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Nuclear magnetic resonance (NMR) diffusion measurements can be used to probe

porous structures or biological tissues by means of the random motion of water

molecules. The short-time expansion of the diffusion coefficient in powers of t1/2, where

t is the diffusion time related to the duration of the diffusion-weighting magnetic field

gradient profile, is universally connected to structural parameters of the boundaries

restricting the diffusive motion. The t1/2-term is proportional to the surface to volume

ratio. The t-term is related to permeability and curvature. The short time expansion can

be measured with two approaches in NMR-based diffusion experiments: First, by the use

of diffusion encodings of short total duration and, second, by application of oscillating

gradients of long total duration. For oscillating gradients, the inverse of the oscillation

frequency becomes the relevant time scale. The purpose of this manuscript is to show

that the oscillating gradient approach is blind to the t-term. On the one hand, this prevents

fitting of permeability and curvature measures from this term. On the other hand, the

t-term does not bias the determination of the t1/2-term in experiments.

Keywords: magnetic resonance imaging, diffusion, short-time limit, surface-to-volume ratio, gradient profile,

oscillating gradients

INTRODUCTION

This article builds on and extends a previous article [1], which investigated the term linear in time
of the short-time expansion of the diffusion coefficient [2–5] which is given by:
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where D0 is the free diffusion coefficient, S/V is the surface-to-volume ratio, κ is the surface
permeability, ̺ is the surface relaxivity, R−1 is a mean curvature term, d is the spatial dimension,
and t is the observation time. This universal expansion is valuable, since it connects a measurable
quantity, i.e., D (t), to structural parameters of barriers restricting the diffusive motion.

Using magnetic resonance diffusion experiments [6–9], information about the diffusive motion
of spin-bearing particles can be encoded into the signal by using diffusion-weighting magnetic
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field gradient pulses. Regarding the diffusion time t linked to
the total duration of the diffusion-weighting gradient profile, one
often considers the long-time and short-time limit. In the first
case, the limit of long diffusion time, detailed information about
the porous structure of the investigated material can be obtained
[10–12] such as actual pore shapes [13–15]. On the other
hand, D (t) can be measured in the short-time limit to obtain
the structural parameters in Equation (1). For this purpose, a
pair of bipolar gradient pulses is applied to achieve diffusion
encoding [16]. In the short gradient pulse approximation [6, 17],
the measured diffusion coefficient in such experiments is D (t)
(Equation 1). If the gradient pulses cannot be considered to
be short, Equation (1) must be modified to take into account
the effect of the gradient pulse duration and of the temporal
evolution of the gradients G (t) [18–22]:
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Here, the influence of the temporal gradient profile is expressed
solely by the constants c1 and c2, which can be computed from
G (t), so that an elegant decoupling takes place. Note that surface
relaxation is neglected in Equation (2) and in the remainder of
the manuscript, thus avoiding the difficulties in the mathematical
treatment [23], and that t is the total duration of the diffusion
gradients in Equation (2).

In Laun et al. [1], it was shown that c2 can be tuned to values
between 0 and 1. Tuning c2 to zero can be advantageous, for
example, if the aim of the experiment is to measure the

√
t-term

without bias from the t-term.
A striking result [24–30] is that the short-time expansion is

moreover valid for the diffusion spectrumD (ω), orDapp (τ ) : =
D

( 2π
τ

)

, that can be measured by the use of oscillating gradients.
Note thatDapp (τ ) andDapp (t) are different functions as outlined
in more detail below. Then Equation (1) can be cast in a similar
form for the diffusion spectrum, where t is replaced by the
duration τ of one gradient oscillation:
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The constants Cn in Equation (3) are printed in capital letters
because they differ, in general, from the constants cn of Equation
(2) as will be described below.

Equations (2) and (3) were successfully applied in experiments
to obtain information about the first order term and thus
about the surface-to-volume ratio [27, 28, 31–37]. The thereto
necessary constants C1 were derived for some gradient
waveforms such as the bipolar waveform and oscillating gradients
[18, 27, 29, 38].

