
ORIGINAL RESEARCH
published: 09 December 2015
doi: 10.3389/frobt.2015.00032

Edited by:
Filippo Arrichiello,

University of Cassino and Southern
Lazio, Italy

Reviewed by:
Dongbin Lee,

Oregon Institute of Technology, USA
Francesco Pierri,

University of Basilicata, Italy
Elias Kosmatopoulos,

Democritus University of Thrace,
Greece

*Correspondence:
Vincent Creuze

vincent.creuze@lirmm.fr

Specialty section:
This article was submitted to Robotic

Control Systems, a section of the
journal Frontiers in Robotics and AI

Received: 03 August 2015
Accepted: 23 November 2015
Published: 09 December 2015

Citation:
Bennehar M, Chemori A, Pierrot F

and Creuze V (2015) Extended
Model-Based Feedforward

Compensation in L 1 Adaptive
Control for Mechanical Manipulators:

Design and Experiments.
Front. Robot. AI 2:32.

doi: 10.3389/frobt.2015.00032

Extended Model-Based Feedforward
Compensation in LL 1 Adaptive
Control for Mechanical Manipulators:
Design and Experiments
Moussab Bennehar, Ahmed Chemori, François Pierrot and Vincent Creuze*

Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier-CNRS,
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This paper deals with a new control scheme for parallel kinematic manipulators (PKMs)
based on the L 1 adaptive control theory. The original L 1 adaptive controller is extended
by including an adaptive loop based on the dynamics of the PKM. The additional model-
based term is in charge of the compensation of the modeled non-linear dynamics in
the aim of improving the tracking performance. Moreover, the proposed controller is
enhanced to reduce the internal forces, which may appear in the case of redundantly
actuated PKMs (RA-PKMs). The generated control inputs are first regulated through a
projection mechanism that reduces the antagonistic internal forces, before being applied
to the manipulator. To validate the proposed controller and to show its effectiveness, real-
time experiments are conducted on a new four degrees-of-freedom (4-DOFs) RA-PKM
developed in our laboratory.

Keywords: parallel kinematic manipulators, L 1 adaptive control, actuation redundancy, experiments, non-linear
control

1. INTRODUCTION

Adaptive control ofmechanicalmanipulators has gained an increased interest in the last few decades.
Indeed, for an efficient control of such systems, uncertainties, external disturbances, and variations
in the dynamics have to be considered in the control scheme design. Since conventional non-
adaptive model-based controllers rely mainly on the dynamic model of the manipulator, they may
fail if this last one is not sufficiently accurate. This is the casewhen somephenomena are notmodeled
(e.g., friction, actuators’ dynamics, etc.) or when simplifying hypotheses are considered without
careful analysis. In both cases, the controller will not be able to keep the desired performance and
may even lead to instability of the closed-loop system. In such situation, adaptive control seems to
be the appropriate solution to overcome these shortcomings. Indeed, adaptive controllers are mainly
known for their ability to estimate unknown, varying, or uncertain parameters of the system and its
environment and to adapt the controller accordingly.

The earlier designed adaptive controllers were mainly based on model reference adaptive control
(MRAC). These controllers hold the advantage of not relying on any knowledge of the dynamics
of the system. MARC-based strategies were mainly applied on serial manipulators. For instance,
a decentralized control scheme based on MRAC has been proposed in Dubowsky and DesForges
(1979) to control a 3-DOFs robotic arm. In this work, themanipulator was supposed to be controlled
by a PD feedback loop with adjustable gains. The step response of each joint of the manipulator had
to follow a user-defined step response generated by a second order reference model. However, a
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very restrictive assumption was made in this study that the cou-
pling between the different joints was neglected. A more sophisti-
cated controller based on MRAC was proposed in Horowitz and
Tomizuka (1986), where the coupled dynamics of themanipulator
has been explicitly considered in the controller design. In this
work, the proposed control law consists of a fixed PD feedback
loop in addition to an adaptive loop intended to compensate for
non-linearities of the system. However, this controller was not
suitable for real-time setups. In fact, the number of the controller
parameters to be estimated was too large (11 parameters for a
simple 3-DOFs manipulator, after simplification). In addition to
these issues,MRAC inherently suffers from amajor drawback; the
estimation and the control loops are coupled (Hovakimyan and
Cao, 2010). This is mainly due to the fact that the adaptive gain
in MRAC acts as a feedback gain, meaning that a trade-off has
to be made between the speed of adaptation and the robustness of
the controller. Recently, a new strategy called L 1 adaptive control
has been developed in order to overcome this problem (Cao
and Hovakimyan, 2006a,b). The L 1 adaptive control structure
features a unique filtering technique that enables a decoupling
between the estimation and the control loops. This means that
the adaptation can be made arbitrarily fast while guaranteeing
sufficient robustness margins.

