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Motion Primitives May Emerge from
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Bulcsú Sándor*, Tim Jahn, Laura Martin and Claudius Gros

Institute for Theoretical Physics, Goethe University Frankfurt, Frankfurt am Main, Germany

We investigate the sensorimotor loop of simple robots simulated within the LPZRobots
environment from the point of view of dynamical systems theory. For a robot with a
cylindrical shaped body and an actuator controlled by a single proprioceptual neuron,
we find various types of periodic motions in terms of stable limit cycles. These are self-
organized in the sense that the dynamics of the actuator kicks in only, for a certain range
of parameters, when the barrel is already rolling, stopping otherwise. The stability of the
resulting rolling motions terminates generally, as a function of the control parameters,
at points where fold bifurcations of limit cycles occur. We find that several branches of
motion types exist for the same parameters, in terms of the relative frequencies of the
barrel and of the actuator, having each their respective basins of attractions in terms
of initial conditions. For low drivings stable limit cycles describing periodic and drifting
back-and-forth motions are found additionally. These modes allow to generate symmetry
breaking explorative behavior purely by the timing of an otherwise neutral signal with
respect to the cyclic back-and-forth motion of the robot.

Keywords: sensorimotor loop, adaptive behavior, self-organization, limit cycles, period tripling, embodiment,
explorative behavior, symmetry breaking

1. INTRODUCTION

Robots moving through an environment need to take the physical laws into account. This can be
achieved either via classical control theory (de Wit et al., 2012), or by considering the full senso-
rimotor loop as an overarching dynamical system (Ay et al., 2012). This distinction could be cast,
alternatively, into open-loop control, e.g., via central pattern generators (Ijspeert, 2008), and closed-
loop schemes using feedback to control the states of an internal dynamical system (Dorf and Bishop,
1998). The presence of such feedback mechanisms capable of amplifying local instabilities are key
components leading to the emergence of self-organization (Der andMartius, 2012). A closely related
notion is that of embodiment (Ziemke, 2003), for which no need arises for an explicit modeling of
the interactions between the robot and its surroundings. The agent situated in a given environment
can be treated, in an embodied approach, as an overarching dynamical system, incorporating both
the external dynamics (body–environment interaction) and the internal (controller body) processes.
Thus, combining the closed-loop controlwith the embodied approach leads tomovements generated
through self-organizing processes. These may in turn be guided by generic, e.g., information-
theoretical objective functions (Martius et al., 2013), such as predictive information (Ay et al., 2008),
resulting in explorative or even playful behavior (Der and Martius, 2012).
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Similar objective functions, such as the free energy (Friston,
2010), can also be considered for the brain as a whole (Baddeley
et al., 2008) and in the context of adaptive behavior (Friston and
Ao, 2012). Distinct control mechanisms for neural networks can
also be derived from other information-theoretical generating
functionals, such as the relative information entropy (Triesch,
2007), the mutual information (Toyoizumi et al., 2005), the Fisher
information (Echeveste and Gros, 2014), and the recently intro-
duced active information storagemeasure (Lizier et al., 2012; Das-
gupta et al., 2013). Starting from first principles Hebbian learning
rules have also been derived (Echeveste et al., 2015).

A parallel approach for studying the power of embodiment
is provided by evolutionary robotics. Robots, selected through
evolutionary processes (Nolfi and Floreano, 2000) take environ-
mental feedback naturally into account, as they would otherwise
not be positively selected. The notion of an acting agent in a
reacting environment becomes blurry, to a certain extent, when
the full sensorimotor loop is considered, with the motion coming
to a standstill without a fully functional feedback cycle. Within
other approaches to embodiment, the physical constraints acting
on compliant real-world robots are studied (Pfeifer et al., 2007),
or the flow of information, e.g., in terms of transfer entropy,
through the sensorimotor loop (Schmidt et al., 2013). A related
question is how to ground actions generically, i.e., without a priori
knowledge, in sensorimotor perceptions (Olsson et al., 2006), or
how to select actions from universal and agent-centric measures
of control (Klyubin et al., 2005).

