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Novelty search is an evolutionary search algorithm based on the superficially contradictory
idea that abandoning goal-focused fitness function altogether can lead to the discovery of
higher fitness solutions. In the course of our work, we have created a biologically inspired
artificial development system with the purpose of automatically designing complex
morphologies and controllers of multicellular, soft-bodied robots. Our goal is to harness
the creative potential of in silico evolution, so that it can provide us with novel and efficient
designs that are free of any preconceived notions a human designer would have. In
order to do so, we strive to allow for the evolution of arbitrary morphologies. Using a
fitness-driven search algorithm, the system has been shown to be capable of evolving
complex multicellular solutions consisting of hundreds of cells that can walk, run, and
swim; yet, the large space of possible designs makes the search expensive and prone to
getting stuck in local minima. In this work, we investigate how a developmental approach
to the evolution of robotic designs benefits from abandoning objective fitness function.
We discover that novelty search produced significantly better performing solutions. We
then discuss the key factors of the success in terms of the phenotypic representation for
the novelty search, the deceptive landscape for co-designing morphology/brain, and the
complex development-based phenotypic encoding.

Keywords: novelty search, artificial development, soft-robotics, body–brain co-evolution, evolutionary algorithm,
artificial life

1. INTRODUCTION

The potential to automatically design whole robots with their morphology and control system
specialized for a particular task has been one of the most exciting promises of evolutionary robotics,
ever since Karl Sims presented his seminal work (Sims, 1994). Over the years, a variety of approaches
have been proposed to achieve this goal, often becoming staples of the field. Just like Sim’s work,
most of them assumed some kind of indirect phenotypic encoding, based on a high level abstraction
of development, such as the grammatical approaches [used by Komosinski and Ulatowski (1999),
Lipson and Pollack (2000), and Pilat et al. (2012)] or abstractions, such as the CPPN (Stanley,
2007) used by Cheney et al. (2013) and Auerbach and Bongard (2012). Less commonly, and that
includes our approach, morphologies and controllers were evolved using a more direct abstrac-
tion of biological development, where bodies progressively build themselves through subsequent
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cellular divisions, deaths, and realignments (Bongard and Pfeifer,
2003; Kowaliw et al., 2004;Meng et al., 2011; Schramm et al., 2011;
Joachimczak et al., 2013).

While the two decades of evolutionary robotics have advanced
the field to the level where evolutionary approaches excel at
designing controllers for robot gaits [see, e.g., Boddhu and Gal-
lagher (2010) and Lee et al. (2013)] or whole complex behaviors
[see, e.g., Lessin et al. (2014)], co-evolving bodies and brains
de novo, even despite famous physical implementations (Lipson
and Pollack, 2000) remains largely at the proof-of-concept stage.
This should be hardly surprising, given the exploded search space
that covers possible pairs of morphologies and controllers and its
potentially highly deceptive structure coming from continuous
interactions between the two. Naturally, limiting the search space
to the area of interest (such as by assuming that bodies consist
of sticks or boxes) is essential to solve any problem through
evolutionary optimization and means that a knowledge about the
expected types of solutions is incorporated into the search algo-
rithm. There is a trade-off, however, evolution, just like a human
brain, can be creative and the more we limit the search space,
the less likely an evolutionary search algorithm is to come up
with a novel and unexpected solution. Thus, by carefully restrict-
ing the amount of knowledge about the problem domain that
is transferred to the search algorithm, we give the evolutionary
process a chance to offer new insights and inspire us with original
ways to solve the problem [see, e.g., Hornby et al. (2010) for a
classic example]. In particular, in our work, we strive to avoid
restrictions put on morphologies and gaits that can evolve, and
instead of assembling bodies from primitives, we allow them to
grow cell-by-cell and form arbitrary shapes made from hundreds
of cells.

One of the research areas where we think it would be beneficial
to allow for a possibly unconstrained evolution of morphologies
and gaits is soft-robotics. Soft-bodied robotics is a very recent and
quickly developing branch of robotics that abandons the idea of
robotsmade of rigid parts. Instead, robots are assumed to bemade
of elastic material and can deform itself in order to produce gaits
or to dynamically adapt to an environment (e.g., crawl through a
small opening). This makes them much more similar to animals
and, in particular, invertebrates, such as cephalopods. While the
field is still in its early stage, there were already multiple success-
ful demonstrations of physical implementations of such entities.
Some most prominent examples include robots relying on fluid
or air-filled cavities (Steltz et al., 2009; Shepherd et al., 2011),
materials that differentially respond to external pressures (Hiller
and Lipson, 2012) or actual, 3-D printed biological tissue (Chan
et al., 2012).

Following the inspiration from nature and, in particular, the
increasing understanding of the role of development in evolution
[see, e.g., Carroll et al. (2004)] and how their interactions produce
what Darwin called “endless forms most beautiful,” we have pro-
posed a biologically inspired, artificial development system that
allows to evolvemorphologies and controllers for 2-D, soft-bodied
animats (Joachimczak et al., 2014). In our approach, animats
grow from a single cell through subsequent divisions with each
cell controlled by a copy of the same gene regulatory network
(GRN) encoded in individual’s genotype. Other than being the

way nature produces animal forms, developmental systems are
well known for having higher evolvability and scalability than
direct encodings [see a direct comparison in, e.g., Komosinski and
Rotaru-Varga (2002) and Cheney et al. (2013)]. They also display
useful properties, such as robustness, to damage during develop-
ment or ability to self-repair (Andersen et al., 2009; Joachimczak
and Wróbel, 2012b). We use morphologies that emerged through
development as a template for a physical model of an animat,
which is evaluated in a virtual environment for its performance on
a given task. Movement is achieved by contracting and expanding
regions of the body, with each body region (originally a cell)
making independent decisions about its behavior (though poten-
tially in communicationwith neighboring areas). In that way, gaits
emerge as a product of a distributed control mechanism, being a
continuation of the distributed self-assembly process that creates
the multicellular morphology.

Using fitness-driven evolutionary search, we were successful in
producing complexmorphologies that consist of hundreds of cells,
walk, run, and swim (Joachimczak et al., 2014) or even reshape
their bodies when changing environments through the process
of metamorphosis (Joachimczak et al., 2015). Importantly, we
were able to show how such a fine-grained approach development
leads to the emergence of higher level structural features, such
as simple appendages that function as legs, fins, or tails. As a
method of fitness-driven search, we have employed the NEAT
algorithm [Stanley and Miikkulainen (2002), see Section 2.7.1],
one of the most successful method of evolving neural networks
(Mouret and Doncieux, 2011). Despite promising results, simu-
lating multicellular growth (with hundreds of cells interacting)
is very computationally expensive. Furthermore, the large search
space and a complex, highly indirect relation between genotype
and phenotype makes evolutionary search prone to getting stuck
in local minima.

In this work, we show and analyze how a fine-grained develop-
mental system evolvingmorphologies and behaviors of robots can
be improved by the use of novelty search algorithm (Lehman and
Stanley, 2011a; Stanley and Lehman, 2015). This seems superfi-
cially counterintuitive as the algorithm entirely abandons the use
of an objective fitness function. However, it is found to improve
quality of solutions as well as diversity of candidate morphologies
that are evaluated during the evolutionary process. The former is
needed for the approach to be useful, whereas the latter is essential
given our overall aim of harnessing the creative potential of the
evolutionary process.

Novelty search is an evolutionary search algorithm based on
the radical idea that abandoning objective, goal-focused fitness
function altogether can actually lead to a discovery of higher
fitness solutions. To do so, novelty search replaces the concept
of objective fitness function with the concept of novelty, a scalar
value corresponding to how much a given phenotype differs from
phenotypes in the current population as well as from phenotypes
that have been found to be novel in previous generations, stored in
a dedicated archive. This causes the evolutionary search to pursue
phenotypes that are different from the already discovered ones
instead of phenotypes that have higher fitnesses. While methods
that increase genetic diversity have long been demonstrated to be
useful in evolutionary algorithms [see, e.g., Mahfoud (1995) and

Frontiers in Robotics and AI | www.frontiersin.org December 2015 | Volume 2 | Article 332

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Joachimczak et al. Evolving Developmental Soft-Robots with Novelty Search

Sareni and Krahenbuhl (1998)], novelty search differs from them
by focusing entirely on increasing the phenotypic, not genotypic
diversity.

Novelty search had been suggested to improve evolvability in
problems that are deceptive in nature, i.e., where greedily focusing
the search on improving fitness will likely lead population into
local minima in the fitness landscape that are difficult to escape
from. It is suggested that the pressure to produce novel phenotypes
will instead lead to the discovery of progressively more and more
complex solutions and, among them, the evolutionary stepping
stones that open access to new regions of higher fitness in the
solution space (Lehman and Stanley, 2011a). Importantly, it is
argued that most problems of interest for evolutionary algorithms
are deceptive in nature, as non-deceptive problems are simply
easy to solve. To what extent different problem domains benefit
from the use of novelty search is continuously being explored,
with a particular focus on the evolution of robotic controllers. It
has been shown to improve evolvability in Lehman and Stanley
(2011b), Krčah (2012), Gomes et al. (2013), Lehman et al. (2013),
and Urbano and Georgiou (2013). It has, however, been shown to
decrease evolvability in problems with very large solution spaces
(Cuccu andGomez, 2011), towhich co-evolution ofmorphologies
and control likely belongs to.

