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Supervised pattern recognition is the process of mapping patterns to class labels that define
their meaning.The core methods for pattern recognition have been developed by machine
learning experts but due to their broad success, an increasing number of non-experts are
now employing and refining them. In this perspective, I will discuss the challenge of correct
validation of supervised pattern recognition systems, in particular when employed by non-
experts. To illustrate the problem, I will give three examples of common errors that I have
encountered in the last year. Much of this challenge can be addressed by strict procedure
in validation but there are remaining problems of correctly interpreting comparative work
on exemplary data sets, which I will elucidate on the example of the well-used MNIST data
set of handwritten digits.
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1. INTRODUCTION
Pattern recognition is the process of mapping input data, a pattern,
to a label, the“class”to which the input pattern belongs. Among the
common approaches to pattern recognition, supervised machine
learning approaches have gained a lot of momentum with head-
line successes, e.g., on the MNIST data set of handwritten digits
(LeCun and Cortes, 1998), which I will use for illustration later. In
this paradigm, researchers use a labeled set of examples, the train-
ing set, to “teach” algorithms to predict the correct label for each
input pattern. The success of learning is then tested on a separate
set of labeled examples, the test set. If no such separate test set
exists, crossvalidation or bootstrapping methods are employed to
assess the success of a developed method.

Popular examples of supervised learning methods for pat-
tern recognition include k-nearest-neighbor classification (kNN)
(Cover and Hart, 1967), support vector machines (Boser et al.,
1992; Cortes and Vapnik, 1995), and artificial neural networks
(McCulloch and Pitts, 1943; Farley and Clark, 1954; Werbos, 1974),
e.g., multilayer perceptrons (Rosenblatt, 1958), and their recent re-
incarnation in the form of deep learning networks (Fukushima,
1980; Schmidhuber, 1992; Hinton, 2007) and convolutional neural
nets (LeCun et al., 1998). These are complemented by a large vari-
ety of more exotic methods and ensemble learning methods such
as boosting (Schapire, 1990; Freund and Schapire, 1997) and ran-
dom forests (Breiman, 2001). While there are still developments,
e.g., in SVM technology (Huerta et al., 2012) and deep learning
architectures, there is an increasing number of studies focusing on
preprocessing of data, refining meta-parameters, and applying the
established methods to novel real world applications. This trend
is driven by scientists who are not necessarily experts in machine
learning but want to apply machine learning methods in their own
application domain.

It is on this background that I would like to highlight two
aspects of validation and crossvalidation that do not seem to be
fully appreciated in the larger community of applied machine
learning practitioners: (i) the need for correct and strict procedure

in validation or crossvalidation and (ii) the need for careful inter-
pretation of validation results if multiple studies use the same
reference data set. Both issues are different aspects of the same
problem of overfitting and hence closely related, but while the for-
mer has known solutions that applied researchers can be informed
about the latter is more involved and invites further research by
machine learning experts.

2. STRICT PROCEDURE OF VALIDATION IN INDIVIDUAL
STUDIES

The idea of validation in pattern recognition rests on the principle
that separate data are used to develop a method (the training set)
and to subsequently test its performance (the test set). This prin-
ciple has been established to avoid overfitting, i.e., the situation
in which a method is so specific to particular training data that it
does not generalize to unseen new examples.

To avoid overfitting and give a reasonable prediction of the
performance of a method on new unseen data, the correct pro-
cedure stipulates that the test data shall not be used in any way
for training the classifier or developing the classification method.
Notably, this includes that one shall never perform “intermediate
tests” on the test data to check different versions of the method.
The same principle applies to crossvalidation in which training
and test sets are formed repeatedly by splitting a single avail-
able data set (see Figure 1 for an introduction). This principle
of strict validation is well known; yet, in the last year alone, I have
encountered three violations of the principle in published and
unpublished work.