Abstracting from the sensorimotor loop, one may regard,
from the point of view of dynamical system theory (Beer, 2000),
motions as organized sequences of movement primitives in terms
of attractor dynamics (Schaal et al., 2000), which the agent needs
first to acquire by learning attractor landscapes (Ijspeert et al.,
2002, 2013). These may be used later on for encoding the tran-
sients leading to periodic motions (Ernesti et al., 2012) or may
furthermore self-organize into complex behaviors (Tani and Ito,
2003). In this context, the fully embodied approach may serve as
an algorithmic first step to generate a palette of motion primitives.
One may also observe that all regular motions are, per definition,
attractors in terms of stable limit cycles in the overarching sen-
sorimotor loop, which may be controlled either actively (Laszlo
et al., 1996) or passively in terms of limit-cycle walking (Hobbelen,
2008). As an alternative approach for creating and controlling
limit cycles, one could use prototype dynamical systems, a concept
recently proposed for the study of complex bifurcation scenarios
(Sándor and Gros, 2015).

In the present study, we examine in detail the notion of periodic
movements as stable limit cycles, using the LPZRobots package
(Der andMartius, 2012;Martius et al., 2013) for simulating robots
(current development version), which are geometrically simple
enough to allow for an at least partial modeling in terms of
dynamical system theory (Gros, 2015). Our robots, see Figures 1
and 2, are controlled by a single proprioceptual neuron with a
time-dependent threshold b= b(t).We find a region of parameters
in which the motion is fully embodied, and where the movement
vb = vb(t) of the robot and the threshold dynamics are mutually
fully interdependent, vanishing when one of them, either b(t) or
vb(t), is clamped. In engineering terms, the engine db/dt powering

FIGURE 1 | Screenshots from the LPZRobots simulation package, of
the one and two rod barrel robots used (left and right panel,
respectively).

FIGURE 2 | Left: illustration of the proprioceptual single-neuron controlled
damped-spring actuator. The input x of the neuron [described by equation (1)]
is given by the actual position x∈ [–R, R] of the ball of mass m moving on the
rod, while the output y being proportional, via equation (2), to the target
position xt of the ball. The PID controller then simulates the dynamics of a
damped spring, with constant k and damping γ, between the current and the
target positions of the mass. Right: sketch of the one-rod robot composed of
a barrel of mass M and radius R, with a mass m moving along a rod, as
illustrated in the left panel. Slipping is not allowed, the robot moves hence
with a velocity vb =Rω =R (dϕ/dt), where ϕ measures the angle of the rod
with respect to the horizontal.

the motion of the robot is turned on dynamically through the
feedback of its very motion.

We also find that a set of qualitatively distinct movements can
arise for identical settings of the parameters in terms of stable
limit cycles, having their own distinct basins of attraction in phase
space. Control signals may hence switch between differentmotion
primitives without the need to interfere with the parameter setting
of the sensorimotor loop. Most modes found lead to regular
motions with finite average velocities. We discovered, however,
also a particular mode corresponding to a cyclic back-and-forth
movement, without an average translational motion of the robot.
When the parameter settings are changed in this mode, the robot
will enter a rolling motion, either to the left or to the right,
depending on the timing of the signal with respect to the phase of
the cycle, allowing, as a matter of principle, for a truly explorative
behavior.

A central result of the present study is that even very simple
controller dynamics (a single differential equation, in our case)
may lead via the sensorimotor loop to surprisingly rich reper-
toires of regular motion primitives, which may be selected in turn
through higher order decision processes. This is due to the self-
stabilization of motion patterns within the sensorimotor loop.
Goal-oriented behavior would in this context be achieved not
by optimizing motion directly, but by selecting from the many
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attracting states generated by an embodied controller within the
overall sensorimotor loop.

