Litim and

Sannino [19] and Litim et al. [32] that Yukawa interactions are instrumental, in

perturbation theory, to tame the UV behavior of non-asymptotically free gauge

theories. In fact without scalars gauge-fermion theories, in perturbation theory, are

doomed to remain at best effective field theories [19, 20]. These conditions were

further elaborated in Bond and Litim [33] and in Antipin and Sannino [34] for

chiral matter. Of course having a fixed point in the Yukawa and gauge coupling is

not enough for the theory to be safe, and much more work is required to show that

it is safe in all couplings. Beyond perturbation theory one can argue that at large
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FIGURE 1 | Illustration of a possible RGE running in the SM. We assumed central values for all parameters, and solved the 3 loop RGE equations. In order to obtain

an asymptotically safe behavior we artificially removed the bottom and tau Yukawa contributions to the 3-loop term in the RGE. This only affects the running in the

non-perturbative region above 1040 GeV, where the result cannot of course be trusted. Furthermore, we ignored the Yukawa couplings of the lighter generations, and

gravity.

TABLE 1 | Field content of the model.

Fields Gauge symmetries Global symmetries

Spin SU(N) U(NF )L U(NF )R

ψ 1/2 � � 1

ψ̄ 1/2 � 1 �

S 0 1 � �

H 0 � 1 1

N 1/2 1 1 �

N′ 1/2 1 � 1

The upper box is the original Litim-Sannino model.

The lower box are the extra fields that we add in order to get a Higgs-like scalar H.

enters into a perturbative fixed point at large energy. Finally,
one verifies that Yukawa couplings and scalar quartics too have
a perturbative fixed point. The model satisfies Total Asymptotic
Safety (TAS).

In general the equations βg = βy = βλ = 0 have multiple
solutions, that correspond to different global symmetries of the
theory. The analysis can be simplified focusing on the maximal
global symmetry, U(NF)L ⊗ U(NF)R, which can be realized with
complex scalars S. The field content is then summarized by the
upper box of Table 1.

The lower box of Table 1 shows the fields that we add: one
Higgs-like scalar charged under the gauge group. Its introduction
does not affect, in the limit of large Nc, NF , the fixed point for
y and g found in Litim and Sannino [19]. We also add singlet

number of matter flavors and finite number of colors one can achieve asymptotic

safety as recently summarized and further elucidated in Antipin and Sannino

[35]. Exact non-perturbative results have been established for supersymmetric field

theories [28].

fermionsNi,N
′
i (see Table 1 for the details) in order to allowH to

have Yukawa couplings, like the SM Higgs. The allowed Yukawa
couplings then are

LY = y Sijψiψ̄j + y′ S∗ijNiN
′
j + ỹ Hψ̄iNi + ỹ′H∗ψiN

′
i + h.c. (3)

The scalar potential is

V = λS1(TrS
†S)2 + λS2 Tr(S†SS†S)+ λH(H†H)2

+λHS(H†H)Tr(SS†) , (4)

and it is positive if

λS1 + ηλS2 ≥ 0 , λH > 0 , λHS + 2
√

λH(λS1 + ηλS2) ≥ 0

(5)

where η = Tr(S†SS†S)/Tr2(S†S) ranges between η = 1 and
η = 1/NF . The bounds in Equation (5) need only to be imposed
at the extremal values.

2.1. RGE and Their Fixed Points
Defining the β-functions coefficients as

dX

d lnµ
=

β
(1)
X

(4π)2
+

β
(2)
X

(4π)4
+ . . . , (6)
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the relevant RGE are

β(1)g = g3
(

−
11

3
Nc +

2NF

3
+

1

6

)

(7a)

β(2)g = g5
(

13NcNF

3
−

NF

Nc
−

34N2
c

3
+

4Nc

3
−

1

Nc

)

−g3
(

N2
Fy

2 + NF
ỹ2 + ỹ′2

2

)

(7b)

β(1)y = y3 (Nc + NF)+ g2y

(

3

Nc
− 3Nc

)

+ y
ỹ2 + ỹ′2

2

+yy′2 + 2y′ỹỹ′ (7c)