In the next section, we provide a concise description of the
developmental model that we used. However, we refer the reader
to the original paper (Joachimczak et al., 2014) for more details
and an overview of what kinds of structures it can evolve. In
this work, we focus on investigating how and why novelty search
contributes to evolvability in this problem domain.

2. DEVELOPMENTAL APPROACH

Following the biological inspiration, we have attempted to design
a possibly simple model of the developmental process, in which
arbitrary morphologies could self-assemble through multicellular
growth. The underlying assumptions of the approach are

• a genome encodes a control network that commands each cell’s
behavior,

• self-assembly starts from a single cell, proceeds through subse-
quent cellular divisions and deaths, and

• all cells share the same control network and respond to local
signals.

The fitness evaluation is a two-step process (Figure 1). First,
an animat undergoes the developmental stage during which its
morphology and controller forms.Next, the resultantmorphology
is used as a template for a soft-bodied model that is simulated in
a physical environment for a fixed number of time steps, where it
undergoes only elastic changes. We discuss each of these steps in
more detail next.

2.1. Growth Stage
Cells are controlled by a simple abstraction of gene regulatory
network (GRN) in the form of a neural network where nodes
are meant to represent genes and their state rather than neu-
rons. To update state of each node, we used a sigmoidal transfer
function (tanh) with output values within [−1, 1] applied to the
weighted sum of incoming nodes outputs, as implemented by the
MultiNEAT library (Chervenski and Ryan, 2014). The network
determines each cell behavior during growth as well as during
the locomotion stage, where cells act as “muscles.” Ultimately, the
behavior of each cell depends on its internal state and the external
signals received by the network, such as positional information.

Development takes place in a continuous 2-D space, where cells
are represented as disks and undergo elastic collisions simulated
with springs that connect them (Figure 2B). While there is noth-
ing that would in principle prevent implementing the presented
approach in 3-D [in fact, we have implemented an earlier version
of the system in 3-D, see, e.g., Joachimczak and Wróbel (2011,
2012c)], a 2-D model is much less computationally demanding.
As the body length generally scales with the cube root of the
number of cells in 3-D and a square root in 2-D, a fine-grained
2-D development allows to produce structures of higher apparent
complexity with lower numbers of cells.

A cell physical state is defined by its position, its velocity, and
orientation vector, which determines the direction of division.
Springs connect only the nearest neighbors and are determined

FIGURE 1 | Example life cycle (evaluation process) of an evolved animat. The upper row shows developmental stage and the transition from multicellular
representation of an embryo to the physical model of an animat that occurs at the beginning of the locomotion stage. The bottom row shows snapshots of the
animat in motion, during the locomotion stage. The animat moves right. Colors indicate temporal contraction of a body region (blue) or expansion (red). Videos for
each stage can be found at: http://youtu.be/K06FSr0hInI and http://youtu.be/JRgnPs8e-5c.
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A B C

FIGURE 2 | Basics assumptions of the developmental and soft-body system. (A) Each cell is controlled by a copy of the regulatory network encoded in the
genome. The output configuration shown was used in the basic, oscillator-driven actuation experiments (see Section 2.6.1). In the GRN experiments (Section 2.6.1),
outputs 5 and 6 were replaced with a single output that actively determines spring deviation. (B) Physical interactions between cells during developmental stage. Cells
are represented as point masses connected with springs of a fixed resting length equal to 2 cell radii, simulating adhesive force (d>2r) or repulsion (d<2r). Springs
are removed if cells find themselves at a distance larger than 3 radii. (C) Soft-body representation of an animat during the locomotion stage. Cells are connected by
springs of different rest lengths, determined by cell distances at the end of developmental stage. In analogous way, each triangular region has an equilibrium area Si
associated with it. Compression of a region results in an outward forces acting on the nodes, expansion results in inward forces. To produce animat movement, each
cell synchronously shortens or expands the resting lengths of all the springs attached to it, within a fixed range [gray boxes, see equations (1) and (3)].

dynamically, as the embryo grows.We use Delaunay triangulation
to determine the connectivity between cells and then remove
links longer than 150% of cell diameter (to allow for non-convex
shapes). The resting length of a spring is equal to the sum of
attached cells radii. As this simple approach can, however, produce
a disjoint structure (e.g., after cells in a central part of an elongated
embryo die out), a spring between a pair of nodes is removed only
when some other path between these two nodes can be found.
Generally, the physics of development was made to resemble soft
interactions between cells suspended in a fluid environment.

To reduce computational time, the neighborhood relation was
recalculated every 10 steps of physics simulation. The use of
Delaunay triangulation as the way to determine neighborhood in
the growing embryo is likely not essential for producing current
systemdynamics and other neighborhooddefinitions (such as dis-
tance based) can be expected to produce similar results. Delaunay
was chosen for the conceptual simplicity of spring-based handling
of cell adhesion and repulsion, its quasi-linear complexity of deter-
mining neighborhood for all cells, and the fact that it allowed
us to use the same definition of neighborhood we later used for
the locomotion stage. Additionally, the developmental physics
was updated at a higher update rate than the state of control
networks. More precisely, we allowed for 600 developmental steps
and updated networks every 30 steps.

2.2. Network Inputs
Morphogen gradients have long been known to play a funda-
mental role in development and, in particular, in establishing the
basic body plan of animals (Carroll et al., 2004). Thus, to facilitate
differentiation of cellular fates, we provided cells with positional
information, both direct and indirect (Figure 2A). The direct one
was in the form of X and Y coordinate directly fed as input to
a network. The indirect information would come in the form
of four virtual maternal morphogens at prespecified positions
in the environment. Additionally, as a simple mechanism that
substitutes formorphogens produced by cells, the control network
had one “morphogen” output and an associatedmorphogen input.
For any given cell, the activation of the latter was set to the average
activation of corresponding morphogen outputs of its neighbors.
Finally, all cells were provided with two global signals: a bias input

(set to 1 in every cell) and a time signal (with a value increasing
linearly from 0 to 1 throughout development).

2.3. Cell Division and Death
All cells were bound to divide with each subsequent update of
the control network unless the output interpreted as the inhibitor
of division had activation above 0. Furthermore, division was
allowed to occur if and only if space in the direction of the division
was not entirely occupied already by other cells [see Joachimczak
et al. (2014) for the rationale of this approach].

As long as some space was available, the newly created cell was
placed next to the original cell in the direction determined by the
network output representing the division angle. The angle was
determined at themoment of division andwas relative to themean
orientation angle of the cell nearest neighbors. Unless the state
was different from zero, all cells would simply divide in the same
direction.

Apoptosis (cellular death) occurred whenever activation of the
associated network output in a cell was found to be above zero.
Such cell was immediately removed from the embryo.

2.4. Termination of Development
To prevent a trivial scenario in which cells divide in an uncon-
trolled manner until the hard limit of embryo size is reached, we
required development never to reach the limit of 256 cells. Indi-
viduals who would not fulfill this criterion (even if temporarily)
would have their fitnesses set to 0. Moreover, we added a limit on
the total number of cells that could be created during the devel-
opment of an embryo to be no larger than 1024. Such individuals
were penalized by having their fitness multiplied by 0.1. We did
so in order to limit the occurrence of rather unrealistic solutions
in which cells would be continuously created and destroyed (see
Section 2.7.1 for a complete list of penalties applied).

2.5. Locomotion Stage
The morphology of an embryo in the final developmental step
was used as a template for a soft-bodied animat that was then
evaluated for its capability to produce gaits (see an example of such
transformation in Figure 1). The animat was represented in the
physics engine as a 2-D spring-mass system, with point masses
located at cell centers and springs forming a triangular mesh.
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The resting length of springs was assigned based on the dis-
tances between cell centers at the end of the developmental stage
(Figure 2C). Additionally, each triangular region had its equilib-
rium pressure (determined based on its surface area at the end of
development) providing animat with a hydrostatic skeleton and
preventing excessive compression or stretching of body regions.

Springs were governed by the Hooke’s law with damping. For
simplicity, all springs shared the same Hooke’s constant value k
but could have different resting lengths.

To avoid self-penetration of animat bodies,masses representing
cells would undergo elastic collisions with springs. Movement
during locomotion stage was simulated using a custom soft-body
engine that we have built on top of the rigid-body physics part of
the Bullet Physics Library 2.81 (2013).1

The terrestrial environment was constructed by placing ani-
mats on top of a flat surface and introducing gravity and fric-
tion between animat’s nodes and the surface. To prevent sudden
changes in resting length for cells with a non-zero phase shift at the
start of a simulation, the amplitude was progressively increased
during the initial 200 steps of the locomotion stage. Furthermore,
to prevent evolution from exploiting any initial motion that would
come from relaxation of the animat body at the beginning of the
locomotion stage (when gravity, not present during development,
was enabled), before actuation would start, we first waited for the
structure to stabilize. This was implemented by making sure that
the speeds of the nodes are sustained under a preset threshold for
800 time steps.

For an aquatic environment, gravity was disabled and fluid drag
was introduced. We used the fluid drag model based on the work
by Sfakiotakis and Tsakiris (2006), which assumes that fluid is
stationary and that the force acting on a single edge on the outline
of the body is a sum of tangential and normal drag components
for the motion of this edge against the fluid [see also Joachimczak
and Wróbel (2012a) for details].