2.1. EXAMPLE 1: ADJUSTING SVM META-PARAMETERS
In this example, researchers investigated a new method for rec-
ognizing odors with an electronic nose, eventually employing a
support vector machine (SVM) algorithm with radial basis func-
tion (RBF) kernel on the data collected with their novel method.
To adjust the meta-parameters of the SVM, they ran a grid search
of parameters using crossvalidation with their entire data set to
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FIGURE 1 | Diagrammatic illustration of validation (A) and
crossvalidation (B–D) methods. (A) Normal validation with a true test set
(holdout set). A part of the data (purple) is permanently withheld from training
and used for testing after training has been completed. (B) k -fold
crossvalidation. The data are divided into k parts (folds) and one of the folds is
withheld from training and used for testing (purple). The procedure is
repeated until all folds have been withheld once and the average error is
reported. (C) Stratified crossvalidation. In stratified crossvalidation, the folds
are formed so that they contain the same proportion of members of each
class (as much as this is possible), indicated by the purple slices taken from
each class. Crossvalidation then proceeds as described in (B). The variability

of error estimates that arises from the choice of folds is reduced in stratified
crossvalidation. (D) Inner and outer crossvalidation for feature selection. If
feature selection is itself based on crossvalidation, e.g., in wrapper methods,
then an inner and outer crossvalidation procedure must be applied. First, the
“outer test set” (light purple) is withheld, then the remaining “outer training
set” (light cyan) is again split into an “inner holdout set” (dark purple) and
“inner training set” (dark cyan), which are used to select features with
standard crossvalidaton, i.e., the features that give the best error estimate in
the “j loop” will be chosen. Once feature selection is complete, the “outer
training set” is used for training, and only in the very end, the “outer test set”
is used for testing.

judge parameter suitability. The study then proceeded to use the
identified meta-parameters to report crossvalidation results for
classification performance. This is in violation of the principle
of strict separation of training and testing (holdout) data but
when asked, the authors replied that they thought “it was common
practice.”

2.2. EXAMPLE 2: CHOOSING AN OBSERVATION WINDOW
In this example, the research was focused on characterizing how
well the spiking activity of an identified neuron in the brain of
crickets would represent the quality of a stimulus. The researchers
used activity from within a time window and crossvalidation of a
naive Bayes classifier to determine how well the neuronal activity
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Nowotny Two challenges of correct validation

could predict whether a stimulus was attractive or not. This was
repeated for different time window sizes and the performance of
the classifier for the best time window was reported. Doing so
inadvertently created the impression that the animal may be able
to perform at the reported best performance level when utilizing
the activity of the neuron in question. However, such a conclusion
is not supported by the study because the same data were used for
model selection (selecting the observation time window) and final
crossvalidation.

2.3. EXAMPLE 3: FEATURE SELECTION FOR HIGH-DIMENSIONAL DATA
In this example, published work on pattern recognition of high-
dimensional data from gas chromatography and mass spectrom-
etry for the analysis of human breath involved a preprocessing
pipeline including a statistical test for selecting significant fea-
tures, principal component analysis (PCA), and canonical analysis
(CA). Data preprocessing was performed on the entire data set and
subsequently the performance of a kNN classifier was evaluated in
crossvalidation. This is a clear violation of the principle of strict
separation of training and test sets.

In this example, we were able to get an estimate for the possi-
ble impact of overfitting by using our own data of similar nature
(Berna et al., unpublished). We collected the breath of 10 healthy
adults on 4 days each, with 3 repetitions each day, and analyzed
it with a commercial enose. We found that when applying the
method of feature selection described above on the entire data set
and leave-one-out (LOO) crossvalidation only for the subsequent
kNN classification, the 10 classes (10 different healthy subjects)
could be identified with 0% error. If we used LOO crossvalidation
more strictly for the entire procedure of feature selection and clas-
sification, the error rate increased to 29.2%. Much worse, when we
performed crossvalidation so that strictly all 3 repetitions from a
day were removed together (stratified 40-fold crossvalidation), the
error rate was worse than chance levels (92.5%). These numbers
illustrate that the correct procedure for crossvalidation in the con-
text of high-dimensional data, few samples, and long processing
pipelines is not just a detail but can determine success or failure of
a method.

It is essential that this knowledge is passed on to applied
researchers with the increasing popularity of machine learning
methods in applications [see also Ransohoff (2004), Broadhurst
and Kell (2006), and Marco (2014)]. Furthermore, it is important
to be clear that any use of the test or holdout data introduces seri-
ous risks of overfitting. This includes the following examples that
at times seem to be tolerated as “common practice”:

1. Adjusting meta-parameters. If crossvalidation is used for
adjusting meta-parameters, an inner and outer crossvalidation
procedure must be performed (see Figure 1D).