2. MATERIALS AND METHODS

We start by describing the one-neuron controller used together
with the actuator in terms of a damped spring, and the actual setup
of the robot.

2.1. Rate Encoding Neurons with
Internal Adaption
In this paper, we consider actuators controlled by simple rate
encoding neurons, characterized by a sigmoidal transfer function

y(x, b) = 1
1 + ea(b−x) , ḃ = εa(2y− 1) (1)

between the membrane potential x and the firing rate y, where
a is the gain, taken to be fixed, and b= b(t) a time-dependent
threshold. The dynamics ḃ for the threshold in equation (1) would
lead to b→ x and y→ 1/2 for any constant input x(t)= x, with
a relaxation time being inversely proportional to the adaption
rate ε. This adaption rate can also be motivated by information-
theoretical considerations for the distribution of the firing rates
(Triesch, 2005; Marković and Gros, 2010).

2.2. Damped-Spring Actuators
Our robots are controlled by actuators regulating the motion of
the ball of mass m on a rod, as illustrated in Figure 2, from its
actual position x on the rod, to its target position

xt = 2R
(
y(x, b)− 1

2

)
, (2)

where R is the radius of the barrel containing the rod and where
y(x, b) is the sigmoidal equation (1). We note that the input
and the output of the neuron are, via equation (2), of the same
dimensionality, namely positions. The force F = mẍ moving the
ball is evaluated by the PID controller

F = gP(xt − x) + gI
∫ t

0
(xt − x)dt+ gD

d(xt − x)
dt , (3)

provided by the LPZRobots simulation environment (Der and
Martius, 2012), characterized by the standard PID-control para-
meters gP, gI, and gD.

For our simulations, we considered the case gI = 0, for which
the PID controller reduces to a damped spring, see Figure 2,

mẍ = −k(x− xt)− γ
d(x− xt)

dt , (4)

with k= gP and γ= gD.

• Equation (4) represents only the contribution of the actuator to
the force moving the ball along the rod. The gravitational pull
acting on the mass m, and the centrifugal force resulting from
the rolling motion of the barrel on the ground are to be added
to the RHS of equation (4).

• The target position xt = xt(t) is time-dependent through equa-
tions (2) and (1).

• Equation (4) is strictly dissipative, due to the damping γ > 0.
The same holds for the rolling motion of the barrel on the
ground, which is also characterized by a finite rolling friction.
Thus, the dynamics db/dt of the threshold in equation (1) can be
considered as an engine, providing, by adjusting continuously
the target position xt of the ball, and hence the length of the
spring, the energy dissipated by the physical motions.

2.3. Motion of a Mass on a Fixed Rod
As an example we consider a robot, for which we keep the angle ϕ
between the rod and the horizontal fixed, ϕ=ϕ0, by preventing it
from rolling. We are then left with a self-coupled motion of a ball
along a rod, as illustrated in the left panel of Figure 2, resulting in
a dynamics similar to the one of a self coupled neuron (Marković
and Gros, 2012; Gros et al., 2014). Using Ω2 = k/m and Γ = γ/m,
we find in this case

ẋ= v ẋt = 2Ray(1 − y)(v− ḃ)
v̇ = −Ω2(x− xt) ḃ = 2εa(y− 1/2)

−Γ(v− ẋt)− g sin(ϕ0)

, (5)

when combining equations (1), (2), and (4). The gravitational
term −g sin(ϕ0) can be transformed away via

x → x− g/Ω2 sinϕo , b → b− g/Ω2 sinϕo , (6)

and does hence not influence the phase diagram, which is shown
in Figure 3 for Ω2 = 200, Γ= 2Ω, and g= 9.81. We have used
standard numerical methods (Clewley, 2012).

We find a Hopf bifurcation line separating the stability regions
for the trivial fixpoint and for a limit cycle, denoted, respectively,
as off and on modes. This behavior is similar to the one observed
for a self coupled neuron with intrinsic adaption (Marković and
Gros, 2012; Gros et al., 2014).