With the advances in modeling techniques, obtaining an accu-
rate dynamic model for a robot manipulator became relatively an
easy task (Merlet, 2006). Consequently, model-based controllers
that take advantage of the dynamics knowledge in the control
design captured an increasing attention. Craig et al. proposed in
Craig et al. (1987) an adaptive version of the computed-torque
control scheme (Markiewicz, 1973). However, the proposed con-
troller showed several limitations that restricted its real-time
implementation (e.g., joint accelerations had to be measured).
Later on, several improvements have been brought to model-
based adaptive control resulting in more reliable, simpler, and
more efficient adaptive schemes (Slotine and Weiping, 1987;
Ortega and Spong, 1989; Sadegh and Horowitz, 1990; Shang and
Cong, 2010). One particular control strategy that caught our
attention is the desired compensation adaptation law (DCAL)
proposed in Sadegh and Horowitz (1990). DCAL features many
advantageous characteristics that make it suitable for real-time
implementation. One interesting feature, among others, is that
it relies on the desired trajectories of the manipulator instead
of the measured ones, which means that it is less sensitive to
measurement noise and enables offline computation of some
terms in the control law. Nevertheless, one common drawback
of model-based controllers is that the non-modeled dynamics are
not taken into consideration by the adaptive loop. Instead, the
feedback loop (usually a PD) is in charge of rejecting the eventual
residual non-linearities. Though a PD feedback loop is usually
sufficient for slow accelerations, the performance on high speeds
may be improved by using more sophisticated feedback actions
(Bennehar et al., 2014a,b).

In this paper, a new adaptive control scheme is proposed, it
combines the benefits of both L 1 and model-based adaptive
control. It was shown in (Bennehar et al., 2015) that L 1 adaptive
control applied to a 4-DOFs PKM outperforms the PD con-
troller in terms of tracking performance. In this work, we further

improve L 1 adaptive control by augmenting it with a model-
based adaptive term that accounts for the modeling uncertainties
with known structure. We compare the performance of both
L 1 adaptive controller and the augmented one through real-
time experiments on a new 4-DOFs RA-PKM developed in our
laboratory. The remainder of this paper is organized as follows.
In section 2, the dynamic modeling, required for the proposed
controller design, is addressed. In section 3, a background on L 1
adaptive control for mechanical manipulators is provided. The
main contribution of the actual paper, being a new controller
based onL 1 andmodel-based adaptive control and its application
to RA-PKMs are detailed in section 4. Real-time experiments
performed on ARROW and the obtained results are presented
and discussed in section 5. Finally, conclusions are drawn in
section 6.

2. DYNAMIC MODELING OF THE PLANT:
THE ARROW ROBOT

ARROW (acronym for Accurate and Rapid Robot with large
Operational Workspace) is a 4-DOF RA-PKM intended to be
used for fast lightweight machining tasks. It has two degrees of
actuation redundancy since it is equipped with six linear actuators
and has four degrees of freedom. All the actuators are aligned
along the same axis and are split into two sets, each set consists
of three actuators (cf. Figure 1). The actuators are connected to
the end affecter through two pairs of simple arms and one pair
of parallelograms. As its acronym indicates, the ARROW robot,
developed in the framework of the French ANR-ARROW project,
has been designed in the aim of creating a very fast and accu-
rate PKM with large workspace and homogeneous performance
throughout its workspace. Moreover, its platform is capable of
performing ±90° rotations free of any singularities. The CAD
design of ARROW is shown in Figure 1 and its main geometrical
and dynamical parameters are summarized in Table 1. A more
detailed description about the design theory and the development
of ARROW robot can be found in Shayya (2015).