Actuation meant modifying resting length of springs attached
to a given cell. This resulted in the body region contracting or
expanding. The total change of resting length of a spring would
depend on both cells it connects. The maximum possible range
of change was from −40 to +40% in the aquatic environment
and from −30 to +30% in terrestrial (the maximum was reached
assuming both cells acted in accord). However, due to the
hydrostatic pressures and other forces, the change of resting
length of springs would not result in the change of spring length
of the same magnitude.

How the resting length of springs wasmodified to produce gaits
depend on which of the two investigated control approaches were
used, discussed next.

2.6. Two Approaches to Actuation
In the course of our earlier work, we have developed two different
approaches to gait control for the presented model, one being
simple and inspired by SodaPlay approach (Burton, 2007) and a
more complex one, employing networks to actively control the
state of actuators.

1http://www.bulletphysics.org

2.6.1. Oscillator-Driven Actuation
The simple one assumed that all “muscular” activity during loco-
motion stage is determined by sinusoidal patterns of contraction
and expansion of body regions surrounding cells, with each cell
having its own oscillation period and phase assigned. Both period
and phase shift would evolve and be determined by the control
network; we realized this by setting the parameters for each cell
oscillations based on the state of two corresponding outputs in
the given cell network at the final step of development. The state
of control networks would then no longer be updated during the
locomotion stage. More precisely, during the locomotion stage the
default resting length L0 of a given spring was modified according
to the oscillation parameters of the two cells it connects:

Lt =
(
1 + A sin

(
2πt
T1

+ ϕ1

)
+ A sin

(
2πt
T2

+ ϕ2

))
· L0 (1)

where t was simulation time, A was the predefined amplitude,
T1, T2 were periods of oscillation (scaled to span a predefined
range), andϕ1,ϕ2 were phase shifts (scaled to−π toπ) determined
by the activation of corresponding network outputs at the end of
development.

2.6.2. GRN-Driven Actuation
The second approach allowed for amore fine-grained control over
actuation, such as using different oscillation patterns for each cell
ormaking only a subset of cells take part in gait generation. Instead
of two outputs determining the period and phase shift ofmuscular
contractions at the end of development, we used one output which
determined whether a cell contracts or expands its springs at a
given point in time (and therefore the area that surrounds it),
represented as an output value between −1 and 1 (0 meaning
neutral). Importantly, this meant that the control networks in
the cells would continue to be updated during the locomotion
stage. The state of the corresponding output was, however, used
indirectly. First, to limit the maximum possible frequency of
changes in the spring resting lengths, the state of control networks
was updated every 50 time steps of the physics simulation (which
lasted for 4000 time steps in total). Second, in order to avoid
strong forces that are generated if the resting lengths change in
a stepwise manner after a network update, the resting length of
springs was changed progressively. More precisely, in between
network updates, the state of rest-length changing actuation signal
ai,t in a cell i at the time twas a linear interpolation of the network’s
spring output si at the time of a previous network update (tu − 50)
and the new desired state determined by the most recent output at
a time tu:

ai,t = si,tu−50 +
(t− tu)

(
si,tu − si,tu−50

)
50 , where tu ≤ t < tu + 50

(2)

Just like in the previous approach [equation (1)], the amount
of change applied to resting length of a spring was limited by a
globally set amplitude A, and a spring’s resting length would be
set according to the actuation signals a1,t, a2,t coming from both
cells connected by the spring:

Lt =
(
1 + A (a1,t + a2,t)

2

)
· L0 (3)
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Previously, we have observed that the oscillator-driven method
has lower computational cost and tends to evolve gaits faster.
We think it is because the search space is considerably smaller:
some type of a cyclic gait was guaranteed to emerge and the
evolutionary search only had to optimize the periods and phase
shifts of each body region. The second method allows for more
fine-grained control, but it was up to evolution to discover that
repetitive actuation patterns are the way to produce gaits. It is
thus suitable for more complex tasks that require either some
degree of irregularity or reactiveness (such as maze navigation,
obstacles avoidance, and chemotaxis), but comes at the cost of a
more complex and more deceptive fitness landscape. An example
of such deceptiveness is structures that collapse after a single pulse
of contractions: they score high on the distance measure initially
but are local minima that hinder the discovery of cyclic motion
patterns. This minimum does not exist in the oscillator-driven
variant, as each cell will actuate periodically by default.

Finally, seeing the two approaches as a simpler and amore com-
plex variant of control network evolution, we introduced onemore
change between them. Namely, in the simple oscillator-driven
scenario, we only allowed for feed-forward control networks. This
meant that during development, the networks were stateless and
all cellular actions would depend entirely on the external signals
provided for each cell. With each update of the network, the state
of the inputs was set and the signals were propagated the number
of steps equal to the precalculated depth of the network. In the
GRN-driven variant, we allowed for recurrent connections and,
therefore, the networks were no longer stateless during devel-
opment and locomotion. Here, however, as the network graph
would potentially contain cycles, with every network update, we
propagated the signals in the network only by a distance of 1.

2.7. Evolution
Networks controlling development and determining gaits were
encoded as a list of nodes with their respective types (input,
output, and normal gene) and a list of connections. As our goal
was to compare directly evolvability of a fitness-driven searchwith
that of novelty search, we have performed repeated evolutionary
runs using each of the two following algorithms.

2.7.1. NEAT Evolutionary Algorithm
As amethod of fitness-driven search, we have employed theNEAT
algorithm [neuroevolution of augmenting topologies (Stanley and
Miikkulainen, 2002)], which is often considered the most suc-
cessful method of evolving artificial neural networks (Mouret
and Doncieux, 2011). It starts from simple topologies and grows
them over evolutionary time through complexification. To do so
efficiently, it relies on two mechanisms. First, it keeps tracks of
new genes (new connections and new neurons) and uses history
markers to perform a meaningful crossover between genomes,
aware of which genes correspond to which in the two parents.
Second, it uses speciation, with crossover occurring only within
species (as it would likely be destructive otherwise). Speciation
is based on the similarity between genomes, calculated by taking
into account the number of disjoint and excess neurons and the
difference between corresponding connection weights that both
networks have. Finally, as means of promoting genetic diversity,

it uses fitness sharing (the larger the species, the lower fitness
score its members receive). While the NEAT approach turned out
to be extremely fruitful and led to the development of multiple
related [e.g., CPPN (Stanley, 2007), HyperNEAT (Stanley et al.,
2009)] and hybrid approaches [e.g., Mouret and Clune (2012)]
shown to improve over it in various domains, we used here the
original version of the NEAT method. Given that it is simple, well
understood and available out-of-the-box in various evolutionary
optimization libraries, we think it establishes a sensible baseline
for the performance of a fitness-driven search.

As a fitness function, we used the displacement of an animat’s
center of mass between the time the body was found to be at rest
after the simulationwas started (to avoid profiting from relaxation
under gravity, see also Section 2.5) and the final step of simulation:

f =
(√(

xf − xs
)2

+
(
yf − ys

)2
+ 0.1ba

)
· p (4)

where (xf, yf) represents the position of the animat’s center of mass
at the end of locomotion stage, (xs, ys) represent its position when
it came to rest after initial relaxation under gravity. The actua-
tion bonus term ba was used only in the GRN-driven actuation
experiments and was equal to:

ba =
ucnt∑
u=2

ccnt∑
i=1

|si,u − si,u−1|
2 · ccnt · (ucnt − 1) (5)

where ucnt was the total number of network updates during the
locomotion stage, ccnt was the number of cells in the embryo,
and si,u was the state of the network output that modifies the
resting lengths of springs attached to cell i at the time of update
u. It represents a small bonus to the fitness for having some
change occur at the actuators with subsequent network updates,
and it was used to promote discovery of individuals that actuate.
It had a maximum possible value of 1 in the case when each
cell switched frommaximum contraction tomaximum expansion
(or vice versa) with each subsequent update of network’s output
during the locomotion stage.

Finally, p represents applied fitness penalties, where:

p =



0 if the number of cells less than 8, or
if the number of cells hit maximum allowed body

size during development, or
if animat never stabilized during initialization of the

locomotion stage
0.1 if the number of cells created during growth is equal

or greater than the maximum allowed
(6)

We used the MultiNEAT implementation of the NEAT algo-
rithm (Chervenski and Ryan, 2014). The configuration file speci-
fying the parameters of the library is linked within the reference.

2.7.2. Novelty Search
Lehman and Stanley (2011a) define novelty of a phenotype m as
proportional to how sparsely the phenotype space surroundingm
has been explored so far:

ρ =
1
k

k∑
i=1

d (m, µi) (7)
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where µi is the i-th nearest individual to m out of k according to
the distance metric d.

Introducing the novelty search algorithm into an existing,
NEAT-based system required only replacing the fitness function
computation with calculation of the novelty value, disabling the
fitness sharing, introduction of the novelty archive that stores past
novel individuals and the algorithm for dynamic updating of the
novelty threshold value (the novelty value at which an individual
is added to the archive). We chose to increase the threshold by
10% if more than eight individuals were added to the archive one
after another and to decrease it by 10% if no individuals were
added within 50 generations. We used the final coordinates of an
animat’s center of mass P at the end of locomotion stage as its
phenotypic representation, where P∈R2. We then used Euclidean
metric as a measure of distance d between two phenotypes, with
k= 15 [see equation (7)]. Therefore, the novelty of an individual
was highest if it finished its movement in a location in which
other individuals did not finish yet. Note that while the aquatic
environment allowed to easily vary the phenotypic representation
vector along both X and Y coordinate, in the terrestrial gait prob-
lem the variation could almost solely come from the X coordinate,
as the horizontal movement of the body would be many times
larger than the vertical, and we did not normalize each dimension
in the phenotype characterization vector. Thus, novelty search
algorithm was forced to introduce variation almost entirely by
modifying the X coordinate.