3. RESULTS

In Figure 1, the screenshots of the one- and two-rod robots
simulated with the LPZRobots package (current development ver-
sion) (Der and Martius, 2012; Martius et al., 2013) are presented.
Throughout the simulations the control parameters Γ= 2Ω and
Ω2 = 200 for the actuator, Λ= 1 for the mass ratio m/M (ball
to barrel), R= 1 for the radius for the barrel, and Ψ= 0.3 for
the coefficient of the rolling friction have been held constant,
varying only the adaption rate ε for the threshold of the neuron,
and the gain a. For the simulations, a step size of 0.001 was
used. In the figures (and in the rest of the paper), the parameters
will be presented in dimensionless units, with SI units being
implied: seconds/meter for the time and length, respectively, and
g= 9.81m/s2 for the gravitational acceleration. Our barrel has a
radius of 1m and amovingmass of 1 kg, rolling typically at speeds
of (1–4) m/s≈ (3–12) km/h. A table of the parameters is given in
the Supplementary Material.
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FIGURE 3 | The phase diagram of the one-rod barrel, as a function of
the gain a and of the adaption rate ε. The results are obtained using the
LPZRobots package, apart from the red solid line separating the off- and the
on-mode, which follows from equation (5), for a fixed but otherwise arbitrary
angle ϕ=ϕ0. The dashed vertical and horizontal gray lines indicate the cuts
used for the phase diagrams presented in Figure 5. The number of stable
limit cycles found in the respective parameter regions is denoted by nr.
Non-rolling modes: the red dots/lines indicate the locus of a Hopf bifurcation,
where a stable non-rolling limit cycle (on mode) emerges from the trivial
non-rolling fixpoint (off mode). In the off mode the “engine” db(t)/dt, see
equation (1), kicks in only when the barrel is already moving. Rolling modes:
shown are the regions containing nr = 1 (enclosed by the solid gray line) and
nr = 2 (enclosed by the solid black line) attracting limit-cycles corresponding
to a barrel moving with a finite velocity <vb>. Note that the robot is able to
move also in the off mode (of the engine). The stationary and the drifting
back-and-forth modes, discussed in Figure 6, have been omitted, in order to
avoid overcrowding.

3.1. One-Rod Barrel
The overall phase diagramof the one-rod barrel shown inFigure 3
contains regions of non-rolling fixpoints or limit cycles, and
regions where one or more attracting limit cycles corresponding
to a continuously rolling barrel are present, in part additionally.
Depending on the initial conditions the system will eventually
settle into one of the attracting states.

3.1.1. Coexisting Modes as Behavioral Primitives
Standard robot control aims at achieving a predefined outcome,
and for this purpose it is indispensable that identical robot actions
lead also to identical movements. This is not necessarily the case
for robots controlled by self-organized processes, as investigated
here.

In Figure 4, we illustrate the time series and the corresponding
phase-space plots of the dominant modes of the one-rod barrel
shown in Figure 1. The simulation parameters a= 1.9 for the gain,
and the ε= 0.25 adaption rate are close to theHopf bifurcation line
shown in Figure 3, but in the on mode, which means that the ball
moves both for fixed horizontal and vertical rods.

The first of the three coexisting stable limit cycles, illustrated
in Figure 4, corresponds to the non-moving barrel with the ball
oscillating vertically along the rod (first column). For the second,
1:1 mode, the average rolling frequency of the barrel and of the
oscillation of the ball along the rod match (second column). For
the 1:3 mode, the corresponding ratio of frequencies is, however,
1:3 (third column).

The occurrence of several distinct limit cycles for identical
parameters can be interpreted in terms of behavioral primitives,
potentially allowing an agent to switch rapidly between different
types ofmotions, by shortly destabilizing the currently active limit
cycle.