For the subsequent control development, the establishment of
the dynamic model of ARROW is required. The latter will be
included in the control scheme design in order to enhance the
dynamic performance and tracking capabilities of the robot. First,
let us enumerate the considered hypotheses, mainly common to
PKMs (Corbel et al., 2010), in order to simplify the establishment
of the dynamic model:

1. Both dry and viscous friction forces are neglected since all
active and passive joints are designed such as to minimize
friction effects, even though, their insignificant effect could be
considered in control as it will be explained later on.

2. The mass of each arm is split up into two halves being located
at the end tips of the arm. Hence, the influence of the mass
of the arms is considered with the actuators and the platform.
This assumption can be justified by the small mass of the arms
compared to the other components. Similarly, the mass of the
parallelograms is also split up into two halves and consid-
ered in both the dynamics of the actuators and the moving
platform.
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FIGURE 1 | CAD schematic view of ARROW PKM.

TABLE 1 | Main parameters of ARROW PKM.

Item Value Item Value

Slider cart’s mass 9.7 kg Simple arm’s mass 1.4 kg
Platform’s mass 9.2 kg Parallelogram’s length 0.61m
Parallelogram’s mass 2.2 kg Simple arm’s length 0.96m
Platform’s inertia 0.514 kgm2

Applying the law of motion, the dynamics of the actuators are
given by the following equation (Shayya et al., 2014):

Maq̈ = Γ− JTq f (1)

beingMa = diag(mas,mas, map, map, mas, mas), wheremas includes
the mass of the actuator, the moving cart, and the half-mass of the
simple arm.map includes themass of the actuator, themoving cart,
and the half-mass of the parallelogram (i.e., two simple arms). q̈ ∈
R6 is the joint acceleration vector, Γ ∈R6 is the input force vector,
Jq ∈ R6×6 is the joint Jacobian matrix, and f ∈ R6 is the force
vector resulting from acceleration and gravitational forces acting
on themoving platform. From the platform side, the dynamics are
governed by Shayya et al. (2014)

MpẌ+ ΛcẊ = JTx f+mpG (2)

where Mp ∈ R4×4 is the inertia matrix of the moving platform,
Ẍ ∈ R4 is its acceleration vector, Λc ∈ R4×4 is the matrix of
Coriolis and centrifugal effects, Ẋ ∈ R4 is the velocity vector of the
moving platform, Jx ∈ R6×4 is the Cartesian Jacobian matrix, mp
is the total mass of the platform, including the half-masses from
the arms and parallelograms and G= [0, 0, −10,0]T m/s2 is the
gravity wrench acting on the platform. The Jacobian matrices Jq
and Jx links the joint velocities and those of the moving platform
according to the following relationship:

Jqq̇ = JxẊ (3)

where q̇ ∈ R6 is the joint velocities and Ẋ ∈ R4 denotes the
velocities of the moving platform. Solving for f in (1) and substi-
tuting the resulting equation in (2) while replacing q̈ = JmẌ+ J̇mẊ,

where Jm = J−1
q Jx the inverse Jacobianmatrix, yields the following

equation:
Ẍ = HΓ− ΛẊ+ AG (4)

where H ∈ R4×6, Λ ∈ R4×4, and AG ∈ R4 are expressed by
H =

(
Mp + JTmMaJm

)−1JTm
Λ = HMa J̇m +

(
Mp + JTmMaJm

)−1
Λc

AG =
(
Mp + JTmMaJm

)−1mpG

Equation (4) is referred to as the simplified direct dynamic
model (SDDM) of ARROW robot, which is unique. However, the
inverse dynamic model (IDM), required for model-based control
schemes, is not unique due to actuation redundancy. It is usually
obtained by using the pseudo-inverse of the matrix H as follows