β
(1)
y′ = Ncy

2y′ + y′3(NF + 1)+ y′Nc
ỹ2 + ỹ′2

2

+2Ncyỹỹ
′ (7d)

β
(1)
ỹ = NF ỹ

y2 + y′2 + 2ỹ′2

2
+ ỹ3

(

Nc

2
+ NF +

1

2

)

+g2ỹ
3

2

1− N2
c

Nc
+ 2NFyy

′ỹ′ (7e)

β
(1)
ỹ′ = NF ỹ

′ y
2 + y′2 + 2ỹ2

2
+ ỹ′3

(

Nc

2
+ NF +

1

2

)

+g2ỹ′
3

2

1− N2
c

Nc
+ 2NFyy

′ỹ (7f)

β
(1)
λS1

= 4y2NcλS1 + 4y′2λS1 + Ncλ
2
HS +

(

4N2
F + 16

)

λ2S1

+16NFλS1λS2 + 12λ2S2 (7g)

β
(1)
λS2

= 4y2NcλS2 − 2y4Nc + 8NFλ
2
S2 + 24λS1λS2 − 2y′4

+4y′2λS2 (7h)

β
(1)
λH

= g4
(

3Nc

4
−

3

Nc
+

3

2N2
c

+
3

4

)

+g2
(

6

Nc
− 6Nc

)

λH + (4Nc + 16) λ2H +

+4NFλH(ỹ
2 + ỹ′2)+ N2

Fλ
2
HS − 2NF(ỹ

4 + ỹ′4) (7i)

β
(1)
λHS

= 2(y2Nc + y′2)λHS

+(ỹ2 + ỹ′2)
(

2NFλHS − 4y2 − 4y′2
)

+g2λHS

(

3

Nc
− 3Nc

)

+ (4Nc + 4) λHλHS

+λHS
((

4N2
F + 4

)

λS1 + 8NFλS2
)

+ 4λ2HS

−8yy′ỹỹ′ (7j)

Notice that yy′ỹ∗ỹ′∗ is left invariant by redefinitions of the
phases of all fields, so the model admits one CP-violating phase.
Nevertheless, CP is conserved at all fixed points, so that the
RGE can be written in terms of real couplings. For simplicity we
therefore assume all couplings to be real.

The one-loop gauge beta function can be rewritten as

β(1)g = g3
2Nc

3
ǫ, where ǫ ≡

NF

Nc
−

11

2
+

1

4Nc
(8)

can be made arbitrarily small in the limit of large Nc,NF . In this

limit β
(1)
y reduces to

β(1)y

Nc≫1
≃ Ncy

(

− 3g2 +
13

2
y2

)

(9)

and it vanishes for y2/g2 ≃ 6/13, which corresponds to a negative

β(2)g ≃
25

2
g5N2

c

(

1−
363

325

)

. (10)

Thereby, the gauge coupling has an IR-attractive fixed point g =
0 and a non-trivial UV-attractive fixed point at

g2 = g2∗ ≃
26(4π)2

57Nc
ǫ . (11)

The scalar quartics λS1, λS2 admit two fixed points. At leading
order in ǫ:

λS1

g2
≃

3

143NF

(

−2
√
23±

√

20+ 6
√
23

)

≈ −
1

NF

{

0.348 −
0.055 +

(12a)

λS2

g2
≃

3

143

(√
23− 1

)

≈ 0.080. (12b)

The solution with the + (−) sign corresponds to a stable
(unstable) potential V(S) as determined in Litim et al. [32]. At
the stable solution, the fixed point for both quartics, as well as
the fixed point for y, are IR-attractive: this means that their low-
energy values are univocally fixed, with respect to g, along the
RGE trajectory that reaches infinite energy.

So far the new fields that we added just acted as spectators. We
must check that they have their own fixed points. By studying
the full equations we find that the extra Yukawa couplings y′, ỹ
and ỹ′ have 3 inequivalent fixed points. The fixed points with
y′ = ỹ′ = 0 lead to fixed points for the quartics, as listed in
Table 2. The full potential V(S,H) is stable when V(S) is stable.