The aim of the work at hand is to investigate the constant
C2. For this purpose, Equation (3) is derived starting from
Equation (1).

MATERIALS AND METHODS

Numerical simulations were performed as in Laun et al. [1]1.
The diffusion coefficient Dapp (t) and the diffusion spectrum
Dapp (τ ) [using the signal decrease as recalled in Equation (A13)
in Appendix A (Supplementary Material)] were computed using
the multiple correlation function (MCF) approach [22, 39–45]
(using Equation 114 in Grebenkov [42]). The MCF approach
decomposes the magnetization into the eigenfunctions of the
Laplace operator. One important parameter is the number Nλ

of employed eigenfunctions, which should be sufficiently large to
ensure numerical accuracy. In the presented results, the accuracy
was verified by increasing Nλ and checking whether numerical
results remained unchanged. A detailed description of the MCF
approach is beyond the scope of this article, but can be found in
Grebenkov and Grebenkov [46, 47], for example.

The following closed domains were considered: slab, cylinder,
sphere, “bi-slab” (see Figure 1). The bi-slab domain consists of
three parallel planes. The inner plane is permeable, while the
two outer ones are impermeable. Particles only reside within the
volume between the two impermeable slabs. The radii of cylinder
and sphere were 5µm, the separation of the slabs was 10µm, and
the separation of the planes of the bi-slab domain was 10µm
(thus the bi-slab domain was in total 20µm wide). The free
diffusion coefficient D0 was set to 1µm2/ms. The boundaries
were fully reflecting except for the inner wall of the bi-slab
domain, which had a permeability of 50µm/s.Nλ was 100 for the
bi-slab domain, 500 for slab domain and cylinder, and 200 for the
sphere. Oscillating cosine gradients were simulated with a total
duration Tcos of 0.05, 0.1, and 0.5 s. The number of oscillations
N was varied in twenty steps. For bipolar gradients, δ was set to
10−3 ms and t was varied between 0.1 and 15ms.

Additionally, the difference between simulated diffusion
coefficients and first order short time expansion was calculated.
This difference is labeled 1D in the plots and represents
Dapp,simulated (t) − D0 − M1c1t

1/2 or Dapp,simulated (τ ) − D0 −
M1C1τ

1/2.

RESULTS

Derivation of the t-Term for Oscillating
Gradients
First, a shorthand-notation for Equation (2) is introduced:
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1A considerable overlap of the Methods sections with the corresponding sections
of the earlier article is present.
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FIGURE 1 | Impact of the t-term on the short-time expansion of the diffusion

coefficient. Markers indicate values obtained by numerical simulations. Solid

lines represent the short-time expansion to order
√
t and dotted lines represent

it to order t. Red square markers represent bipolar gradients (i.e., Dapp (t))

and black circular markers represent oscillating cosine gradients (i.e.,Dapp (τ )).

(Continued)

FIGURE 1 | Continued

(A) Slab domain. The t-term is zero because curvature and permeability of the

sample are zero. (B–D) Cylinder, sphere, and bi-slab. In case of oscillating

cosine gradients, the t-term is zero, because C2 is zero. For this reason, the

markers stay close to the solid line in contrast to the markers indicating the

bipolar gradients, which stay close to the dotted line. Tcos was 500ms.

and so on (with c0 = 1).
As outlined in Appendix A (Supplementary Material), the

short-time expansion for the position correlation function that
generates an experimentally detectable signal attenuation reads:

〈x(t2)x(t1)〉 = −D (|t21|) · |t21| = −
∑

n=0
Mn |t21|1+n/2 (5)

with t21 = t2−t1, where the brackets 〈. . .〉 denote the expectation
value. Note that the terms 〈x(t2)2〉 and 〈x(t1)2〉 where neglected
in Equation (5) because they do not contribute to the signal
attenuation. Equation (5) can be related to the diffusion spectrum
D (ω) (see Appendix A in Supplementary Material) via:
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This Fourier integral exists (see Appendix B in Supplementary
Material):
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and thus by inserting Equation (7) in Equation (6), one finds:
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Note that the gamma function Γ makes the constants cn increase
swiftly at larger n. Defining the time parameter τ = t/n, entailing
ω = 2π/ τ , one finds:

Dapp(τ ) := D
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with Dapp (τ ) being identical to D (ω) except for taking a
different argument. Dapp (τ ) has exactly the form of Equation
(3) as desired and one can read off the coefficients Cn directly:
C1 = 3/8 and C2 = 0. Note that the value of C1 was reported
previously (e.g., in Novikov and Kiselev [29]). The vanishing of
C2 has not been reported so far to our knowledge.

Using the expression forM1, one finds:
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FIGURE 2 | Difference between simulated diffusion coefficients and first order

short time diffusion expansion for slab domain (A), cylinder (B), sphere (C),

and bi-slab (D).

It is interesting to calculate the coefficients c1 and c2 for a
short-time cosine gradient with one oscillation [with methods as
described, e.g., in Laun et al. [1] and references therein]. We find
c1 = 3 ·

(

4π FresnelC(2) + 3 FresnelS(2)
)

/16/π ≈ 0.428 and
c2 = 0. These values bear great similarity to C1 ≈ 0.375 and
C2 = 0. It should be noted that c2 of oscillating cosine gradients
with any number of oscillations equals zero because they are
“flow-compensated,” i.e., because their first moment vanishes [1].

Validation with Simulations
Figure 1 displays Dapp (t) and Dapp (τ ). Markers indicate
simulation results using the MCF approach and lines represent
the short-time expansion. For Dapp (t), solid lines equal M0 +
M1c1t

1/2 and dotted lines equal M0 + M1c1t
1/2 + M2c2t. For

Dapp (τ ), solid lines equalM0+M1C1τ
1/2 and dotted lines equal

M0 + M1C1τ
1/2 + M2C

2
1τ . The term M2C

2
1τ shall represent a

reasonable “guess” for the t-term with an effective diffusion time
τeff = C2

1τ , where the coefficient C2 was set to one. The intention
is to visualize a line with C2 6= 0, although this term does not
occur in reality. Some remarks on effective diffusion times can be
found in Appendix C (Supplementary Material).

For the slab domain (Figure 1A), Mn>1 = 0 holds true
(see [42]). Hence, Figure 1A does not display a dotted line and
markers stay close to the solid lines.

In Figures 1B,C (cylinder, sphere) and Figure 1D (bi-slab),
it is clearly visible that the markers for the bipolar gradients
(with c2 = 1 6= 0) stay close to the dotted lines indicating
the importance of the t-term. The markers of the oscillating
cosine gradients stay close to the solid line indicating that the
t-term does not influenceDapp (τ ). Owing to higher order terms,
deviations between the short-time expansion and markers are
present at larger t.

Figure 2 shows 1D, i.e., the difference between simulated
diffusion coefficients and first order short time expansion. The
dotted line represents the t-term, i.e., M2c2t for the bipolar
gradients. For the oscillating gradients, the black dotted line shall
represent an educated guess for the t-term, i.e., M2C

2
1τ , as in

Figure 1.
First, the bipolar gradients displayed in Figure 2 are discussed

(displayed in red color). For the slab domain (Figure 2A), the
dotted line is flat because M2 = 0. However, deviations of 1D
from zero are well visible for t > 10 ms. This does not result from
the influence of higher order terms because all higher order terms
are zero. It rather indicates the breakdown of the short-time
expansion. For cylinder, sphere, and bi-slab (Figures 2B–D), the
slope of 1D is identical to that of the dotted line at t = 0,
but starts deviating already roughly at t = 2 ms indicating that
either higher order terms are needed or, again, that the short-time
expansion breaks down. This deviation is more pronounced for
cylinder and sphere than for the bi-slab.