Since novelty search required only the change of how the
fitness function is calculated (by replacing it with a measure of
novelty), we could keep the remaining properties and settings of
both algorithms identical (including speciation for themeaningful
crossover). Naturally, the fitness adjustments normally performed
by NEAT (fitness sharing based on genetic similarity) were not
applied in the case of novelty search as it would imply changing
its core behavior. We used a population size of 300 individuals,
and evolutionary runs lasted for 2000 generations. The initial
population was created as a fully connected network with inputs
directly connected to outputs and random weights.

3. RESULTS

We compared the performance of the novelty search algorithm to
the fitness-driven search (represented by the NEAT algorithm),
using four different scenarios: we combined two separate tasks:

evolution of aquatic and terrestrial gaits with two approaches to
actuation. We used the same method of evaluating performance
both in aquatic and terrestrial environments, that is, for NEAT-
search experiments, fitness represented the displacement of the
center of mass during locomotion stage and, in novelty search
experiments, phenotype was characterized by the final location of
an animat.

To allow for meaningful comparisons between the two
approaches, for each of the four experimental settings, we repeated
evolution using a given search algorithm 20 times, using different
random seed values. To provide the reader with an overview of
what kinds of designs emerge in our system, we first present
examples of evolved solutions. We then compare the performance
of each algorithm. Finally, we analyze how each of the algorithms
explores the phenotypic space in order to understand the reason
behind their different behavior and performance in this problem
domain.

3.1. Evolved Morphologies
With only two exceptions, all evolutionary runs resulted in indi-
viduals capable of producing repetitive gaits in their target envi-
ronments. The two exceptions were a result of fitness-driven
search attempting to evolve GRN-controlled gaits and occurred
both in the swimming and walking tasks. The terrestrial indi-
vidual was vertically elongated and would fall after expanding its
muscle to its side at the beginning of the simulation. A swimming
individual would rapidly contract its body once and rely on the
momentum produced by this single contraction. Thus, none of
these individuals evolved a cyclic motion pattern. As this was
only possible in the case of GRN-controlled actuation, this type
of local minima would not be an issue in the experiments relying
on oscillator-driven actuation.

In the case of oscillator-driven actuation and aquatic gait evolu-
tion, morphologies produced by each type of evolutionary search
were found to be visually very similar: best evolutionary runs
resulted in individuals who had elongated, snake-like morpholo-
gies, and moved with undulatory gaits. Wider, more fish-like
morphologies also emerged, yet the runs that produced them
reached lower fitnesses. Comparing morphologies obtained using
fitness driven (Figure 3A) with individuals obtained using novelty
search (Figure 3B), there was no obvious visual difference, though
the top five best-performing individuals of the two experiments
were obtained with novelty search (three of which are shown in

A B

FIGURE 3 | Morphologies of swimming individuals relying on oscillator-driven actuation evolved using NEAT (A) and novelty search (B) and their
corresponding fitnesses. Best three individuals and two worst individuals obtained using each search method are shown. Colors indicate evolved phase shifts of
muscular contractions, blue corresponds to −π, white to 0 and red to π. Example motion video can be accessed online: http://youtu.be/Gb-H_qy8kVQ.
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Figure 3B). Similarly, in the case of ground-based locomotion
(Figure 4), all evolutionary experiments converged to similar
morphologies, in that case supporting themselves on two (occa-
sionally more) appendages. Here, again, no immediately obvi-
ous visual difference was observed between novelty- and fitness-
driven searches, although onemore time, the top three individuals
came from the novelty search experiment.

Similarly, in the experiments with GRN-controlled terrestrial
gaits, the results obtained using each search method were visually
similar (cf. Figures 5A,B), with individuals running on two “legs”
and highly convergent morphologies. The shapes were, however,
visually quite different from those obtained with the oscillation-
driven actuation approach. Likewise, in the case of individuals
evolved for swimming, both search algorithms produced similar
morphologies (Figures 5C,D), though this time a wider and more
fish-like type of morphology dominated. Two exceptions display-
ing snake-like morphologies, however, emerged in the fitness-
driven search experiments. Theywere also the twomost successful
swimmers obtained in both GRN-driven actuation experiments.
While the investigation of how different types of genetic control

over development and behavior lead to different shapes is beyond
the scope of this paper, we note that a likely significant factor
were different time constants determining how quickly muscular
contractions could occur in each of the two types of actuation
mechanisms. In any case, differences in evolutionary trajectories
that emerge depending on the type of genetic control employed
were the very reason we were interested in testing if novelty search
behaves consistently in different setups.

3.2. Performance: Oscillator-Driven
Actuation
Figure 6A compares the performance of the two investigated
search algorithms on the problem of evolving aquatic animats
using the simpler approach to control. We found that novelty
search clearly outperformed the NEAT algorithm (median of
expected achieved distance was different, Wilcoxon two-tailed
rank-sum test, p= 0.01). On average, novelty search not only
produced better individuals given 2000 generations butwould also
do so regardless on the number of generations.

A

B

FIGURE 4 | Morphologies of terrestrial individuals relying on oscillator-driven actuation evolved using NEAT (A) and novelty search (B) and their
corresponding fitnesses. The five best individuals obtained using each search method are shown. Colors indicate evolved phase shifts of muscular contractions
(blue) or expansions (red). Example motion video is linked in the caption of Figure 2.

A B

C D

FIGURE 5 | Morphologies of three best swimming (top) and walking individuals (bottom) evolved with GRN-driven gait control and the two search
algorithms. Three best individuals for each type of experiment are shown. Colors indicate temporal contraction of a body region (blue) or expansion (red). (A) NEAT
search, (B) novelty search, (C) NEAT search, (D) novelty search.
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To investigate whether the advantage of novelty search
extended to another problem, we next compared evolvability
of terrestrial gaits. As novelty search could now only act on
the first dimension of the phenotypic representation vector (i.e.,
the X coordinate of the final position), we expected novelty
search advantage to diminish as the measure of novelty becomes
largely synonymous with the objective fitness. Indeed, after 2000
generations (Figure 6B), novelty search seemed to hold only a
small advantage over NEAT and, in fact, the median of expected
achieved distance in generation 2000 was no longer significantly
different (Wilcoxon two-tailed rank-sum test, p= 0.30). On aver-
age, novelty search did, however, produce higher fitness individ-
uals regardless of the number of generations and was much faster
at finding good swimmers early on (e.g., the expected median
fitness of best individuals at generation 400 is significantly better,
p= 0.02).

Overall, we found these results surprising since the NEAT
method is by itself a state of the art evolutionary algorithm
specifically tuned to evolve network topologies and employs vari-
ous techniques that prevent premature convergence. Also, while
developing the model, we tuned the parameters of the system
while optimizing its performance under theNEAT algorithm [see,
e.g., fitness function tweaks, equations (5) and (6)], which was
likely to introduce a bias in favor of this search method. Nonethe-
less, a direct and trivial replacement of NEAT with novelty search
resultedwith a clear improvement, even though novelty search did
not even attempt to explicitly optimize for distances.

3.3. Performance: GRN-Driven Actuation
To see if the above results hold for a more complex, but more
powerful version of themodel, we performed an analogous pair of
experiments, this timewith development controlled by a recurrent
network and motion patterns generated by continuous activity of
the gene regulatory network. Here, a cyclic pattern of locomotion
was no longer a default and evolution had to discover that repet-
itive patterns of actuation are the way to produce sustained gaits.
Other than increasing the search space considerably, we suspected
this scenario to be less suited for novelty search, as new final

positions could now be easily generated by producing movement
patterns that sustain themselves only through part of the total
evaluation time. To our surprise, the average performance of nov-
elty search was one more time higher in both aquatic (Figure 7A)
and terrestrial environment (Figure 7B). In the case of the former,
the advantage of novelty search was significant during the first few
hundreds of generations (difference in medians at generation 800,
p= 0.008), but decreased over evolutionary time (the medians
were no longer significantly different at generation 2000).

The final experiment in which GRN-controlled terrestrial ani-
mats were evolved produced similar results: novelty search con-
verged faster and produced higher average fitnesses. The medians
were clearly different at generation 800 (p= 0.01), but again, not
significantly so at generation 2000 (p= 0.10).

Overall, seeing how novelty search found good individuals
much faster than NEAT search and sustained average advantage
throughout the full length of evolutionary runs, we consider these
results consistent with superiority of novelty searchmethod in this
problem domain.