Note that the self-coupled neuron, controlling the dynamics of
the ball along the horizontally fixed rod, has only two possible
stable states (a fixpoint and a limit cycle). Considering, however,
the fully embodied rolling robot, coexisting states are arising,
which can lead to different behavioral patterns purely as a result
of the environmental context. An external force applied to the
robot can qualitatively change its behavior, indicating the sign of
multifunctionality (Williams and Beer, 2013).

3.1.2. Embodiment as Self-Organized Motion
Most robots are autonomously active in the sense that the motion
is not essentially dependent on the feedback of the environment.
For the case of self-organized motion, as considered here, there
would be, on the other side, no motion when the sensorimotor
loop would be interrupted.

We present in the left plot of Figure 5, the evolution of the
self-sustained rolling modes, in terms of the averaged measured
velocity, for a= 1.9 and as a function of adaption rate ε. The
dashed black line indicates, as a guide to the eye, that the velocity
increases roughly ∝

√
ε for the 1:1 mode. The two branches are

stable for ε∈ [0.018, 0.55] and ε∈ [0.19, 0.61], respectively, for the
1:1 and the 1:3 mode, and terminate (presumably) through saddle
node bifurcations of limit cycles. We have indicated this scenario
by adding by hand in Figure 5, as guides to the eye, the respective
unstable branches.

The locus of the Hopf bifurcation shown in Figure 3, at
ε≈ 0.05, is indicated in (the left panel of) Figure 5 by the dashed
vertical line, separating the off from the onmode. In the off and on
modes, the non-rolling attractors are a fixpoint and a limit cycle,
respectively. Note that self-sustained rolling modes exist in the off
mode as well, where the “engine” db(t)/dt of the barrel only kicks
in, through amplifying local fluctuations (damped oscillations
around the fixpoint), when the barrel is already moving. This
underlines the embodied nature of the motion, which arises in
a truly self-organized fashion [in terms of dynamical systems
theory (Gros, 2015)] through the bidirectional feedback between
environment and both the body and the controller of the robot.

However, in the absence of feedback mechanisms (such as
centrifugal- and Coriolis-forces), the neuron controlled actuator
could only generate a single regular rolling motion, similar to the
ones achieved by sendingmotor signals generated by some central
pattern generators (Der andMartius, 2012). This is not the case for
our robot, which exhibits, as shown in Figure 5 (and in Figure 6,
see Discussion below) a wide spectrum of possible rolling modes.

3.1.3. Avoided Pitchfork Bifurcations of Limit Cycles
In the right panel of Figure 5, we present the measured mean
velocity <vb> of the ball for ε= 0.25, as a function of the gain a.
The Hopf bifurcation between the off- and on- non-rolling modes
occurs at aH ≈ 1.83, compare Figure 3.

For 1.23< a< 1.83, the ball hence is moving in the off mode,
with the engine kicking in only through the feedback from the
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FIGURE 4 | The motion x(t) of the mass along the rod of the one-rod barrel (top row), together with the corresponding phase-plane trajectories (x(t),
vb(t)) (bottom row), compare Figure 2. The gain and the adaption rate are a= 1.9 and ε= 0.25, respectively. Shown are the 0:1, 1:1, and 1:3 modes
(left/middle/right column). Note that the velocity vb(t) of the barrel vanishes for the 0:1 mode, oscillating but remaining otherwise positive for the 1:1 and the 1:3
mode. For the corresponding videos, see the Supplementary Material.

FIGURE 5 | The average speed <vb> of the one-rod barrel for the 1:1 (green/orange dots) and for 1:3 (blue crosses) mode. The vertical dashed line
denotes the locus of the Hopf bifurcation line shown in Figure 3. In the off mode (on mode), the attracting state for the non-rolling mode is a stable fixpoint (limit cycle),
respectively. Presumably existing unstable limit cycles are indicated by dashed lines (labeled with question marks). Left: for a gain a= 1.9. The colored region for very
small adaption rates ε indicates a region with both stable and drifting back-and-forth modes, further described in Figure 6. Right: for an adaption rate ε= 0.25.