Next, the oscillating gradients in Figure 2 are discussed
(displayed in black color). For cylinder, sphere, and bi-slab, 1D
does have zero slope at t = 0 and does not follow the dotted
line for any of these domains, which supports the finding that
C2 = 0. This holds true for Tcos = 500ms, but also for reduced
total duration of the oscillating gradients, i.e., for smaller Tcos.
The difference of1D between Tcos = 500ms and Tcos = 50ms is
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smaller than 0.015 µm2/ms for all domains at τ = 10ms, which
is roughly equally large as the guessed t-term, but an order of
magnitude smaller than the

√
t-term. Thus, for the considered

domains, Tcos = 50ms still appears to be well suited for
investigations of the

√
t-term, even with as few as five oscillations.

DISCUSSION

The main result of this work is that oscillating cosine gradients
are blind with respect to the t-term of the short-time expansion
of the apparent diffusion coefficient.

Oscillating gradients and extensions [48–51] have been used
in several research studies [27, 28, 32, 35, 38, 52–65], among them
applications to human brains in vivo [66]. Comparing oscillating
gradients to pulsed gradients, the advantage of the oscillating
gradients is that the obtainable b-value is higher allowing the
assessment of shorter times. This is particularly useful if strong
gradient amplitudes are not available or if the structure of interest
is too small. The disadvantage is the need for longer echo
times entailing decreased signal-to-noise ratio due to transversal
relaxation, which also entails a longer acquisition time.

As oscillating gradients are blind to the t-term, estimates of
S/V as in Reynaud et al. [36] are not biased by this term, but,
obviously, the membrane permeability, for example, cannot be
estimated using the t-term. This is in line with the findings by
Li et al. [67], who reported that the membrane permeability has
little effect on oscillating gradient derived diffusion coefficients at
high frequencies. This is presumably not a major limitation given
the smallness of the t-term that is visible in Figures 1, 2, which
makes a fit challenging. The permeability information must have
some influence on Dapp (τ ) at long τ ; otherwise diffusion in
the bi-slab would have to be identical to that of a single slab
domain of double size. Therefore, the estimation of membrane
permeability using oscillating gradients might in principle be
possible.

As different versions of Equations (10) and (11) can be
found in the literature, a comparison is worthwhile. Equation
(10) is identical to Equation 10 of the article by Novikov and
Kiselev [29]. Except for a small deviation, which may be due
to numerics, Equation (10) is also identical to Equation (3) of
the article by Xu et al. [35], but, to our understanding, not to
the respective equations in an earlier article [27]. In general,
care must be taken concerning the definition of τ . For example,
Zielinski et al. [38] use the definition τZielinski = τ/2, which is
closer to the classical timing definitions of CPMG echo trains
than our definition. Considering this difference in definitions,

their respective coefficient C1 for the CPMG condition as stated
in their Equation (6) is almost identical to 3/8, which is in
agreement with the finding that the difference between C1 of
CPMG and cosine gradients should be almost negligible as stated
in section 3.3 of Novikov and Kiselev [29]. Further, we found
our coefficient C1 to be a factor of six smaller than the one
stated in Equation 14 in the article by Stepišnik et al. [28]. This
difference was noted by the authors themselves and in Novikov
and Kiselev [29].

Interestingly, the disappearance of the t-term in the Mitra
expansion of Equation (3) using oscillating gradients is due to
its disappearance in D (ω), or Dapp (2π/τ), respectively. Thus,
optimizing oscillating gradient profiles instead of using, for
example, just cosine gradients, which was a successful approach
in other regards [68, 69], does not help to make the t-term
reappear in the signal attenuation.

In practice, diffusionmeasurements use spin echoes and hence
two gradients at both sides of the refocusing pulse (as in Baron
and Beaulieu [66]). This effectively introduces an extra variable,
i.e., the separation of two gradients, which can affect the spectrum
of diffusion gradients. When interpreting oscillating gradient
experiments, this effect must be taken into account.

A limitation of the presented simulations is that they cannot
prove the disappearance of the t-term. In principle, a very small
t-term might be present and go unnoticed.

In conclusion, oscillating gradients are blind to the t-term and
hence no bias in fits of the surface-to-volume ratio arises from the
t-term.
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