3.4. Exploration of the Phenotypic Space
To understand how novelty search improves over NEAT in our
problem domain, we visualized how the phenotypic space is being
explored by each of the algorithms in the case of evolving swim-
ming animats using oscillator-driven actuation. Although a direct
visualization of complex phenotypic space would be impossible,
we chose to visualize each phenotype by using the same repre-
sentation that was employed to compute phenotypic distances
in novelty search, i.e., as points in R2 corresponding to the final
locations of individuals. This allowed us to plot the final positions
of all individuals who existed during a given evolutionary run on
a surface. To reduce visual clutter, we have plotted only 1% of
(randomly sampled) individuals. We selected two runs from each
type of experiment for visualization: a run that led to the best
individual obtained in a given type of experiment and a median
quality individual (the best individual having fitness below the
median). Inspection of the remaining runs confirmed that the
patterns observed in the selected examples are representative for

A B

FIGURE 6 | Oscillator-driven actuation: performance of novelty search compared to the NEAT algorithm on the problem of co-evolving morphology
and controller of soft-bodied, swimming (A) and walking (B) animats. Solid lines show mean best fitness in a given generation from 20 evolutionary runs of
each type of experiment. Dashed lines show 95%, bootstrapped confidence intervals for the means. (A) Aquatic environment, (B) terrestrial environment.
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A B

FIGURE 7 | GRN-driven actuation: performance of novelty search compared to the NEAT algorithm on the problem of co-evolving morphology and
controller of soft-bodied, swimming (A) and walking (B) animats. Solid lines show mean best fitness in a given generation from 20 evolutionary runs of each
type of experiment. Dashed lines show 95%, bootstrapped confidence intervals for the means. (A) Aquatic environment, (B) terrestrial environment.

BA

FIGURE 8 | Evolution of aquatic animats: comparison of phenotype space coverage over evolutionary time when evolving with two search algorithms
in the experiments with oscillation-driven actuation (see Figure 6A for corresponding fitness plots). The top row corresponds to the best run in each type
of experiment, and the bottom row corresponds to the run that resulted in the median quality individual. Each point in a plot represents the final location of an
individual who was evaluated during a given evolutionary run (a randomly chosen 1% individuals is shown). The color of a circle represents generation at which an
individual was created: blue correspond to the beginning of a run, red to the end, and green to the middle. The line connects points corresponding to the best
individual (in terms of objective fitness value) in every generation. (A) NEAT search, (B) novelty search.

the experiments as a whole. The comparative results for each
search algorithm are shown in Figure 8. It can be immediately
seen that theway each algorithmhas explored the space of possible

phenotypes is qualitatively different.While the novelty search pro-
gressively discovers solutions that swim in every possible direc-
tion, the NEAT algorithm shows a clear focus toward exploring
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only a subregion of the phenotypic space, with individuals mov-
ing in a similar direction. This exploitation of a single direction
is most likely explained by population becoming dominated by
descendants of a particular good design that happened to be suc-
cessful early on. This then leads to subregions being overexplored
through the creation of large numbers of individuals who differ
only slightly in their final position. On the other hand, novelty
search algorithm clearly explores the phenotypic space in a much
more even manner, without particular motion directionality and
mostly avoiding overexploration of phenotypic subregions. This
interpretation is further reinforced by the overlaid visualization
of the trajectory of the best (in terms of objective fitness) indi-
vidual in every generation (solid line in Figures 8A,B). While
in the fitness-driven runs, subsequent best individuals are close
neighbors in the phenotypic space, novelty search is capable of
exploring different scenarios at the same time, visible as long
“jumps” through the phenotypic space between generations. We
note, however, that these jumps are unlikely to imply that muta-
tions caused large phenotypic changes, rather, parallel exploration
of diverse designs allows new best individuals to emerge in any of
the regions of the phenotypic space that are being explored.

Next, we attempted to visualize how each search algorithm
behaved on the problem of evolving terrestrial animats. Due to

the 1-dimensional characterization of phenotypes, we were able
to more easily visualize the progression of the populations over
evolutionary times (Figure 9). Here, fitness-driven search focused
almost entirely on either left or right direction of motion, deter-
mined at the beginning of an evolutionary run. Also, most of
the individuals being created seem to be minor modifications to
the winning design, visible as a high-density region (dark blue)
overlapping with the red line representing best solution found so
far. On the other hand, novelty search seems to explore scenarios
in which individuals move either left or right evenly, and it was
not uncommon to observe how a winning left-running solution is
replaced by right-running one (or vice versa), oftenmultiple times
during a single evolutionary run.

The observation above is further supported by inspection of
the contents of the novelty search archives in novelty-driven
runs (consisting of individuals who were found to be novel at
the time they were created, Figure 10). It can be seen how, in
the case of swimming individuals, novelty search discovers new
concentric “layers” of solution space, rather than focusing on
exploitation of a particular subregion of the search space (which,
in that case, would manifest as discovering subsequent solutions
that move roughly in the same direction). In the case of walking
individuals, during the first few hundred generations, subsequent

A B

FIGURE 9 | Evolution of terrestrial animats: comparison of phenotype space coverage over evolutionary time when evolving with two search
algorithms in experiments with oscillation-driven actuation (see Figure 6B for corresponding fitness plots). The top row corresponds to the best run in
each type of experiment, and the bottom row corresponds to the run that resulted in the median quality individual. Each point in a plot represents the final position of
an individual who was evaluated during a given evolutionary run (a randomly chosen 1% individuals is shown). Color intensity corresponds to points density. The line
connects points corresponding to the best individual (in terms of objective fitness value) in every generation. (A) NEAT search, (B) novelty search.
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A B

FIGURE 10 | The contents of novelty archives in runs shown in Figures 8 and 9 (bottom rows) after 2000 generations. Points represent individuals in the
same manner as in the Figures 8 and 9. (A) Aquatic environment, (B) terrestrial environment.

novel individuals tend to have higher objective fitnesses and are
found both among left-running and right-running individuals,
without any clear preference. After “low-hanging fruit” solutions
are found, novelty archive is slowly populated with individuals
ending at almost any possible location in the region between
current best left-running and right-running solution. Ultimately,
this also leads to discovering improvements to the best individuals
as well.

Finally, we have inspected evolutionary runs that relied on the
more complex, GRN-driven actuation and found out that they
displayed qualitatively similar properties (not shown).

3.5. Phenotypic Diversity in Populations
Phenotypic diversity is a necessary condition of an evolutionary
process and hence sustaining it is of primary importance to many
evolutionary algorithms. The NEAT algorithm attempts to sus-
tain diversity at the genetic level by using speciation and fitness
sharing, in which genotypes grouped into species receive lower
fitnesses as the species size increases, consequently promoting
novel genotypes. Grouping into species is based on the genetic
distance between individuals. The genetic distance, however, does
not necessarily reflect phenotypic distance (in the extreme case,
neutral mutations lead to two different genomes with identical
phenotypes). To understand what kind of population structure
emerges during evolution, we investigated fitness distributions in
the final generations and observed radical differences between the
two search algorithms. Populations evolved using NEAT would
progressively lose fitness diversity over evolutionary time, as the
populations were slowly more and more dominated by an elite
individual and its variations that differ only slightly in fitness.
This pattern was universally observed in all types of experiments,
as confirmed by averaging normalized fitness distributions in the
final generation from independent evolutionary runs (Figure 11).
The difference behavior of these algorithms can be understood if
we consider that novelty search, by its very definition, attempts
to diversify phenotypes. At the same time, developmental systems
are known to evolve toward both environmental and mutational
robustness, a process known as genetic canalization [see, e.g.,
Federici and Ziemke (2006), Basanta et al. (2008), Andersen et al.

(2009), and Joachimczak andWróbel (2012b)], which likely drives
the phenotypic diversity down.

3.6. Morphological Diversity
While the results discussed in the Section 3.4 clearly show that
novelty search explores the space of possible solutions in a more
even and thorough manner than the fitness-driven search, our
assessment of phenotypic diversity was based solely on the final
position of an animat being evaluated. Although the quality of
solutions obtained with novelty search was also higher on average,
we were interested whether its success can be attributed to actually
having explored a greater range of potential morphologies. After
all, a larger diversity of final positions does not automatically
imply a larger diversity of morphologies. In particular, larger
diversity of final positions could simply be a result of mutations
that only influence behavior control (e.g., resulting in a change of
swimmer’s angle), providing evolution with a cheap and endless
source of phenotypic variation. This would, however, be strongly
against our goal of creating a system that discovers innovative
morphologies and controllers without any prior knowledge of
desired solutions, as being able to explore a large range of mor-
phologies is essential to its creativeness.

Measuring the diversity of arbitrary morphologies requires a
way to quantify dissimilarities between them. This is generally
a non-trivial problem that can be approached in multiple ways,
taking things like scale or rotation invariance into considera-
tion [e.g., through the use of shape histograms (Ankerst et al.,
1999)]. Since our goal here was mainly to make sure that the
higher phenotypic diversity of the novelty search scenario is not
just a result of evolution tweaking the controllers, we decided
to rely on a much simpler approach. We calculated diversity of
individuals’ sizes (represented by their body cell count) during
an evolutionary run. While a very crude approach: a potentially
extremely large numbers of morphologies can be made of the
same number of cells, body sizes are sometimes used in biological
[e.g., Imroze and Prasad (2011)] and artificial embryogeny [e.g.,
Matos et al. (2009)] experiments as a way to estimate phenotypic
diversity. Here, we expected that if morphologies tend to repeat
more often in some experiments, we should also observe more
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FIGURE 11 | Normalized fitness distributions in populations at generation 2000 collected from 20 independent evolutionary runs of each of the four
experiment types. (A) Aquatic environment (oscillator-driven actuation), (B) aquatic environment (GRN-driven actuation), (C) terrestrial environment (oscillator-driven
actuation), (D) terrestrial environment (GRN-driven actuation).

frequent repetitions of identical cell counts in the populations.
Thus, as a simple proxy of morphological diversity, we decided
to apply one of the measures commonly employed to calculate
ecological diversities, namely the Shannon entropy, to a set of
body sizes that occur throughout an evolutionary run. For each
run, we calculated Shannon entropy of body sizes over the whole
evolutionary history:

H(S) = −
∑
s∈S

p(s) ln p(s) (8)

where S was the set of sizes (numbers of cells in the body)
of all animats that existed during a given evolutionary run
and were considered viable (i.e., their fitness was not zero).
We calculated morphological diversity for all evolutionary runs
and all types of experiments that we performed and present
summary results in Figure 12. Regardless of whether we used
the oscillator-driven actuation or the more complex, GRN sce-
nario, novelty search producedmuch highermorphological diver-
sity, with the difference being even more pronounced in the
latter case. This result strongly suggests that novelty search
indeed manages to produce significantly higher morphological
diversity and increased variation of animat final positions was
associated with an actually higher diversity of morphologies
explored.