All these couplings are perturbative for ǫ ≪ 1, in the sense
that higher order corrections are suppressed by powers of ǫ. An
explicit solution to the RGE equations is obtained by assuming
that all ratios y/g, λ/g2 run remaining constant up to corrections
of relative order ǫ. Then one obtains an RGE equation for g

dg

d lnµ

ǫ→0
≃

b1g
3

(4π)2
−

b2g
5

(4π)4
, b1 =

2Nc

3
ǫ, b2 =

19N2
c

13
.

(13)
Its solution is

ln
µ

3
= −

(4π)2

2b1

[

1

g2
+

1

g2∗
ln

(

(4π)2b1

(

1

g2
−

1

g2∗

) )]

,

g2∗ = (4π)2
b1

b2
. (14)

which can be used to define in an RGE-invariant way the
transmutation scale 3 in terms of µ and of g(µ). In the limit
where the second two-loop term is neglected, 3 becomes the
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TABLE 2 | Fixed points at leading order in ǫ.

y/g NFλS1/g
2 λS2/g

2 ˜y/g y′, ˜y′/g λH/g
2 NFλHS/g

2 V

√

6
13 IR

−0.348UV 0.080IR

0UV 0UV

0.138UV 0UV Unstable

1.362IR 0UV Unstable

1/
√
26IR 0UV

0.163UV −0.076UV Unstable

1.125IR −0.301UV Unstable

−0.055IR 0.080IR

0UV 0UV

0.138UV 0IR ≥ 0

1.362IR 0IR ≥ 0

1/
√
26IR 0UV

0.163UV 0.301IR ≥ 0

1.125IR 0.076IR ≥ 0

The left panel of the table refers to the Litim-Sannino model; the right panel to the extra couplings. All fixed points have g = g*UV , and the extra trivial fixed point with g = 0IR is ignored.

The pedix UV denotes an UV-attractive fixed point; while IR denotes an IR-attractive fixed point, where the low-energy value of the coupling is fixed. The equivalent solutions with ỹ, ỹ′

exchanged are not showed.

FIGURE 2 | Illustration of a possible RGE running with Nc = 10, ǫ = 0.01.

Landau pole scale of one-loop RGE. Imposing the boundary
condition g(µ0) = g0 the solution becomes [19]

g2(µ) =
g2∗

1+W[(µ0/µ)
2b21/b2 (g2∗/g

2
0 − 1)eg

2
∗/g

2
0−1]

(15)

where W(z) is the Lambert function defined by z = WeW . The
fixed point g = g∗ is UV-attractive: this means that g can become
smaller at low energy. Figure 2 illustrates a typical RGE running.

3. ON THE LIGHTNESS OF SAFE SCALARS

We now investigate whether scalars can be lighter than the
characteristic energy scale3 where the RG flow displays a cross-
over from the Gaussian IR scaling to the UV interacting scaling.
This scale is dynamical in nature and arises via dimensional
transmutation. Above this scale the theory remains finite at
arbitrary short distances avoiding the Landau pole. The precise
definition and way to determine this scale is presented in Litim et
al. [32].

The authors of Marques Tavares et al. [18] argued that scalars
acquire masses of order 3 by elevating a one-loop computation
of the top corrections for the SM Higgs to an operatorial one
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in an alleged theory featuring an asymptotically safe behavior.
Their rough analysis used: dimensional analysis, modeling the
underlying behavior of the couplings and ad-hoc subtractions to
render the result finite. Henceforth according to their result the
asymptotically safe Higgs scenario would remain unnatural.

Differently from Marques Tavares et al. [18] we have the
precisely calculable model of section 2, containing a scalar H
analogous to the Higgs doublet in the SM, with gauge, Yukawa
and quartic interactions, that run into a perturbative ultraviolet
fixed point as illustrated in Figure 2. Furthermore, the theory
connects to a Gaussian IR fixed point. We set all masses to zero,
making the classical theory scale invariant, and we determine
whether quantum corrections make scalars massive. We perform
our computations in such a way that both IR and UV quantum
conformality are preserved.

