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When Donald Hebb published his 1949 book “The Organization of Behavior” he opened
a new way of thinking in theoretical neuroscience that, in retrospective, is very close to
contemporary ideas in self-organization. His metaphor of “wiring” together what “fires
together” matches very closely the common paradigm that global organization can derive
from simple local rules. While ingenious at his time and inspiring the research over
decades, the results still fall short of the expectations. For instance, unsupervised as they
are, such neural mechanisms should be able to explain and realize the self-organized
acquisition of sensorimotor competencies. This paper proposes a new synaptic law
that replaces Hebb’s original metaphor by that of “chaining together” what “changes
together.” Starting from differential Hebbian learning, the new rule grounds the behavior
of the agent directly in the internal synaptic dynamics. Therefore, one may call this a
behavior-driven synaptic plasticity. Neurorobotics is an ideal testing ground for this new,
unsupervised learning rule. This paper focuses on the close coupling between body,
control, and environment in challenging physical settings. The examples demonstrate how
the new synaptic mechanism induces a self-determined “search and converge” strategy
in behavior space, generating spontaneously a variety of sensorimotor competencies.
The emerging behavior patterns are qualified by involving body and environment in an
irreducible conjunction with the internal mechanism. The results may not only be of
immediate interest for the further development of embodied intelligence. They also offer a
new view on the role of self-learning processes in natural evolution and in the brain. Videos
and further details may be found under http://robot.informatik.uni-leipzig.de/research/
supplementary/NeuroAutonomy/.

Keywords: robotics, neural networks, dynamical systems theory, learning, self-organization

1. INTRODUCTION

Autonomy is a puzzling phenomenonboth in the evolution of species and in individual development.
Translating autonomy by “realizing an independent, self-determined development,” the question is
how autonomy is grounded in the internal mechanisms of the individual, and evenmore interesting,
what are the conditions for the emergence of this phenomenon. Common explanations postulate
specific drives eliciting the emergence and subsistence of autonomous behavior. Examples are the
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selection pressure in evolution or intrinsic motivation in
individual development. In recent years, such drives have been
formulated in terms of objective functions ranging from the max-
imization of predictive information (Ay et al., 2008, 2012; Der
et al., 2008; Martius et al., 2013) or empowerment (Klyubin et al.,
2005; Salge et al., 2014), to the minimization of free energy (Fris-
ton, 2010), to the so-called time-loop error in the homeokinesis
approach (Der, 2001; Der and Liebscher, 2002; Der and Martius,
2012), see also Prokopenko (2008, 2009) for more examples. For-
mulated at the level of behavior, those general principles may be
translated into specific rules acting in the internal world of the
agent.

Different from such a top-down way of thinking, this paper
presents a bottom-up approach, claiming that there exist specific
internal mechanisms that, while being unspecific for any task or
survival strategy, per se have the ability to guide systems to self-
determined activity. The hope to base the organization of behavior
on local synaptic rules has been a major impact on research
in neuroscience ever since the seminal work of Donald Hebb
(1949). Hebb’s thinking was outstanding not only for its insight
into the organization of the brain but also for its anticipation of
modern ideas of self-organization, explaining how global order
(behavior) can be based on local (synaptic) rules. The progress in
neuroscience has provoked many variations and refinements of
the original idea. For instance, the divergence problem is possibly
counteracted by a synaptic scaling based on some homeostatic
self-regulation mechanisms (Song et al., 2000; Turrigiano and
Nelson, 2000, 2004; Carlson et al., 2013), and the spike-timing-
dependent plasticity (STDP) (Gerstner et al., 1996; Markram
et al., 1997; Bi and Poo, 1998) may overcome the problem of
spurious associations induced by co-active neuronswithout causal
relations. Also, there is some progress in reward-driven STDP
invoking reinforcement learning and explaining several interest-
ing experimental results (Fremaux et al., 2010; Kulvicius et al.,
2010; Frémaux, 2013).

Nevertheless, with all the variations of the original law, the con-
clusion to the question how the neuronal mechanisms organize
the behavior is still far from a convincing. In particular, unsu-
pervised as they are, these neural mechanisms should be able to
explain and realize the self-organized acquisition of sensorimotor
competencies, at a basic level at least. I claim that this requires
a more substantial change in the local rules and propose one
possible solution in this paper.