FIGURE 6 | The time evolution of the position x (colored lines) of the mass along the rod, and of the (rescaled) speed vb of the barrel (black lines), for
a=1.9 and εεε=0.019/0.017/0.015 (left/center/right), all in the off mode (compare Figure 5). The respective average velocities are <vb>= 0.63/0.00/0.25 for
the 1:1 mode (left), the stationary back-and-forth mode (middle), and the drifting back-and-forth mode (right). For the corresponding videos, see the Supplementary
Material.

environment, which we interpret as self-organized embodied
motion, with the environment being an essential component of
the overarching dynamical system.

Comparing both panels of Figure 5, one can notice that the
low-velocity mode (green dots) connects either to the 1:1 mode

(as in the left panel) or to the 1:3 mode (as in the right panel).
The reason for the apparent discrepancy lies in the fact that
the respective bifurcation line is oblique in the phase space
plane (a, ε). The evolution of these modes suggests in any case
that the low-velocity mode connects to the two higher-velocity
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modes via an avoided pitchfork transition of limit cycles (Gros,
2015).

3.1.4. Explorative Motion via Noise-Induced
Directional Switching
Our robot contains a single dynamical variable, the threshold
b(t), generating self-stabilizingmotions via the sensorimotor loop.
The palette of modes generated is, despite this apparent simplic-
ity, surprisingly large and may be used to generate higher order
behavior.

There are three dominant branches, the 0:1, 1:1, and 1:3 modes
(in terms of the ratios of the respective barrel and mass frequen-
cies), compare Figures 4 and 5, which are stable for a wide range
of parameters. We found in addition also a parameter region for
which different types of motions arise from minute changes of
control parameters, such as the adaption rate ε.

In Figure 6, the motion x(t) of the ball along the rod and the
velocity vb(t) of the barrel are given for three closely spaced adap-
tion rates ε= 0.019, 0.017, and 0.015, for which three qualitatively
different types of motions are found (which have partially, but not
completely overlapping stability regions).

• For ε= 0.019, the standard 1:1 rollingmotion is recovered, with
an average velocity <vb>= 0.63.

• For ε= 0.017, a new mode arises, for which the ball rolls
back-and-forth forever. The motion is exactly symmetric with
respect to the left and to the right, and the average velocity
<vb>= 0.0 of the barrel hence vanishes exactly.

• For ε= 0.015, the ball also rolls back-and-forth, but asymmet-
rically, giving rise to a drifting motion with small but finite
average velocity of <vb>= 0.25.

The occurrence of a limit cycle corresponding to a symmetric
back-and-forth rolling motion, sandwiched between symmetry
breaking modes, gives rise to an interesting venue for the gen-
eration of explorative behaviors, as the robot will be sensitive to
finite but otherwise very small perturbations influencing its inter-
nal control parameters. This behavior is illustrated in Figure 7.
Depending on the timing of the perturbation with respect to
the back-and-forth rolling cycle, the robot will settle into a left-
or into a right-moving motion (in the 1:1 or in the back-and-
forth driftingmode, respectively, for increasing/decreasing ε). It is

hence possible to break spatial symmetries, in general, purely via
the timing of a perturbation. The perturbation itself, here acting
on the adaption rate ε, does not need to carry any information
about the direction of motion.

3.2. Two-Rod Barrel
Adding a second actuator perpendicular to the first one, a neuron
controlled ball moving along a rod, one can increase the complex-
ity of the robot (see the right picture of Figure 1). Both actuators
work, in our setup, independently, with the crosstalk being pro-
vided exclusively by the environmental feedback. Both actuators
are identical to the rod used for the single-rod barrel, with each rod
having its own adapting threshold bα(t) and membrane potential
xα(t), with α= 1,2. The adaption rate ε, the gain a, and all other
parameters are identical for the two rods.