H+ (
Ẍ+ ΛẊ− AG

)
= Γ (5)

whereH+ denotes the pseudo-inverse ofH. The inverse dynamic
model of ARROW robot, given by (5), is expressed in terms of
the Cartesian coordinates of the moving platform and is suitable
for Cartesian-space control. To express these dynamics in terms
of joint coordinates instead of Cartesian ones, which is suitable
for joint-space control, the inverse Jacobian matrix can be used to
yield

H+
(
J+m q̈+

(
ΛJ+m − J+m JmJ+m

)
q̇− AG

)
= Γ (6)

where J+m is the pseudoinverse of Jm. The dynamics of ARROW
robot in equation (6) can be rewritten into the standard joint space
form of rigid multibody manipulators as follows:

M(q)q̈+ C(q, q̇)q̇+ G(q) = Γ (7)

being the dynamic matrices M(q), C(q, q̇) and G(q) given by
M(q) = H+J+m
C(q, q̇) = H+ΛJ+m − J+m JmJ+m
G(q) = −H+AG

For more details about the kinematic and dynamic modeling of
ARROW robot, the reader is referred to Shayya (2015).
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+

FIGURE 2 | Block diagram of the proposed controller.

FIGURE 3 | View of the experimental setup of ARROW PKM.

3. BACKGROUND ON LLL 1 ADAPTIVE
CONTROL

Consider the set of desired joint trajectories qd ∈Rn to be tracked
by the active joints (linear actuators in the case of ARROW
robot) of the manipulator to be controlled. These trajectories are
issued from a trajectory generator in Cartesian space according
to the task to be performed. Then the corresponding joint tra-
jectories are computed by solving the inverse kinematics prob-
lem (IK), which is trivial in the case of PKMs. For the subse-
quent control development and to quantify the tracking errors,
consider the following position-velocity combined tracking
error:

r(t) =
(
q̇(t)− q̇d(t)

)
+ λ

(
q(t)− qd(t)

)
(8)

where λ∈R+ is a control design parameter. Let us now introduce
the following control input that is the combination of two distinct
terms:

Γ(t) = Γm(t) + ΓAD(t), Γm(t) , Amr(t) (9)

where Am ∈ Rn×n is a user-defined Hurwitz matrix that charac-
terizes the desired transient response of the system. In equation
(9), the first term [i.e., Amr(t)] is a stabilizing state feedback term
while ΓAD (t) is an adaptive term and will be explained later on.
Substituting the control law (9) in (7) yields the following equation
that governs the evolution of the combined tracking error:

ṙ(t) = Amr(t) + ΓAD(t)− η(t, ζ(t)), r(0) = r0 (10)

where the non-linear function η(t, ζ(t)) with ζ = [r,q]T gathers
all the remaining non-linearities of the system that result from

Frontiers in Robotics and AI | www.frontiersin.org December 2015 | Volume 2 | Article 324

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Bennehar et al. Extended Model-Based L 1 Adaptive Control

the application of the control law in (9). These non-linearities
may include both known and unknown quantities such as mod-
eling non-linearities, uncertainties, external disturbances, and so
on. Under some reasonable assumptions, the non-linear func-
tion η(t, ζ(t)) can be parameterized using some parameters θ(t),
σ(t) ∈ Rn and the Λ∞ norm of the combined tracking error as
follows (Hovakimyan and Cao, 2010):

η(t, ζ(t)) = θ(t) ∥rt∥L∞
+ σ(t). (11)

Substituting equation (11) in equation (10), the combined
tracking error becomes

ṙ(t) = Amr(t) + ΓAD(t)−
(
θ(t) ∥rt∥L∞

+ σ(t)
)
. (12)

In an ideal scenario, where all the non-linearities considered
in η(t, ζ(t)) are perfectly known (i.e., perfect knowledge of the
dynamic model, no immeasurable disturbances, no uncertainties,
etc.), replacing ΓAD(t) = η(t, ζ(t)) = (θ(t) ∥rt∥L∞