4. DISCUSSION AND FUTURE WORK

Throughout our work, we aim to harness the creative power of
the evolutionary process in order to either inspire or to fully
replace a human designer. While we were able to reach very
promising results using the classical, fitness-driven evolutionary
search algorithm, the large and complex search space stemming
from the weakly constrained range of possible morphologies,
and complex interactions between morphologies and controllers
made evolutionary runs expensive and prone to being stuck in
local minima. After introducing a very low cost change to the
search method, a one that abandons optimization for the fitness
altogether, we were surprised to see it immediately improve over
the fitness-driven search, even though the novelty search method
was not explicitly optimizing for gait performance.

A more extensive analysis revealed that the result was robust in
respect to two types of tasks and two versions of control mech-
anism that we used; in all investigated scenarios, novelty search
produced on average higher fitness individuals. The advantage
of novelty search was especially visible within the first few hun-
dreds of generations and given limited time for an evolutionary
run, it was clearly superior at finding gaits. Performing longer
evolutionary experiments (2000 generations) allowed the fitness-
driven search to get closer to the results obtained with novelty,
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A B

FIGURE 12 | Measuring morphological diversity: the entropy of body sizes of all viable individuals who existed over evolutionary time. The box plots
show the median and quartiles for entropies calculated for 20 independent evolutionary runs of each type of experiment. Whiskers extend to the most extreme data
point that is not more than 1.5 IQR from the box. Points corresponding to each experiment are overlaid. (A) Oscillator-driven actuation, (B) GRN-driven actuation.

though it remained, on average, inferior. The reduced difference
in performance of each algorithm given longer search can be
explained by the fact that each algorithm ultimately attempts to
converge on similar designs; indeed, the best solutions obtained
using each search method had similar morphologies.

Importantly, our analysis revealed how both algorithms explore
the space of possible solutions very differently: novelty search
was far better at maintaining population diversity and explored
the space of possible solutions in a much more even manner.
Fitness-driven search, on the other hand, despite the use of mech-
anisms that promote genotypic diversity would heavily focus on
subregions of the phenotypic space. Furthermore, our analysis
suggests that novelty search, despite simply searching for novel
end positions of locomoting animats, actually evaluated a more
diverse set of morphological designs.

As novelty search is believed to show its strengths in decep-
tive fitness landscapes, this also suggests that the problem we
are working on, i.e., evolution of morphologies and controllers
based on artificial development exhibits a highly deceptive fitness
landscape. Indeed, one potential source of such a deceptiveness
could be constant interactions between the controller and mor-
phology being simultaneously optimized. More precisely, when
a controller becomes fine-tuned to a given morphology over
evolutionary time, many potentially useful modifications of this
morphology will likely turn out to be detrimental, as they will
lead to amismatch between the newmorphology and a controller.
Thus, only after fine-tuning of the latter, the performance of a
modified morphology can be ascertained: a new hill of increased
fitness landscape can only be accessed by crossing a lower fitness
valley, a telltale of a deceptive fitness landscape.

Another reason we suspect novelty search turned out to be
highly successful on this problem may be the difficulty of sustain-
ing phenotypic diversity when using development-based encod-
ings. Developmental systems are known to evolve toward being
robust to perturbations, both environmental and mutational [see,
e.g., Federici and Ziemke (2006), Basanta et al. (2008), Andersen
et al. (2009), and Joachimczak and Wróbel (2012b)], and this

robustness is one of the very reasons behind the interest in them.
However, the propensity to sustain phenotype despite genetic
perturbations should also mean that such systems are partially
robust to methods that attempt to boost genetic diversity (e.g.,
through fitness sharing, as in this work), weakening their effect.
Since novelty search promotes only the phenotypic novelty, it
is immune to this effect, rewarding only increase in phenotypic
diversity. This suggests that either novelty search or methods of
promoting phenotypic diversity should be, in general, a more
meaningful way to increase evolvability of developmental systems
and we hope to investigate this more in depth in our future work.
Furthermore, recent evidence from the domain of evolving robot
behaviors (without morphological evolution) suggests that pro-
moting phenotypic diversity also improves search performance
(Gomez, 2009; Mouret and Doncieux, 2011; Trujillo et al., 2011;
Lehman et al., 2013). As the presented system deals both with the
evolution of development and evolution of behavior, it suggests
that phenotypic diversity maintenance may have contributed at
both levels.

Lacking a predefined objective, pure novelty search is unlikely
to succeed at higher complexity tasks and the reason it performs so
well at gait evolution is likely related to the coupling between nov-
elty measure and the distance measure: exploring further areas of
the phenotypic space means finding solutions of higher objective
fitness. It has, however, already been shown that the performance
of novelty search can be improved on certain problems if a novelty
measure is combined with an objective fitness function through
the use of multi-criteria optimization (Mouret and Doncieux,
2011; Lehman et al., 2013). Hence, as a straightforward extension
of the current work, we plan to incorporate an objective fitness
function into the search algorithm, through the use of a Pareto-
based multi-objective approach. We hope that this will allow us
to evolve robots capable of performing more complex and multi-
step behaviors, such as reshaping to crawl through an opening or
grabbing objects with an elastic appendage. Furthermore, a fitness
component would enable evolution of behaviors that optimize
energy used to perform a task or the amount of active and passive
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material in a design [e.g., as in Cheney et al. (2013)]. Finally,
having observed the extreme importance of sustaining phenotypic
diversity in an artificial embryogeny model, we are interested in
finding better ways of generating the initial population. After all,
the morphological diversity of multicellular life did not emerge
out of random gene regulatory networks but was preceded by an
extremely long period of complexification of unicellular forms.
Thus, one way we hope we can further improve evolvability is
to first discover promising regions of genotypic space by pre-
evolving initial population toward general morphological diver-
sity, and only later attempting to co-evolve the form and behavior.
This would require developing a much less simplistic measure of
morphological diversity than the proxy used in Section 3.6 but
would also enable us to perform direct comparisons of morpho-
logical diversities produced by different search algorithms.

With the low-effort modifications needed to adapt an objective
fitness-driven genetic algorithm into novelty search and limited
number of parameters that need to be set up (novelty search
being able to adjust most of its parameters dynamically), we
believe novelty search is likely to be of high utility for encodings
based on artificial development in general. The results presented

in this work also show the overall importance of focusing on
maintaining phenotypic diversity in systems with highly indirect
genotype–phenotype mappings, novelty search being only one of
the easiest methods to achieve it.

AUTHOR CONTRIBUTIONS

Concept and design of experiments: MJ, RS, and TA. Implemen-
tation, running experiments, and analysis: MJ. Writing paper: MJ,
RS, and TA.

ACKNOWLEDGMENTS

This work was supported by the Japan Society for the Promo-
tion of Science (JSPS) through the JSPS Fellowship for For-
eign Researchers and JSPS KAKENHI Grant Number 26-04349.
High-performance computing resources were provided by the
Interdisciplinary Center for Molecular and Mathematical Mod-
eling (ICM, University of Warsaw) and the Tri-city Academic
Computer Center (TASK). CGAL library (CGAL, 2015) was
used.

REFERENCES
Andersen, T., Newman, R., and Otter, T. (2009). Shape homeostasis in virtual

embryos. Artif. Life 15, 161–183. doi:10.1162/artl.2009.15.2.15201
Ankerst, M., Kastenmüller, G., Kriegel, H.-P., and Seidl, T. (1999). “3D shape his-

tograms for similarity search and classification in spatial databases,” inAdvances
in Spatial Databases, Volume 1651 of LNCS, eds R. H.Güting, D. Papadias, and
F. Lochovsky (Berlin: Springer), 207–226. doi:10.1007/3-540-48482-5_14

Auerbach, J. E., and Bongard, J. C. (2012). “On the relationship between environ-
mental and mechanical complexity in evolved robots,” in Artificial Life 13, eds
C. Adami, D. M. Bryson, C. Ofria, and R. T. Pennock (Cambridge, MA: MIT
Press), 309–316. doi:10.7551/978-0-262-31050-5-ch041

Basanta, D., Miodownik, M., and Baum, B. (2008). The evolution of robust devel-
opment and homeostasis in artificial organisms. PLoS Comput. Biol. 4:e1000030.
doi:10.1371/journal.pcbi.1000030

Boddhu, S. K., and Gallagher, J. C. (2010). Evolving neuromorphic flight control
for a flapping-wing mechanical insect. Int. J. Intell. Comput. Cybern. 3, 94–116.
doi:10.1108/17563781011028569

Bongard, J. C., and Pfeifer, R. (2003). “Evolving complete agents using artificial
ontogeny,” in Morpho-Functional Machines: The New Species, eds F. Hara and R.
Pfeifer (Tokyo: Springer-Verlag), 237–258. doi:10.1007/978-4-431-67869-4_12

Burton, E. (2007). Soda Constructor. Available at: http://www.sodaplay.org
Carroll, S., Grenier, J., andWeatherbee, S. (2004). FromDNA to Diversity: Molecular

Genetics and the Evolution of Animal Design, 2nd Edn. Malden, MA: Wiley-
Blackwell.