2. Model selection. Testing different methods with crossvalida-
tion and reporting the best one constitutes overfitting because
the holdout sets are used in choosing the method.

3. Excluding outliers. If the identification of outliers depends
on their relationship to other inputs, test data should not be
included in the decision process.

4. Clustering or dimensionality reduction. These preprocessing
methods should only have access to training data.

5. Statistical tests. If using statistical tests for feature selection, test
data cannot be included.

3. INTERPRETATION OF MULTIPLE STUDIES ON
A COMMON DATA SET

We have seen above that problems with the correct use of vali-
dation methods occur, in particular in applied work, which can
be addressed by adhering to established correct procedures. How-
ever, I would like to argue that beyond the established best practice,
there is also room for further research on the risks of overfitting in
the area of collaborative work on representative data sets. To give a
concrete example, researchers use tables like the table of classifier
performance for the MNIST data set on LeCun’s website (LeCun
and Cortes, 1998) to choose the best method for a given applica-
tion. When doing so it would be natural to expect a performance
close to the reported validation accuracy from the table. How-
ever, this expectation is not fully justified because the MNIST test
set was used multiple times: every study reported on the MNIST
website (LeCun and Cortes, 1998) used the same MNIST test set to
indicate predicted performance. Therefore, if we use the reported
studies for model selection we inadvertently introduce a risk of
overfitting. The practical implication is that we cannot be sure to
have truly selected the best method and we do not know whether
and how much the reported accuracy estimate may be inflated by
overfitting. When Fung et al. (2008) investigated the possible scope
of this problem in the context of model selection using crossvalida-
tion, they tested an increasing number of different classifiers using
leave-one-out (LOO) crossvalidation on synthetic data of 100 sam-
ples and 16 dimensions that had a true prediction accuracy of 0.5
(pure chance). They found that the best predicted accuracy for
the repeated crossvalidation with different algorithms varied from
0.619 when selecting from 10 algorithms to 0.856 for selecting
from 106 algorithms. The crossvalidation estimates of accuracy in
this example are hence largely over-optimistic, and this is already
the case for only 10 tested algorithms (the MNIST table reports 69
different algorithms).

Related work by Isaksson et al. (2008) suggests Bayesian con-
fidence intervals (Jaynes, 1976, 2003; Webb, 2002) as a promising
method for identifying the level of expected variability of valida-
tion results. Assuming no prior knowledge, the posterior distribu-
tion underlying Bayesian confidence intervals only depends on the
number of correct predictions and the total number of test sam-
ples, so that we can calculate confidence intervals for the MNIST
results directly from the published table (LeCun and Cortes, 1998).
Figure 2A shows the results. As indicated by the gray bar, all meth-
ods to the right of the vertical dashed line have confidence intervals
that overlap with the confidence interval of the best method. We
can interpret this as an indication that they should probably be
treated as equivalent.

Attaching confidence intervals to the predicted accuracies is
an important step forward both for underpinning the selection
process and the judgment on the expected accuracy of the selected
method. However, it is important to be aware that the proposed
Bayesian confidence intervals rest on the assumption that the test
samples are all statistically independent. In a real world data set
like the MNIST handwritten digits, this assumption may only hold
partially. The MNIST digits were written by separate writers who
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FIGURE 2 | (A) Reported accuracy of classification on the MNIST test
set and Bayesian confidence intervals. The confidence intervals were
calculated assuming no prior knowledge on the classification accuracy,
and for confidence level 0.99. The gray bar indicates the confidence
interval for the best method and the dashed line separates the methods
whose confidence intervals intersect with the bar from the rest.
(B) Fraction of observed accuracy values on the test set that lie outside
the Bayesian confidence interval of the median observed accuracy [99%
confidence level, see (I), (P), and (W) for illustration]. Bullets are the
mean observed fraction and errorbars the standard deviation across all
values of k (most errorbars are too small to be visible). For values of nsub

of 500 and above, this fraction is 0 for all k, i.e., the confidence interval
contains all observed values of the accuracy. (C–W) Illustration of the
synthetic data experiment with random vectors underlying (B).