In Figure 8, we show in the right panel the stability range, for
a= 1.9 and as a function of the adaption rate ε, of the three most
dominant rollingmodes (1:1, 1:3, and 1:5) of the two-rod barrel. A
large variety of higher order 1:M modes (with M being an integer)
is found in addition. We did not carry out a systematic search
of their stability range, which becomes progressively smaller with
increasingM, and present here only exemplary parameter settings
for which the respective modes have been found by trial-and-
error (by randomly kicking the barrel). A blow-up is given in
the right panel of Figure 8. Most values of M found are odd,
but not exclusively. We cannot exclude, at this stage that an
infinite cascade M→∞ of higher order limit cycles may possibly
occur.

The time series and the respective phase space trajectories
(x1(t), x2(t)) of the 1:1, 1:3, and of the 1:5 modes are presented
in Figure 9. As one can see in the time series plots, the two
independent actuators, being only coupled through the dynamics
of the barrel, self-organize themselves in a constant phase-shift,
necessary for a consistent rolling. In the reduced phase space (x1,
x2), the trajectories exactly close on themselves, needing, respec-
tively, 1, 3, and 5 revolutions around the origin (0,0) to close, for,
respectively, the 1:1, 1:3, and for the 1:5 limit cycles. In Figure 10,
we show the corresponding phase-space trajectories of the M= 9,
13, and 21 limit cycles. These modes have progressively slower
average velocities ⟨vb⟩, compare Figure 8, and smaller basins of
attractions, being otherwise regular stable limit cycles. Whether

FIGURE 7 | Two superimposed runs for the time evolution of the speed vb of the barrel (black lines), for a=1.9. In the first run, the adaption rate ε is
changed discontinuously at time t1 = 45 from ε= 0.017 (corresponding to the stationary back-and-forth mode, see Figure 6) to ε= 0.02 (corresponding to the 1:1
rolling mode). In the second run, identical initial conditions have been used and an identical change is made to the adaption rated ε, but now at time t2 = 53. In both
runs (dashed and dotted lines, respectively), the barrel settles into the 1:1 rolling motion, albeit in opposite directions (to the left/right with ⟨vb⟩>0 and ⟨vb⟩<0,
respectively). For the corresponding videos, see the Supplementary Material.
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FIGURE 8 | Left: the average speed <vb> of the two-rod barrel for the 1:1/1:3/1:5 (orange dots, blue crosses, dark-cyan stars) modes. The gain is
a= 1.9, all other parameters are identical to the ones used for the one-rod barrel. The respective time series and phase-space plots are presented in Figure 9. The
filled symbols denote examples of additional higher order modes, of which the 1:21, 1:13, and 1:9 (pink star, maroon pentagon, and green rhombus) are illustrated in
Figure 10. Right: a blow-up, showing the relative location of the 1:8, 1:7, 1:6, and 1:11 modes found at ε=1.009, 1.122, 1.263, and 1.370, respectively.

FIGURE 9 | Time series x1(t) and x2(t) of the balls along the two rods of the two-rod barrel (top row), and the respective phase plots (x1(t), x2(t)). Shown
are the 1:1/1:3/1:5 modes (left/middle/right column) for ε= 1.0/0.5/1.5, compare Figure 8, needing, respectively, 1/3/5 revolutions around the origin (x1, x2)= (0,0)
in order to close. For the corresponding videos, see the Supplementary Material.

they arise through a bifurcation cascade of limit cycles (Sándor
and Gros, 2015), or via some other mechanism, is, however,
beyond the scope of the present study.

4. DISCUSSION

It is, in a certain sense, a trivial statement, that the environment is
part of the dynamical system a biological or artificial agent lives
in. Little of the environmental dynamics is, however, in general
accessible, or known, from the perspective of a robot, and it is
hence often more suitable, as in closed-loop control (Dorf and
Bishop, 1998), to consider the sensorimotor loop as a sequence
of stimulus–response reactions of the agent, eliciting at every
step the subsequent environmental signal. Here, we have consid-
ered simple barrel-shaped robots in a simulated environment, for
which the sensorimotor loop constitutes truly a dynamical system,
capable of generating, even in a simple setup, a very rich palette of
dynamical modes and hence a wide range of qualitatively different
types of motions.