CGAL. (2015). Computational Geometry Algorithms Library. Available at: http://
www.cgal.org

Chan, V., Park, K., Collens, M. B., Kong, H., Saif, T. A., and Bashir, R. (2012).
Development of miniaturized walking biological machines. Sci. Rep. 2, 857.
doi:10.1038/srep00857

Cheney, N.,MacCurdy, R., Clune, J., and Lipson, H. (2013). “Unshackling evolution:
evolving soft robots with multiple materials and a powerful generative encod-
ing,” in Proc. of the 15th Annual Conference on Genetic and Evolutionary Com-
putation, GECCO ‘13 (New York, NY: ACM), 167–174. doi:10.1145/2463372.
2463404

Chervenski, P., and Ryan, S. (2014). MultiNEAT. Available at: http://multineat.com
configuration file: http://pastebin.com/ZPNTa6kQ

Cuccu, G., and Gomez, F. (2011). “When novelty is not enough,” in Applications of
Evolutionary Computation, Volume 6624 of LNCS, eds C. Di Chio, S. Cagnoni,
C. Cotta, M. Ebner, A. Ekárt, A. I. Esparcia-Alcázar et al. (Berlin: Springer),
234–243. doi:10.1007/978-3-642-20525-5_24

Federici, D., and Ziemke, T. (2006). “Why are evolved developing organisms also
fault-tolerant?,” in From Animals to Animats 9: Proc. of the 9th International
Conference on Simulation of Adaptive Behaviour (SAB 2006), Volume 4095 of
LNCS (Berlin: Springer), 449–460.

Gomes, J., Urbano, P., and Christensen, A. (2013). Evolution of swarm robotics
systems with novelty search. Swarm Intell. 7, 115–144. doi:10.1007/s11721-013-
0081-z

Gomez, F. J. (2009). “Sustaining diversity using behavioral information distance,” in
Proc. of the 11th Annual Conference on Genetic and Evolutionary Computation,
GECCO ‘09 (New York, NY: ACM), 113–120.

Hiller, J., and Lipson, H. (2012). Automatic design and manufacture of soft robots.
IEEE Trans. Robot. 28, 457–466. doi:10.1109/TRO.2011.2172702

Hornby, G., Lohn, J. D., and Linden, D. S. (2010). Computer-automated evolution
of an X-band antenna for NASA’s space technology 5 mission. Evol. Comput. 19,
1–23. doi:10.1162/EVCO_a_00005

Imroze, K., and Prasad, N. G. (2011).Matingwith largemales decreases the immune
defence of females in drosophila melanogaster. J. Genet. 90, 427–434. doi:10.
1007/s12041-011-0105-7

Joachimczak, M., Kowaliw, T., Doursat, R., and Wróbel, B. (2013). Evolutionary
design of soft-bodied animats with decentralized control. Artif. Life Robot. 18,
152–160. doi:10.1007/s10015-013-0121-1

Joachimczak, M., Suzuki, R., and Arita, T. (2014). “Fine grained artificial develop-
ment for body-controller coevolution of soft-bodied animats,” in Artificial Life
14: Proc. of the 14th International Conference on the Synthesis and Simulation of
Living Systems (Cambridge, MA: The MIT Press), 239–246. doi:10.7551/978-0-
262-32621-6-ch040

Joachimczak, M., Suzuki, R., and Arita, T. (2015). “From tadpole to frog: artificial
metamorphosis as a method of evolving self-reconfiguring robots,” in Proc. of
the 13th European Conference on the Synthesis and Simulation of Living Systems
(ECAL 2015), eds P. Andrews, L. Caves, R. Doursat, S. Hickinbotham, F. Polack,
S. Stepney, et al. (Cambridge, MA: The MIT Press), 51–58. doi:10.7551/978-0-
262-33027-5-ch012

Joachimczak,M., andWróbel, B. (2011). “Evolution of themorphology and pattern-
ing of artificial embryos: scaling the tricolour problem to the third dimension,”
in Advances in Artificial Life. Darwin Meets Von Neumann: Proc. of the 10th
European Conference on Artificial Life (ECAL 2009), Volume 5777 of LNCS
(Berlin: Springer), 35–43.

Joachimczak,M., andWróbel, B. (2012a). “Co-evolution ofmorphology and control
of soft-bodied multicellular animats,” in Proc. of the 14th International Confer-
ence on Genetic and Evolutionary Computation, GECCO ‘12 (New York, NY:
ACM), 561–568. doi:10.1145/2330163.2330243

Frontiers in Robotics and AI | www.frontiersin.org December 2015 | Volume 2 | Article 3315

http://dx.doi.org/10.1162/artl.2009.15.2.15201
http://dx.doi.org/10.1007/3-540-48482-5_14
http://dx.doi.org/10.7551/978-0-262-31050-5-ch041
http://dx.doi.org/10.1371/journal.pcbi.1000030
http://dx.doi.org/10.1108/17563781011028569
http://dx.doi.org/10.1007/978-4-431-67869-4_12
http://www.sodaplay.org
http://www.cgal.org
http://www.cgal.org
http://dx.doi.org/10.1038/srep00857
http://dx.doi.org/10.1145/2463372.2463404
http://dx.doi.org/10.1145/2463372.2463404
http://multineat.com
http://pastebin.com/ZPNTa6kQ
http://dx.doi.org/10.1007/978-3-642-20525-5_24
http://dx.doi.org/10.1007/s11721-013-0081-z
http://dx.doi.org/10.1007/s11721-013-0081-z
http://dx.doi.org/10.1109/TRO.2011.2172702
http://dx.doi.org/10.1162/EVCO_a_00005
http://dx.doi.org/10.1007/s12041-011-0105-7
http://dx.doi.org/10.1007/s12041-011-0105-7
http://dx.doi.org/10.1007/s10015-013-0121-1
http://dx.doi.org/10.7551/978-0-262-32621-6-ch040
http://dx.doi.org/10.7551/978-0-262-32621-6-ch040
http://dx.doi.org/10.7551/978-0-262-33027-5-ch012
http://dx.doi.org/10.7551/978-0-262-33027-5-ch012
http://dx.doi.org/doi:10.1145/2330163.2330243
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Joachimczak et al. Evolving Developmental Soft-Robots with Novelty Search

Joachimczak, M., and Wróbel, B. (2012b). Evolution of robustness to damage in
artificial 3-dimensional development. BioSystems 109, 498–505. doi:10.1016/j.
biosystems.2012.05.014

Joachimczak,M., andWróbel, B. (2012c). “Open ended evolution of 3dmulticellular
development controlled by gene regulatory networks,” inArtificial Life XIII: Proc.
of the 13th International Conference on the Simulation and Synthesis of Living
Systems (Cambridge, MA: MIT Press), 67–74. doi:10.7551/978-0-262-31050-5-
ch010

Komosinski, M., and Rotaru-Varga, A. (2002). Comparison of different genotype
encodings for simulated three-dimensional agents.Artif. Life 7, 395–418. doi:10.
1162/106454601317297022

Komosinski, M., and Ulatowski, S. (1999). “Framsticks: towards a simulation of a
nature-like world, creatures and evolution,” in Proc. of Fifth European Conference
on Artificial Life (ECAL 1999), Volume 1674 of LNAI (Berlin: Springer-Verlag),
261–265. doi:10.1007/3-540-48304-7_33

Kowaliw, T., Grogono, P., and Kharma, N. (2004). “Bluenome: a novel develop-
mental model of artificial morphogenesis,” in Genetic and Evolutionary Com-
putation GECCO ‘04 eds T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern,
J. C. Mitchell, M. Naor, et al. (Berlin: Springer), 93–104. doi:10.1007/978-3-540-
24854-5_9

Krčah, P. (2012). “Solving deceptive tasks in robot body-brain co-evolution
by searching for behavioral novelty,” in Advances in Robotics and Virtual
Reality, Volume 26 of Intelligent Systems Reference Library eds T. Gulrez
andA. E.Hassanien (Berlin: Springer), 167–186. doi:10.1007/978-3-642-23363-
0_7

Lee, S., Yosinski, J., Glette, K., Lipson, H., and Clune, J. (2013). “Evolving gaits
for physical robots with the hyperneat generative encoding: the benefits of
simulation,” in Applications of Evolutionary Computation, Volume 7835 of LNCS
ed. A. Esparcia-Alcázar (Berlin: Springer), 540–549. doi:10.1007/978-3-642-
37192-9_54

Lehman, J., and Stanley, K. O. (2011a). Abandoning objectives: evolution through
the search for novelty alone. Evol. Comput. 19, 189–223. doi:10.1162/EVCO_a_
00025

Lehman, J., and Stanley, K. O. (2011b). “Evolving a diversity of virtual creatures
through novelty search and local competition,” in Proc. of the 13th annual
conference on Genetic and evolutionary computation, GECCO ‘11 (NewYork, NY:
ACM), 211–218. doi:10.1145/2001576.2001606

Lehman, J., Stanley, K. O., and Miikkulainen, R. (2013). “Effective diversity mainte-
nance in deceptive domains,” in Proc. of the 15th Annual Conference on Genetic
and Evolutionary Computation, GECCO ‘13 (New York, NY: ACM), 215–222.
doi:10.1145/2463372.2463393

Lessin, D., Fussell, D., and Miikkulainen, R. (2014). “Adopting morphology to
multiple tasks in evolved virtual creatures,” in Artificial Life 14: Proc. of the
14th International Conference on the Synthesis and Simulation of Living Systems
(Cambridge, MA: The MIT Press), 247–254. doi:10.7551/978-0-262-32621-6-
ch041

Lipson, H., and Pollack, J. B. (2000). Automatic design and manufacture of robotic
lifeforms. Nature 406, 974–978. doi:10.1038/35023115

Mahfoud, S. W. (1995). Niching Methods for Genetic Algorithms. Ph.D. thesis,
University of Illinois at Urbana-Champaign, Champaign, IL.

