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The expansive research field of com-
putational intelligence combines various
nature-inspired computational method-
ologies and draws on rigorous quantita-
tive approaches across computer science,
mathematics, physics, and life sciences.
Some of its research topics, such as
artificial neural networks, fuzzy logic,
evolutionary computation, and swarm
intelligence, are traditional to computa-
tional intelligence. Other areas have estab-
lished their relevance to the field fairly
recently: embodied intelligence (Pfeifer
and Bongard, 2006; Der, 2014), informa-
tion theory of cognitive systems (Lun-
garella and Sporns, 2006; Polani et al., 2007;
Ay et al., 2008), guided self-organization
(Prokopenko, 2009; Der and Martius,
2012), and evolutionary game theory (Vin-
cent and Brown, 2005).

The intelligence phenomenon contin-
ues to fascinate scientists and engineers,
remaining an elusive moving target. Fol-
lowing numerous past observations (e.g.,
Hofstadter, 1985, p. 585), it can be pointed
out that several attempts to construct “arti-
ficial intelligence” have turned to design-
ing programs with discriminative power.
These programs would allow computers to
discern between meaningful and meaning-
less in similar ways to how humans per-
form this task. Interestingly, as noted by de
Looze (2006) among others, such discrim-
ination is based on etymology of “intellect”
derived from Latin “intellego” (inter-lego):
to choose between, or to perceive/read (a
core message) between (alternatives). In
terms of computational intelligence, the
ability to read between the lines, extracting
some new essence, corresponds to mech-
anisms capable of generating computa-
tional novelty and choice, coupled with
active perception, learning, prediction, and
post-diction. When a robot demonstrates

a stable control in presence of a priori
unknown environmental perturbations, it
exhibits intelligence. When a software
agent generates and learns new behaviors in
a self-organizing rather than a predefined
way, it seems to be curiosity-driven. When
an algorithm rapidly solves a hard compu-
tational problem, by efficiently exploring
its search-space, it appears intelligent.

In short, innovation and creativity
shown within a rich space shaped by
diverse, “entropic” forces, appeal to us as
cognitive traits (Wissner-Gross and Freer,
2013). Can this intuition be formalized
within rigorous and generic computational
frameworks? What are the crucial obstacles
on such a path?

Intuitively, intelligent behavior is
expected to be predictable and stable, but
sensitive to change. Attempts to formalize
this duality date back at least to cybernetics.
For example, Ashby’s well-known Law of
Requisite Variety states that an active con-
troller requires as much variety (number
of states) as that of the controlled system to
be stable (Ashby, 1956). In order to explain
the generation of behavior and learning
in machines and living systems, Ashby
also linked the concepts of ultrastability
and homeostatic adaptation (Di Paolo,
2000; Fernández et al., 2014). The balance
between robustness and adaptivity is often
attained near “the edge of chaos” (Langton,
1990), and the corresponding phase tran-
sitions are typically detected via high sen-
sitivities to underlying control parameters
(thermodynamic variables) (Prokopenko
et al., 2011). Stability in self-organizing
systems can be generally related to negen-
tropy, the entropy that the system exports
(dissipates) to keep its own entropy low
(Schrödinger, 1944). Despite significant
advances in this direction, the fundamental
question whether stability, within processes

developing far from an equilibrium,
necessitates specific entropy dynamics is
still unanswered. Clarifying the connec-
tions between entropy dynamics and stable
but adaptive behavior is one of the grand
challenges for computational intelligence.
Put simply, we need to know whether
learning and self-organization necessitate
phase transitions in certain spaces, in terms
of some order parameters. Is it possible to
characterize the richness of self-generated
choice, intrinsic to intelligent behavior,
with respect to generic thermodynamic
principles?

The notion of generating and actively
exploiting new behaviors, which ade-
quately match the environment highlights
that to be intelligent is to be complex
in creating innovations. And so a mech-
anism producing computational novelty
needs to exceed some threshold of com-
plexity. To be truly impressive in gener-
ating endogenous innovation, it needs to
be capable of universal computation, or
to approach this capability in finite imple-
mentations (Casti, 1994; Markose, 2004).
In other words, computational novelty may
be fundamentally related to undecidability.
Again, serious advances have been made
in this foundational area of computer sci-
ence. For example, Casti (1991) analyzed
deeper interconnections between dynami-
cal systems, Turing Machines, and formal
logic systems: in particular, the complex,
class IV, cellular automata were related
to formal systems with undecidable state-
ments (Gödel’s incompleteness theorem)
and the Halting Problem. Nevertheless, the
question whether universal computation
is the ultimate innovation-generator is
still unresolved, offering another grand
challenge: how computational intelligence,
including mechanisms producing rich-
ness of choice and novelty, is related to
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undecidability? In an abstract sense, we
need to know what the theoretical limits
to computational cognition are.