(C–F) example training (C,D) and test (E,F) sets for random vectors of
class 0 (red) and 1 (blue) for unstructured training and test sets. (C,E) are
the worst performing example out of 50 repetitions and (D,F) the
example where the classifiers perform best. (G) Histogram of the
observed distribution of occurrence of the optimal k value in kNN
classification of the test set. (H) Histogram of the distribution of
observed classification accuracies for the test set, pooled for all k.
(I) Histogram for the distribution of observed classification accuracies for
k =20 (bars) and posterior Bayesian distribution for the probability of
observed accuracy, given the median observed classification accuracy.
The gray bar demarcates the Bayesian confidence interval for the median
observed accuracy at 99% confidence level. (J–P) Same plots as
(C–I) for training and test sets that consist of 50 sub-classes.
(Q–W) Same plots for training and test sets that consist of 2 sub-classes.

will have different ways of writing each of the digits and variations
between writers would be larger than variations between repeated
symbols from the same writer.

To investigate whether such correlations could have an effect
on the validity of confidence intervals, I have created the fol-
lowing synthetic problem. I consider a classification problem
that has two classes {0, 1} and the input patterns of the two

classes are three-dimensional random vectors, with entries that
are taken from a Gaussian distribution with mean µ= 0 (class
0) and µ= 1 (class 1). Both have entries with standard deviation

σ =
√

0.52 + 0.22 ≈ 0.539 (the reason for this choice will become
apparent in a moment). I have generated 6000 examples for each
class for the training set (ntrain= 12000) and 1000 independent
inputs per class in a test set (ntest= 2000), mimicking the size of
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Nowotny Two challenges of correct validation

the classes in the MNIST set. Figures 2C,D show two examples of
training sets and 2E,F of test sets. Then, I used kNN classifiers to
classify samples, where k varied, k∈{1, . . ., 20}. The analogy to the
MNIST example is that each k value would correspond to one of
the different methods used on the MNIST data set. I test each clas-
sifier on the independent test set, from which we can determine
the expected performance as it would be reported in the MNIST
table.

Because the data are purely synthetic, I can generate as many of
these experiments as I would like, which would correspond to an
arbitrary number of MNIST sets in the analogy. When I repeat the
described experiment with 100 independently generated training
and test sets, I observe the effects illustrated in Figures 2G–I. The
k value leading to the best performance varies between instances
(Figure 2G), and so does the distribution of achieved maximal
performance (Figure 2H). Furthermore, the posterior distribu-
tion underlying the Bayesian confidence interval corresponds well
with the observed distribution of performances (Figure 2I). In
summary, for the synthetic data with fully independent samples,
the Bayesian confidence intervals with naive prior work very well,
as expected.

I then introduced a sub-structure into the data by choosing
nsub 3-dimensional random vectors with components drawn from
a Gaussian distribution of mean µ= 1 and standard deviation
σ= 0.5 and adding ntrain/nsub/2 independent 3-dimensional ran-
dom vectors with Gaussian entries of µ= 0 and σ= 0.2 to each
of them to create the ntrain/2 training vectors of class 1. Class 0
was generated similarly but with µ= 0. As a result of this, the
training and test sets now consist of nsub “sub-clouds” of points
as can be seen in the example plots in Figures 2J–M,Q–T. Each
such sub-cloud would correspond to the digits written by a dif-
ferent person in the MNIST analogy. The standard deviation in
the unstructured example above was chosen to match the over-
all standard deviation of the structured samples here. I generated
the structured data for nsub∈{2, 5, 10, 20, 50, 100, 200, 500, 1000}.
The differences to the unstructured case are quite drastic
(Figures 2J–W). The preference for large k in successful classifiers
diminishes until there is no preferred value for 2 sub-classes. Sim-
ilarly, the best achieved performance becomes more volatile across
instances and the Gaussian posterior distribution for the proba-
bility of the observed accuracy is no longer a good description of
the distribution of observed accuracies for k= 20 (Figures 2P,W)
and similarly for other k values (data not shown).