Matos, A., Suzuki, R., and Arita, T. (2009). Heterochrony and artificial embryogeny:
a method for analyzing artificial embryogenies based on developmental dynam-
ics. Artif. Life 15, 131–160. doi:10.1162/artl.2009.15.2.15200

Meng, Y., Zhang, Y., and Jin, Y. (2011). Autonomous self-reconfiguration of mod-
ular robots by evolving a hierarchical mechanochemical model. IEEE Comput.
Intell. Mag. 6, 43–54. doi:10.1109/MCI.2010.939579

Mouret, J.-B., andClune, J. (2012). “An algorithm to create phenotype-fitnessmaps,”
in Proceedings of the Thirteenth International Conference on the Simulation and

Synthesis of Living Systems (ALIFE 13) eds C. Adami, D.M. Bryson, C. Ofria, and
R. T. Pennock, (Cambridge, MA: MIT Press), 593–594.

Mouret, J. B., and Doncieux, S. (2011). Encouraging behavioral diversity in evo-
lutionary robotics: an empirical study. Evol. Comput. 20, 91–133. doi:10.1162/
EVCO_a_00048

Pilat, M. L., Ito, T., Suzuki, R., and Arita, T. (2012). “Evolution of virtual creature
foraging in a physical environment,” in Artificial Life XIII: Proc. of the 13th
International Conference on the Simulation and Synthesis of Living Systems
(Cambridge,MA:MIT Press), 423–430. doi:10.7551/978-0-262-31050-5-ch056

Sareni, B., and Krahenbuhl, L. (1998). Fitness sharing and niching methods revis-
ited. IEEE Trans. Evol. Comput. 2, 97–106. doi:10.1109/4235.735432

Schramm, L., Jin, Y., and Sendhoff, B. (2011). “Emerged coupling of motor con-
trol and morphological development in evolution of multi-cellular animats,”
in Advances in Artificial Life. Darwin Meets Von Neumann: Proc. of the 10th
European Conference on Artificial Life (ECAL 2009), Volume 5777 of LNCS
(Berlin: Springer), 27–34.

Sfakiotakis, M., and Tsakiris, D. (2006). SIMUUN: a simulation environment for
undulatory locomotion. Int. J. Model. Simul. 26, 350–358. doi:10.2316/Journal.
205.2006.4.205-4430

Shepherd, R. F., Ilievski, F., Choi, W., Morin, S. A., Stokes, A. A., Mazzeo, A. D.,
et al. (2011). Multigait soft robot. Proc. Natl. Acad. Sci. U.S.A. 108, 20400–20403.
doi:10.1073/pnas.1116564108

Sims, K. (1994). “Evolving virtual creatures,” in Proc. of the 21st Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH ‘94 (New York,
NY: ACM Press), 15–22. doi:10.1145/192161.192167

Stanley, K. (2007). Compositional pattern producing networks: a novel abstraction
of development. Genet. Program. Evol. Mach. 8, 131–162. doi:10.1007/s10710-
007-9028-8

Stanley, K. O., D’Ambrosio, D. B., andGauci, J. (2009). A hypercube-based encoding
for evolving large-scale neural networks.Artif. Life 15, 185–212. doi:10.1162/artl.
2009.15.2.15202

Stanley, K. O., and Lehman, J. (2015). Why Greatness Cannot be Planned: The Myth
of the Objective. Springer Cham, Heidelberg, New York, Dordrecht, London:
Springer International Publishing. doi:10.1007/978-3-319-15524-1

Stanley, K. O., and Miikkulainen, R. (2002). Evolving neural networks
through augmenting topologies. Evol. Comput. 10, 99–127. doi:10.1162/
106365602320169811

Steltz, E., Mozeika, A., Rodenberg, N., Brown, E., and Jaeger, H. M. (2009). “JSEL:
jamming skin enabled locomotion,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2009) (Piscataway, NJ: IEEE), 5672–5677.
doi:10.1109/iros.2009.5354790

Trujillo, L., Olague, G., Lutton, E., Fernández deVega, F., Dozal, L., andClemente, E.
(2011). Speciation in behavioral space for evolutionary robotics. J. Intell. Robot.
Syst. 64, 323–351. doi:10.1007/s10846-011-9542-z

Urbano, P., and Georgiou, L. (2013). “Improving grammatical evolution in Santa Fe
trail using novelty search,” in Advances in Artificial Life, ECAL 2013, eds P. Liò,
O. Miglino, G. Nicosia, S. Nolfi, and M. Pavone (Cambridge, CA: MIT Press),
917–924.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2015 Joachimczak, Suzuki and Arita. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org December 2015 | Volume 2 | Article 3316

http://dx.doi.org/10.1016/j.biosystems.2012.05.014
http://dx.doi.org/10.1016/j.biosystems.2012.05.014
http://dx.doi.org/10.7551/978-0-262-31050-5-ch010
http://dx.doi.org/10.7551/978-0-262-31050-5-ch010
http://dx.doi.org/10.1162/106454601317297022
http://dx.doi.org/10.1162/106454601317297022
http://dx.doi.org/10.1007/3-540-48304-7_33
http://dx.doi.org/10.1007/978-3-540-24854-5_9
http://dx.doi.org/10.1007/978-3-540-24854-5_9
http://dx.doi.org/10.1007/978-3-642-23363-0_7
http://dx.doi.org/10.1007/978-3-642-23363-0_7
http://dx.doi.org/10.1007/978-3-642-37192-9_54
http://dx.doi.org/10.1007/978-3-642-37192-9_54
http://dx.doi.org/10.1162/EVCO_a_00025
http://dx.doi.org/10.1162/EVCO_a_00025
http://dx.doi.org/10.1145/2001576.2001606
http://dx.doi.org/10.1145/2463372.2463393
http://dx.doi.org/10.7551/978-0-262-32621-6-ch041
http://dx.doi.org/10.7551/978-0-262-32621-6-ch041
http://dx.doi.org/10.1038/35023115
http://dx.doi.org/10.1162/artl.2009.15.2.15200
http://dx.doi.org/10.1109/MCI.2010.939579
http://dx.doi.org/10.1162/EVCO_a_00048
http://dx.doi.org/10.1162/EVCO_a_00048
http://dx.doi.org/10.7551/978-0-262-31050-5-ch056
http://dx.doi.org/10.1109/4235.735432
http://dx.doi.org/10.2316/Journal.205.2006.4.205-4430
http://dx.doi.org/10.2316/Journal.205.2006.4.205-4430
http://dx.doi.org/10.1073/pnas.1116564108
http://dx.doi.org/10.1145/192161.192167
http://dx.doi.org/10.1007/s10710-007-9028-8
http://dx.doi.org/10.1007/s10710-007-9028-8
http://dx.doi.org/10.1162/artl.2009.15.2.15202
http://dx.doi.org/10.1162/artl.2009.15.2.15202
http://dx.doi.org/10.1007/978-3-319-15524-1
http://dx.doi.org/10.1162/106365602320169811
http://dx.doi.org/10.1162/106365602320169811
http://dx.doi.org/10.1109/iros.2009.5354790
http://dx.doi.org/10.1007/s10846-011-9542-z
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

	Improving Evolvability of Morphologies and Controllers of Developmental Soft-Bodied Robots with Novelty Search
	1. Introduction
	2. Developmental Approach
	2.1. Growth Stage
	2.2. Network Inputs
	2.3. Cell Division and Death
	2.4. Termination of Development
	2.5. Locomotion Stage
	2.6. Two Approaches to Actuation
	2.6.1. Oscillator-Driven Actuation
	2.6.2. GRN-Driven Actuation

	2.7. Evolution
	2.7.1. NEAT Evolutionary Algorithm
	2.7.2. Novelty Search


	3. Results
	3.1. Evolved Morphologies
	3.2. Performance: Oscillator-Driven Actuation
	3.3. Performance: GRN-Driven Actuation
	3.4. Exploration of the Phenotypic Space
	3.5. Phenotypic Diversity in Populations
	3.6. Morphological Diversity

	4. Discussion and Future Work
	Author Contributions
	Acknowledgments
	References