+ σ(t)) in
equation (9) should compensate for all the non-linearities result-
ing in the desired error dynamics specified by Am as follows:

ṙ(t) = Amr(t). (13)
However, in practical situations, the dynamics of the robot is

either uncertain or unknown. Furthermore, the external distur-
bances acting on the system are often immeasurable, and hence,
could not be accounted for by a specific control term. Conse-
quently, the adaptive control component ΓAD(t) should be care-
fully designed in order to appropriately estimate the non-linear
function η(t, ζ(t)) in real-time. To that end, consider the following
state predictor of the dynamics of the combined tracking error:

˙̂r(t) = Amr̂(t) + ΓAD(t)−
(
θ̂(t) ∥rt∥L∞

+ σ̂(t)
)

− Kr̃(t), r̂(0) = r0 (14)

where r̂(t) ∈ Rn is the prediction of r(t), r̃(t) , r̂(t) − r(t) is the
prediction error, and K ∈ Rn×n is a design matrix introduced to
reject high frequency noises (Nguyen et al., 2013). θ̂(t) and σ̂(t) are
the estimates of θ(t) and σ(t), respectively, generated according to
the following projection-based adaptation rules:

˙̂
θ(t) = ΣProj

(
θ̂(t),Pr̃(t)∥rt∥L∞

)
, θ̂(0) = θ̂0 (15)

˙̂σ(t) = ΣProj (σ̂(t),Pr̃(t)) , σ̂(0) = σ̂0 (16)

whereΣ is a positive adaptation gain andP= PT > 0 is the solution
to the algebraic Lyapunov equation AT

mP + PAm = −Q, for
some arbitrary matrix Q=QT > 0. The projection operator Proj
in equations (15) and (16) prohibits the estimated values from
exceeding their allowable range specified in the control design
(i.e., ∥θ̂(t)∥∞ < θb, ∥σ̂(t)∥∞ < σb, ∀t > 0, θb, σb ∈ R+). The
adaptive control term in (9) is the output of

ΓAD(s) = C(s)η̂(s) (17)
where η̂(s) is the Laplace transform of η̂(t) = (θ̂(t) ∥rt∥L∞

+σ̂(t))
and C(s) is a diagonal matrix of BIBO-stable1 strictly proper
transfer functions with DC gain (Khalil, 2002). This particular
structure, according to L 1 adaptive control theory, decouples the
estimation loop from the control loop that allows for arbitrarily
large gains without hurting robustness.

1BIBO: Bounded Input Bounded Output.

TABLE 2 |Summary of the control parameters used in real-time experiments
for both controllers.

Parameter Description Value

λ Position error weight 725
Am Transient response matrix −235× I6×6

θb Upper bound on θ 35
σb Upper bound on σ 35
Σ Adaptation gain 106

Ξ Adap. gain for model-based term diag(1, 1, 1, 0.005)
K Noise rejection gain 5765× I6×6

C(s) L 1 design filter 144/(s2 + 16.8s+ 144)
Q Arbitrary control design matrix I6×6

P Solution of Lyapunov algebraic equation 21×10−4 × I6×6

4. PROPOSED SOLUTION: AN EXTENDED
L1 ADAPTIVE CONTROL

In order to improve the performance of L 1 adaptive control, we
propose to include the dynamics of the manipulator in the control
scheme design. Furthermore, we want the additional dynamic-
based term to be able to adapt its parameters to the possible
variations in the robot and its environment (e.g., handling a
payload with unknown dynamic properties, interaction with the
environment, etc.). Though the dynamic parameters of the robot
may be known, one should consider the scenario where these
values may be varying or inaccurately known. The current section
highlights the main contribution of this paper as it describes how
the robot’s dynamics knowledge is included in the control law
and how it is supposed to improve the control performance of the
manipulator.

4.1. Linear-in-the-Parameters Formulation
of the Dynamics
For model-based adaptive control schemes, a reformulation of
the dynamics is required (Craig et al., 1987). The unknown or
uncertain parameters to be estimated in real-time have to be
separated from the non-linear functions in the dynamic model.