3.1. Perturbative Effects
We start by considering the quantum corrections affecting
scalar masses that stem from the standard perturbative
approach of summing Feynman diagrams. We therefore fix the
renormalization scale at an arbitrary value µ0, and compute the
scalar two-point function5(0). At any loop order, each diagram
is proportional to powers of dimension-less coupling constants
renormalized at µ0 times a loop integral which is scale-invariant
and quadratically divergent at large loop momenta. To ensure
short and large distance quantum conformality these divergences
are set to zero. As well-known, scale-invariant loop integrals
vanish automatically in dimensional regularization.

3.2. Resumming Large Logarithms, 3

Dependence and Meaning
One might be worried that a mere perturbative analysis is
insufficient to settle the issue. So, we now comment on potentially
different non-perturbative corrections.

A relevant class of dominant non-perturbative corrections are
those where couplings get enhanced by large logarithms. At one
loop one encounters corrections of relative order Cℓ where C =
Ncg

2/(4π)2 and ℓ = ln(E/µ0). The correction Cℓ becomes of
order one at energy E much different from µ0. At two loops one
encounters corrections of order C2ℓ2 and C2ℓ.

As well-known, all corrections of order (Cℓ)n can be
resummed by solving the one-loop RGE equations; all corrections
of order Cnℓn−1 are resummed by solving the two-loop RGE
equations, and so on. The RGE equations know that 3 is a
special scale. In order to compute whether scalar masses receive
corrections of order 3, we must compute and solve the RGE
equations for massive parameters. The RGE for squared scalar
masses have the following generic form, dictated by dimensional
analysis:

d

d lnµ
m2 = (dimension-less couplings)×m2. (16)

The right-handed side in general contains scalar masses,
fermion masses and cubic scalar couplings. Without explicit
computations it is clear that, if we set all masses to zero at any
scale µ0 (for example a scale much above 3), all masses will

remain zero at any other scale µ (for example a scale much below
3). No scalar mass of order3 is generated trough RGE evolution
when the3 threshold is crossed.

In fact the RG-invariant scale 3 appears when solving for the
RG equations. In models with a single scalar squared mass one
has:

m2(µ)

m2(µ0)
= exp

[∫ µ

µ0

(

1m2 − 2
)

d lnµ

]

, (17)

with

βm2

m2(4π)2
=

d lnm2

d lnµ
= 1m2 − 2 . (18)

Here 1m2 is the quantum dimension of the mass operator.
The non-trivial 3 dependence is automatically encoded in
the running of the various couplings entering in the above
expression. While 3-dependent, the renormalization of m2 is
multiplicative: the additive renormalization of order 32 claimed
in [18] is absent. This shows that these type of corrections do
not introduce an explicit mass-term for the scalars despite the
presence of an RG-invariant 3. In addition, according to our
interpretation of the scale3 no special scheme is privileged.

The ratiom/3 allows to measure deviations from IR quantum
conformality when making the arbitrary choice of the bare mass
of the scalar, or any other physical scale. Near IR quantum
conformality can, in fact, be naturally ensured in the present
framework requiring m ≪ 3 for any µ < 3. In other words
we use3 as the RG-invariant meter to compare scales.

In order to make the discussion more explicit, we consider
the model of section 2 and determine the RGE for the mass
term operators m2

H |H|2 + m2
S|S|2 that would explicitly break

scale symmetry (fermion masses still vanish because of the chiral
symmetry). Their one-loop RGE are:

β
(1)

m2
H
= m2

H

[

g2
(

3

Nc
− 3Nc

)

+ 4λH(Nc + 1)+ 2NF ỹ
2 + 2NF ỹ

′2
]

+ 2m2
SλHSN

2
F , (19)

β
(1)

m2
S
= m2

S

[

4λS1
(

N2
F + 1

)

+ 8λS2NF + 2Ncy
2 + 2y′2

]

+ 2m2
HλHSNc. (20)