FIGURE 10 | Examples of higher order limit cycles found for the
two-rod barrel, closing (within numerical accuracy, viz the thickness
of the lines) after 9/13/21 revolutions around the origin (x1, x2) = (0,0)
(left/middle/right). The gain is a= 1.9 and the respective adaption rates are
ε= 0.92, 0.76, and 0.61, compare Figure 8.

The dominant rolling modes found are 1:M attractors, where
the actuators cycle M= 1, 3, 5,… times during one revolution
ϕ→ϕ+ 2π of the barrel. These modes coexist with non-rolling
modes, having their own respective basins of attractions, emerging
from the mutual feedback of robot and environment. There exist,
in addition, regions of phase space with stationary rolling modes
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(rolling periodically back-and-forth), and drifting back-and-forth
modes. We have also found preliminary indications of rolling
modes living on two or higher dimensional tori, with incom-
mensurate revolution frequencies, which we did, however, not
investigate in detail in the present study. There may additionally
exist further attracting states, yet not discovered when performing
numerical simulations within the LPZRobots environment.

All modes found are attracting dynamical states and hence
robust against noise. This robustness varies, however, with the
dominant 1:1 being the most stable, and higher order modes, like
the 1:3 or the 1:21 limit cycles, being relatively less stable. There is,
in addition, the need to overcome the dissipation, which is present
in the simulated environment, by an appropriate energy intake of
the actuator. As for all robots the question then arises, whether
the observed behavior can be considered as dominantly driven,
in the sense of actuator overpowering, or as self-organized, via
an inherent and essential feedback loop through the environment
[in this context, see Egbert et al. (2010) for an analogous dis-
cussion in the context of bacterial sensorimotor system involving
chemotaxis].

Actuator-controlled behavior would generally lead, in our per-
spective, to rather stereotypical movements modes. The fact that
our robots show a very large variety of modes upon changing the
adaption rate ε, viz, the reaction time 1/ε of the actuator, indicates
self-organization. These modes are also partially overlapping with
several rolling modes possibly coexisting for the same settings. It
is then a question of starting conditions, into which behavior the
robot then settles.

We have also investigated the dynamics of the actuators
employed, a damped-spring ball moving along a rod, when the
rolling motion dϕ/dt→ 0 of the barrel is turned off. In this
setting, the environmental feedback from the rolling motion is
not present. We find parameter regions where the engine is
autonomously active and parameter regions, where the engine
shuts itself off. In the later region, the engine may be kicked in
again, when the barrel is given a kick, and allowed to roll normally.

In this case, the environmental feedback is hence essential, and the
motion of the robot is a consequence of self-organizing processes
in the combined phase space of the internal degrees of freedom of
the robot and of the physical environment.

Thus, the behavior of the robot can not be attributed to
merely one of the subsystems, but it is a property of the coupled
brain–body–environment system, a result also found in the con-
text of minimally cognitive agents (Beer, 2003; Beer and Williams,
2015). Since we are not aiming here for the presence of higher level
cognitive processes, our work can be seen as a purely dynamical
systems approach for understanding embodiment directly within
the sensorimotor loop.

Our work has been performed with the LPZRobots simulation
package, which has been used extensively to investigate the emer-
gence of “playful” behavior and sensorimotor intelligence in terms
of intermittent chaotic motion patterns (Der and Martius, 2012;
Martius et al., 2013). In this context, our investigation is embedded
in the long-standing effort (Taga et al., 1991; Kelso, 1994; Pfeifer
et al., 2007; Der and Martius, 2015) to reduce the demanding
problem of programing robots by investigating the emergence of
self-organized motions within the sensorimotor loop.
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