Consider the following dynamic model of a n-DOFs mechani-
cal manipulator in joint space:

M(q)q̈+ C(q, q̇) + G(q) = Γ(t) (18)

where M(q) ∈ Rn×n is the symmetric, positive definite inertia
matrix, N(q, q̇) ∈ Rn gathers Coriolis, centrifugal, and gravity
forces, and Γ ∈ Rn is the input vector. M(q) and N(q, q̇) are
usually composed of non-linear functions of the joint position
and velocity vectors. These non-linear terms, however, appear in
a linear form with respect to the robot’s geometric and dynamic
parameters. Consequently, the dynamics in (18) can be rewritten
in the following linear form:

M(q)q̈+ C(q, q̇) + G(q) = Y(q, q̇, q̈)Θ (19)

where Y(.) ∈ Rn×p is called the regression matrix that is a non-
linear function of q, q̇ and q̈,Θ∈Rp is the vector of the parameters
of the manipulator to be estimated. It is worth to note that the
formulation in (19) is not unique, it actually depends on the set
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FIGURE 4 | Evolution of the joint tracking errors versus time.

of chosen parameters. Besides, the estimated elements within the
parameters vector can either appear in a separate form or as a
combination of different parameters. Examples of the dynamics
reformulation for some manipulators can be found in Craig et al.
(1987) and Sadegh and Horowitz (1990).

4.2. Proposed Control Solution:
Augmented LLL 1 Adaptive Control with
Adaptive Feedforward
The L 1 adaptive control law described in section 3 consists into
two separate terms. The first one is a stabilizing state feedback
term, while the second one is the adaptive term in charge of
compensating the system uncertainties to achieve the desired
performance. Thus, the adaptive term in L 1 adaptive control is
responsible for compensating both structured (i.e., modeled) and
unstructured (i.e., not included in the model such as friction)
uncertainties. Nevertheless, since we have in disposal a dynamic
model of our manipulator, it can be used to compensate modeling
uncertainties through amore sophisticatedmodel-based term that
takes into consideration the structure of the dynamics.

The proposed idea consists then in adding an adaptive feed-
forward term to the control law (9). Hence, the proposed control

action will consist of three distinct terms where each term has
a specific role in the controlled closed-loop system. The new
proposed control law is then expressed as follows:

Γ(t) = Γm(t) + ΓAD(t) + Γ̂FF(t) (20)

where Γ̂FF ∈ Rn is the model-based adaptive feedforward. It is
obtained by replacing q, q̇, and q̈ in the inverse dynamic model
by their desired values qd, q̇d, and q̈d, respectively. Besides, the
dynamic matrices M(.) and N(.) are replaced by their estimates
M̂(.) and N̂(.) to be adjusted in real-time. The adaptive feedfor-
ward term can then be expressed as follows:

Γ̂FF(t) = Y(qd, q̇d, q̈d)Θ̂(t) (21)

where Θ̂(t) ∈ Rp is the estimate of the parameters vector Θ, its
variation is governed by the following adaptation rule

˙̂
Θ(t) = −ΞY(qd, q̇d, q̈d)

Tr(t) (22)

where Ξ= diag(ξ1,. . ., ξp) is the adaptation gain matrix.
The proposed control law in (20) is expected to improve the

tracking performance compared to original L 1 adaptive con-
trol. In fact, thanks to the addition of the model-based adaptive
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FIGURE 5 | Evolution of the Cartesian tracking errors versus time.

feedforward term, the structured uncertainties will be accounted
for by this added term. The adaptive control component ΓAD of
conventional L 1 adaptive control will be in charge of compen-
sating the non-structured uncertainties such as frictions, possible
disturbances, and any residual non-linearities.

The proposed controller in (20) can be applied for both serial
and fully actuated2 parallel manipulators without any modifica-
tion. However, for the particular case of redundantly actuated
parallel manipulators, a slight modification is required in order
to deal with the actuation redundancy issues as it is explained in
the following.