The couplings evolve satisfying g2 ∝ y2 ∝ λ to leading order in ǫ
along the UV-attractive asymptotically-safe trajectory connecting
the theory to the IR Gaussian fixed point. So the RGE for the
masses reduce to independent equations for appropriate linear
combinations m2

i of the squared masses. Neglecting sub-leading
terms in the limit of large Nc,NF the RGE for m2

S depends only
on itself:

β
(1)

m2
S
=

6

13

√

20+ 6
√
23 · g2Ncm

2
S. (21)

Equation (21) can be integrated analytically, giving

m2
S(µ)

m2
S(µ0)

= w
4ǫ
19

√
20+6

√
23 where

w =
[

1− g2∗/g
2(µ)

1− g2∗/g
2(µ0)

]− 171
104ǫ2

. (22)
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Considering the fixed point with ỹ, λHS 6= 0, and defining
the numerical constants λ̄H = λH/g

2 and λ̄HS = NFλHS/g
2

listed in Table 2, Equation (19) can also be integrated and gives

m2
H(µ)

m2
H(µ0)

= w− ǫ
57 (67−104λ̄H) +

286λ̄HSm
2
S(µ0)/m

2
H(µ0)

67+ 12
√

20+ 6
√
23− 104λ̄H

(

w
4ǫ
19

√
20+6

√
23 − w− ǫ

57 (67−104λ̄H)

)

(23)

The factor w can be explicitly written as ratios of Lambert
functions using Equation (15), and at ultra-high energies
µ,µ0 ≫3 it reduces to w ≃ µ/µ0. The solutions to the RGE in
this limit can be easily obtained substituting constant couplings
in Equations (19) and (20). These expressions say that the
various massive parameters mi acquire dimension 1 + O(ǫ) at
energies above 3. Our results recover the fact that a massive
scalar contributes to the mass of other scalars coupled to it.
The physical ratios between different masses in general run by
an infinite amount up to infinite energy: this can be seen as a
motivation for considering theories where all masses vanish,
being generated only at low energy trough dynamical generation
of vacuum expectation values or condensates. However, it does
not mean that masses receive power-divergent corrections: no
mass is generated trough RGE running, if masses vanish at some
scale.

3.3. Non-perturbative Contributions
Finally, we discuss now truly non-perturbative effects, which
could give corrections of order32e−1/C. In themodel of section 2
the couplings C can be chosen to be arbitrarily small, such
that non-perturbative effects, even if present, are exponentially
suppressed. In this model there are no new bound states with
masses of order 3, no condensates of order 3, no new non-
perturbative phenomena: The RG invariant scale 3 merely
determines the boundary between the IR and the UV regime.

In order to make the discussionmore concrete, we discuss two
special cases of non-perturbative phenomena.

First, if the fixed point is not fully IR-attractive the quartics
could run to low-energy values that violated the positivity
condition of the potential, cross the boundary in Equation (5)
at a scale µ ∼ M exponentially smaller than 3. If this happens,
scalars acquire vacuum expectation values and masses order
M trough the Coleman-Weinberg mechanism. Indeed various
works proposed extensions of the Standard Model where the
weak scale is generated in this way.

Next, we notice that the running of the SM Higgs quartic λH
in Figure 1 exhibits a similar, but more complex pattern: there is
a 2 − 3σ hint that λH runs negative between Emin ∼ 1010 GeV

and Emax ∼ 1030 GeV, see Figure 1. As well-known, this implies
a vacuum decay rate suppressed by the non-perturbative factor
e−S, where S = 8π2/3|λH(E)| is the action of the Fubini bounce
hE(r) =

√
−2/λ×2E/(1+E2r2). Here r2 = x2+y2+z2− t2 and

E is a free parameter with dimension of mass, that arises because
of classical scale invariance. The non-perturbative Fubini bounce
also leads to a non-perturbative correction to the Higgs mass of
order

δm2
H ∼

∫ Emax

Emin

E dE e−S. (24)