Figure 2B shows the percentage of observed accuracy values in
the 100 instances that fall outside the Bayesian confidence inter-
val of the median accuracy (99% confidence level). It rises from
zero for the unstructured case to its maximal value of 82.8% for
nsub= 2. This indicates that Gaussian confidence intervals of this
kind are surprisingly vulnerable to correlations in the data.

I should repeat at this point that this discussion is not about
criticizing the work with the MNIST data set, which has been
very valuable to the field, and I have used MNIST myself in the
context of bio-mimetic classification (Huerta and Nowotny, 2009;
Nowotny et al., 2011). The problem that I am trying to expose
is that while some headway has been made with investigating the
possible bias in model selection (Fung et al., 2008) and quantify-
ing uncertainty about accuracy estimates with confidence intervals

(Isaksson et al., 2008), we as of yet have no definite answer how
to assess the exact risk of overfitting when selecting models based
on a comparison on the same test set. One radical solution to the
problem would be to ban testing on the same test set altogether.
However, this leads to a difficult contradiction: to make fair com-
parisons, we need to compare algorithms on equal terms (the same
training and test set) but due to the discussed unknown biases, we
would rather like to avoid using the same training and test set
multiple times.

Another simple but potentially costly improvement would be
to completely halt work on a data set, acquire a (suitably defined)
equivalent new data set (new test set), select the method that
appears best in spite of the possible bias and test this method with
the new sets. The observed performance in this fully independent
test could then at least be interpreted as an unbiased prediction of
this method’s performance, albeit still not endowed with a mea-
sure of uncertainty and with no guarantees that indeed the best
method has been chosen.

Alternatively, we could employ outer and inner crossvalida-
tion as suggested by Cawley and Talbot (2010) and illustrated in
Figure 1D. For example, crossvalidation on the same folds of the
MNIST training set could be used for model selection and the test
set would only be used for the final prediction of accuracy. Post hoc
analysis of this kind would be an interesting future direction for
the most prominent “headline data sets.”

4. DISCUSSION AND CONCLUSION
In this perspective, I have highlighted the problem of inadver-
tent overfitting in pattern recognition work. One element to avoid
overfitting is strict procedure, possibly beyond what is common
practice today. Going a step further, I have then attempted to illus-
trate that proper strict procedure will, however, not fully remove
overfitting due to an inherent conflict between working compar-
atively on an example data set and avoiding meta-learning when
using the results for model selection. Fung et al. (2008) refer to
this problem as “overfitting in (cross)validation space” and Isaks-
son et al. (2008) have suggested Bayesian confidence intervals to
get an estimate for potential biases. I illustrated the problem on
synthetic data and found that Bayesian confidence intervals work
well if the data contain fully independent samples but begin to
underestimate potential biases if correlations between samples are
introduced. It would be an interesting area for further research
how confidence intervals could be formulated also in the case of
dependent samples.

The discussed work on confidence intervals applies to situations
with a true holdout set. Other related work has addressed the ques-
tion which statistical tests are most appropriate to judge the accu-
racy of different pattern recognition methods when using crossval-
idation. While initially t -tests and binomial tests were employed,
more modern approaches use ANOVA and Wilcoxon signed ranks
tests with post hoc multicomparison corrected Friedman tests
(Demsar, 2006).

When using crossvalidation, it is also good to be aware of its
vulnerability to small sample sizes and high dimensionality. It has
been shown in the context of hard margin support vector machines
that in the limit of infinite dimension and finite sample size, cross-
validation can fail systematically (Hall et al., 2005; Klement et al.,
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2008) and that this effect already appears for moderately large
dimensionality.

In conclusion, it is very important to remember that a strict
procedure has to be followed to avoid inadvertent overfitting, in
particular when a good amount of “data preprocessing”is involved.
It may be timely for machine learning experts to reach out to the
wider community of applied researchers and clearly communi-
cate the appropriate use of machine learning methods and how to
avoid common pitfalls. Furthermore, as we have seen above, very
careful discipline is needed in comparative work on representative
data sets. More work on quantifying the uncertainty of accuracy
estimations in such situations would be very useful. For applica-
tions where the outcome may lead to critical decisions, e.g., in
health- or high-risk technological applications, (cross)validation
of any suggested final solution on a further, independent, unseen
data set will be essential.
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