4.3. Application to PKMs with
Actuation Redundancy
Redundantly actuated parallel manipulators have the peculiar-
ity of the existence of internal forces (antagonistic to each
other) that may deteriorate the control performance and cause
energy losses. These internal efforts are mainly caused by
decentralized control, calibration errors, and encoders’ reso-
lution (Andreas and Hufnagel, 2011). These internal forces,
which do not generate any motion, may be used for sec-
ondary tasks such as backlash avoidance and stiffness modu-
lation. However, if no secondary task is scheduled within the
control strategy, one should consider reducing their effects in
order to avoid vibrations that might deteriorate the control
performance.

As it has been explained in Andreas and Hufnagel (2011), the
internal forces are caused by the control inputs that are in the
null space of the inverse Jacobian matrix Jm. Consequently, one
solution to reduce their effects can be to project the generated

2Parallel manipulators for which the number of actuators is equal to the number of
degrees of freedom.

TABLE 3 | Tracking performance comparison in terms of RMS errors.

RMSJ (mm) RMST (mm) RMSR (deg)

L 1 adaptive control 0.0496 0.0343 4.7×10−3

Extended L 1 adaptive control 0.0102 0.0074 1.2×10−3

Improvement 79.43% 78.59% 74.1%

control inputs into the range space of Jm using the following
projector:

RJTm =
(
JTm
)+

JTm. (23)

Hence, the actual control inputs that will be applied on the
robot are the “regularized” ones obtained through the following
projection

Γ∗(t) = RJTmΓ(t). (24)

The overall control strategy is summarized in the bloc diagram
illustrated in Figure 2. From an academic point of view, it would
be interesting to estimate all dynamic and geometric parameters
in the adaptation process. However, in practical situations, the
parameters that are less known or more likely to vary are the
dynamic ones (i.e., the masses and inertias). Consequently, in this
work, we choose the following parameters vector for ARROW
robot: Θ= [mas, map, mp, Ip]T, to be estimated online. These
parameters are related to the masses and inertia of the different
parts of the manipulator.

5. EXPERIMENTAL VALIDATION OF THE
PROPOSED CONTROLLER

To show the relevance of the proposed controller, real-time exper-
iments have been conducted onARROWrobot. The experimental
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FIGURE 6 | Evolution of the estimated dynamic parameters versus time.

FIGURE 7 | Evolution of the estimated function θ̂ versus time.

setup is illustrated in Figure 3 and the control scheme is developed
using Simulink software from Mathworks Inc. The controller is
compiled using the Real-Time Workshop toolbox before being
loaded on the target PC. The latter is an industrial computer
running xPC Target (also from Mathworks Inc.) in real-time with
a sampling frequency of 5 kHz.

Themoving platform of the robot has to perform several point-
to-point displacements and rotations inside the workspace. The
estimated parameters vector is initialized to 0 Θ̂(0) = [0, 0, 0, 0]T.
The controller parameters of both controllers (the original L 1
adaptive controller and the augmented one) are summarized in
Table 2.
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FIGURE 8 | Evolution of the estimated function σ̂ versus time.

A comparison between the L 1 adaptive controller and the
proposed augmented one in terms of joint tracking errors is
illustrated in Figure 4. For clarity of the results, the plots were
zoomed to the interval (Horowitz and Tomizuka, 1986; Khalil,
2002) seconds. It can be seen that the proposed model-based
augmented controller clearly provides much better tracking than
the original controller. Thanks to the model-based adaptive term,
the controller successfully compensates the modeled non-linear
dynamics with initially unknown parameters. It can also be seen
that there exists an offset in the joint tracking errors in the case
of the standard controller corresponding to the simple arms (i.e.,
q1, q2, q5, and q6). This is mainly due to the better handling
of gravity effects in the proposed controller compared with the
standard one. This result is further highlighted in Figure 5 where
the Cartesian tracking errors are plotted. The plots are zoomed to
the interval (Horowitz and Tomizuka, 1986; Khalil, 2002) seconds
for clarity. An offset of the tracking errors corresponding to the y-
axis (vertical axis) in the standard L 1 adaptive controller, due to
the previously mentioned reason. Since the robot is not equipped
with external sensors, the Cartesian tracking errors ec = [ex, ey, ez,
eθ]T ∈ R4 were estimated using the following equation (Sartori
Natal et al., 2015):