The cross-disciplinary nature of mod-
ern computational intelligence is empha-
sized by interactions with: (i) physics,
e.g., via physics of information, econo-
physics; (ii) computer science, mathemat-
ics, and statistics, e.g., via probabilistic and
Bayesian inference, graph theory, informa-
tion theory; (iii) life sciences, e.g., via sys-
tems biology, artificial life, neuro-cognitive
modeling, and analysis of neural data. A
unifying theme underlying these interac-
tions is the universal role of computa-
tion, ranging from DNA-based computa-
tion to distributed computation in cellular
automata, to neural computation in cor-
tical networks, to reservoir computing in
artificial neural networks, to chaos-based
computing in digital circuitry, to morpho-
logical computation in modular robots,
to information cascades in self-organizing
swarms, etc. Recent attempts to quantita-
tively capture this universal role have used
information-theoretic characterizations of
various properties of distributed compu-
tation, such as information storage, trans-
fer, modification, and synergy (Harder
et al., 2013; Griffith and Koch, 2014; Lizier
et al., 2014), as well as several optimiza-
tion principles (Klyubin et al., 2005; Lun-
garella and Sporns, 2006; Prokopenko et al.,
2006; Ay et al., 2008; Polani, 2009). In
general, information dynamics of computa-
tion have been precisely quantified within
spatio-temporal systems, on both global
and local scales. Nevertheless, the situ-
ation somewhat resembles the state of
the mathematical art during pre-calculus
times, when concepts of motion and
change were not yet embedded within a
general mathematical system consistently
dealing with variable quantities. Creating
an information-theoretic calculus allow-
ing researchers to express and optimize
numerous varied elements of information
dynamics is arguably one of the contem-
porary grand challenges for computational
intelligence.

Another crucial challenge for compu-
tational intelligence is the lack of a uni-
fying theory for various deep learning
architectures. Deep learning – a broad fam-
ily of machine learning methods based
on learning representations (LeCun et al.,
1989; Schmidhuber, 1992) – has achieved

a series of successes over recent years. As
pointed out by Schmidhuber (2014), shal-
low and deep learners, e.g., neural net-
works, are “distinguished by the depth of
their credit assignment paths, which are
chains of possibly learnable, causal links
between actions and effects.” The underly-
ing assumption behind deep learning algo-
rithms is that observed data are generated
by multi-level interactions of many differ-
ent factors, and therefore, can be repre-
sented in a distributed multi-layered way,
where distinct layers correspond to var-
ious levels of abstraction (Bengio et al.,
2013). In addition, the predictive power of
deep learning may come from an inher-
ent computational parallelization utilized
by distributed representations. Neverthe-
less, there may be even more fundamen-
tal reasons behind prominence of deep
learning methods. For example, it can be
hypothesized that computation within a
deep learner creates a sufficient variety of
multiple credit assignment paths, increas-
ing intrinsic plasticity via a larger req-
uisite variety postulated by Ashby’s Law
(Obst and Boedecker, 2014), and/or max-
imizing the ability of reservoir comput-
ing or neuronal networks in the states
near the edge of chaos (Legenstein and
Maass, 2007; Büsing et al., 2010; Buck-
ley and Nowotny, 2011; Boedecker et al.,
2012). Furthermore, it is conceivable that
the larger variety enables a more robust
and precise identification of critical points
in the learning dynamics – analogous to
phase transitions in connectivity of ran-
dom graphs, which are detectable within
ensembles of graphs (Newman, 2005). In
other words, considering dynamics of deep
learning in terms of its critical behav-
ior may reveal some underlying mech-
anisms for convergence toward optimal
solutions. Developing a unifying theoret-
ical framework, which brings together sev-
eral deep learning concepts, such as lev-
els of abstraction, depth of credit assign-
ment paths, requisite variety within dis-
tributed representations, critical behavior
of learning dynamics, and so on, remains a
major task.

Rather than proposing a frontal attack
on the moving target of computational
intelligence, we suggest to approach the
described grand challenges in parallel.
Such a cross-disciplinary strategy may not
only elucidate the field from different

viewpoints, but also offer significant
advances in the overlapping research areas.
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