Such non-perturbative correction to the Higgs
mass is negligibly small, given that vacuum decay is
negligibly slow comparte to cosmological time-scale,

namely e−S ≪ (H0/E)
4 where H0 is the Hubble

rate.
We conclude this section by asserting that in an asymptotically

safe theory featuring Higgs-like states no masses are generated
along the trajectory connecting the IR Gaussian fixed point
dynamics to the interacting UV safe one. The intrinsic and
calculable RG invariant scale3merely determines the boundary
between the IR and UV conformal regimes. Furthermore, at this
scale no new fundamental degrees of freedom are generated.
This is so since the underlying theory is described by the same
fundamental degrees of freedom along the entire RG flow3.When
introducing explicit conformal symmetry breaking operators
such as the Higgs mass term the scale 3 allows us to ensure that
deviations from the IR quantum conformal behavior are minimal
so that the physical mass m ≪ 3 for any µ < 3. This can
be naturally achieved in any UV and IR conformal preserving
renormalization scheme.

Our results show that the claim that asymptotically safe scalars
are never naturally light [18] maximally violates quantum IR
(near) conformality by, de facto, elevating the RG invariant scale
3 to the mass scale of the Higgs.

4. CONCLUSIONS

In section 2 we extended the Litim-Sannino [19] theory to further
contain a Higgs-like scalar H charged under the gauge group
and with further Yukawa and quartic interactions. We showed
that all couplings are governed by an IR Gaussian fixed point at
low energies, and grow at short distance until a scale 3. Above
this scale the couplings enter into a rigorous asymptotically safe
regime up to infinite energy, thereby avoiding Landau poles as
illustrated in Figure 2.

In Appendix (Supplementary Material) we attempted to make
the model more SM-like by adding chiral fermions. Although
we succeeded in making the gauge and the Yukawa couplings
asymptotically safe we were unable to render the quartic
couplings safe as well. Our analysis, however, does not exclude
the possibility of building a SM-like chiral theory that is fully
asymptotically safe.

In section 3 we investigated the perturbative and non-
perturbative quantum corrections to the scalar mass operator. To
better elucidate ourmain points, we determined these corrections
for the calculable model of section 2, serving as SM template. We
showed that no scalar masses of order of the Renormalization
Group (RG) invariant scale 3 are generated along the entire

3Our theory respects the a-theorem inequality1a > 0 calculated between the UV

and IR fixed point in the large Nc and Nf limit [36] and therefore the UV and IR

CFTs are distinct, even though the underlying degrees of freedom remain the same

along the RG flow.
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RG trajectory connecting the IR Gaussian fixed point to the UV
interacting fixed point. In other words, section 3 shows that, if
scalar masses are absent, no scalar masses are generated. If the
scalar mass operator is added to the theory, the scalar masses
receive the multiplicative RGE corrections of Equation (17)
that have been computed in section 3.2 for the explicit model
constructed here. These yield a non-trivial and non-quadratic 3
dependence arising solely from the dynamics. Themass of Higgs-
like scalars can be naturally small relative to the scale3 that acts,
in this respect, merely as a comparison scale. Our results do not
validate the claims made in Marques et al. [18] that, in practice
by the use of ad-hoc regularization schemes, elevated the scale
3 to the mass of the Higgs, maximally violating, at least the low
energy (near) conformality of the theory. It is worth stressing
that, differently from the naive estimates of Marques Tavares et
al. [18], never in our computations we had to resort to ad-hoc
assumptions or expansions around one of the two fixed points
since we can rigorously solve for the flow connecting the IR and
UV, including the determination of the non-trivial anomalous
dimensions. Our results naturally capture the correct power-law
behavior when approaching the UV interacting fixed point as
already explained in sections F, G of Litim and Sannino [19].

Our interest further resides in using these computable
models to motivate new avenues for the SM near the scale
3 ∼ 1040 GeV, where the hypercharge coupling gY nears
its Landau pole. To this end a case-by-case investigation is
needed. In particular a phenomenologically viable application to

the SM case would deserve a proper dedicated study to firmly
establish what happens near the hypercharge Landau pole. Do
couplings enter into an asymptotically safe regime, as illustrated
in Figure 2? If yes, would the Higgs mass remain naturally small,
or non-perturbative dynamics generate condensates of order 3
that affect the Higgs mass? Our explicit example demonstrates
that such a possibility is worth exploring.
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