ec(t) = J+m eq(t) (25)

where eq(t) , qd(t) − q(t) is the joint tracking error vector. In
order to quantify the enhancement brought by the proposed

controller, the tracking performance is evaluated based on the root
mean square of the tracking errors using the following criteria:

RMSJ =

√√√√ 6∑
i=1

1
N

N∑
j=1

eqi(j)
2 (26)

RMST =

√√√√ 1
N

N∑
j=1

ex(j)2 +
1
N

N∑
j=1

ey(j)2 +
1
N

N∑
j=1

ez(j)2 (27)

RMSR =

√√√√ 1
N

N∑
j=1

eθ(j)2 (28)

where eqi is the tracking error of the ith joint, ex, ey, and ez are the
Cartesian tracking errors of the x, y, and z-axis, respectively, and
eθ is the tracking error of the rotation of themoving platform. The
obtained results are summarized in Table 3, where the improve-
ments brought by the proposed controller are clearly highlighted.
Indeed, the joint tracking errors were reduced by 79.4% and the
Cartesian ones by up to 78.6%. The improvements of the tracking
errors are achieved thanks to the better compensation of the non-
linearities of the model. This means that the estimated model
parameters do converge closer to their real values, otherwise the
tracking performance would have been worst. Indeed, as it can
be seen in Figure 6, the estimated parameters, initialized to 0,
converge to their steady-state reported inTable 1. It is noticed that
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FIGURE 9 | Evolution of the control inputs forces versus time.

the rotational inertia of the platform is not adjusted immediately
which is due to the pure translationalmotion at the beginning (i.e.,
t ∈ [0,6] s).

Furthermore, since the model-based non-linearities are appro-
priately compensated, the estimated parameters forming the adap-
tive term ΓAD(t) would be smaller in the case of the proposed
controller. Indeed, these interesting results can clearly be observed
in Figures 7 and 8, where we can see smaller amplitudes for
the estimated parameters in the case of the proposed controller
compared to the original one. This means that the structured
uncertainties were better compensated by the proposed additional
term and, hence, theL 1 adaptive term should account for reduced
non-linearities. Finally, the control input forces generated by
both controllers are shown in Figure 9. Results can be viewed
in the video available at the following URL: https://youtu.be/
rCAocIWMfPs

6. CONCLUSION AND FUTURE WORK

In this work, a new adaptive control scheme for mechanical
manipulators based on L 1 adaptive control theory is proposed.
The original L 1 adaptive controller is known for being model-
free and for its robustness and fast adaptation qualities. Since
in our case, a dynamic model of our redundantly actuated par-
allel manipulator is available, we have proposed to extend the
original L 1 adaptive controller by including dynamics knowledge

in the control design. The motivation behind this proposition
is to improve the tracking capabilities of the manipulator. Since
the dynamics of the manipulator may be unknown or likely to
vary during work conditions, we propose to make the addi-
tional model-based term adaptively adjust its parameters. More-
over, to deal with actuation redundancy, a projection of the
control inputs was proposed in order to reduce the internal
efforts that may have a negative effect on the control perfor-
mance. Real-time experiments, conducted on a 4-DOF redun-
dantly actuated parallel manipulator, demonstrate our claims.
Indeed, a significant enhancement of the tracking performance
was observed in both Cartesian and joint spaces. This work
can be further extended by investigating other adaptive strate-
gies for the model-based term and considering a real applica-
tion where the robot is performing an industrial task. Another
interesting scenario would be to consider an abrupt change
in the platform mass due to payload handling for instance.
Moreover, the tuning of the filter of the L 1 adaptive con-
troller remains an open problem that should be addressed in the
future.
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