Oriented at the original metaphor that synaptic development
follows the simple law of “wiring” together what “fires together,”
the new rule changes the synaptic connectivities driven by two
incentives. On the one hand, the “wiring” is not driven by the
firing activities of the neurons but by their rates of change.
This is reminiscent of differential Hebbian learning studied in
earlier work, see Kosko (1986), Klopf (1988), Roberts (1999),
and Lowe et al. (2011). The advantage of differential over pure
Hebbian learning for the self-organized behavior acquisition has
been discussed in a concrete setting close to that of this paper
in Der and Martius (2015). On the other hand, different from
any Hebbian-like learning, the postsynaptic rate is not that of the
neuron itself but is generated by a feedback chain from the external
world the neuron is controlling. This link to the external world

is the essential new feature and is what makes the new synaptic
mechanism behaviorally relevant in an immediate way.

Neurorobotics is an ideal playground for testing this principle.
With robots controlled by a neural network, one may expect not
only new impacts for behavior generation in realistic settings but
also get some feedback on the possible role of the new synaptic
rule for biological systems. I will formulate this rule for the case
of a flat sensorimotor loop as introduced in Section “Behavior-
Driven Differential Hebbian Learning.” This minimalist control
paradigm rests on the conviction that control should be less a
prescription of what the robot is to do, but consists more in
the excitation of specific modes emerging from the irreducible
coupling of the mechanical system (robot+ environment) with
the nervous system. This whole-body paradigm is very close to
the idea of morphological computation (Pfeifer and Gómez, 2009;
Hauser et al., 2011, 2012; Pfeifer, 2012) but emphasizes more the
role of an autonomous dynamics, given the morphology. The new
unsupervised learning rule may be helpful in the realization of
embodied intelligence that has found enormous interest in the last
decade, see Pfeifer and Scheier (1999), Pfeifer andBongard (2006),
and Pfeifer et al. (2007) for excellent surveys and Ritter et al.
(2009), Maycock et al. (2010, 2011), Mori and Kuniyoshi (2010),
and Yamada et al. (2013) for applications, to name just a few.

This paper focuses on the close coupling between body, con-
trol, and environment in challenging physical settings, consid-
ering a spherical robot in Section “The Spherical,” a snake bot
in Section “The Snake,” and a hexapod in Section “Discovering
New Control Paradigms.” The examples demonstrate how the
new synaptic mechanism induces a self-determined “search and
converge” strategy in behavior space: starting from a dynamics
germ these mechanisms elicit behavioral patterns, involving the
whole body in tight conjunction with the internal mechanism.
Additionally, well aware of the no-free-lunch theorem, I discuss
in Section “Spontaneous Symmetry Breaking – the Pattern Behind
the Patterns” the general phenomenon of spontaneous symmetry
breaking, explaining how low-dimensional behavioral modesmay
emerge in high-dimensional systems seemingly out of nothing.

2. BEHAVIOR-DRIVEN DIFFERENTIAL
HEBBIAN LEARNING

Let us start with formulating the rule in a concrete setting, con-
sidering generic robotic systems in physically realistic simula-
tions. The robots are mechanical systems actuated by motors and
equipped with a certain set of sensors. The controller, a neural
network as described below, translates the sensor values observed
in a certain time horizon into commands for the motors.

2.1. Synaptic Plasticity
Let us stipulate that the only information about its body and
its interaction with the environment is given to the robot by its
vector of sensor values xt ∈Rn. The controller is a neural net-
work, mapping inputs xt into the controls yt ∈Rm. In the concrete
application, the controller is a one-layer net of tanh neurons,
described as

y = g (Cx+ h) (1)
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where C is the m× n matrix of synaptic connections and
g: Rm →Rm with gi (z)= tanh (zi). When learning this controller
with a Hebbian law, the rate of change1 of synapse Cij would
be proportional to the input xj into the synapse j of neuron i
multiplied by its activation yi, i.e., Ċij ∝ yixj. Differential Hebbian
learning on its hand would use the rates of change, i.e., Ċij ∝ ẏiẋj,
see Kosko (1986), Klopf (1988), Roberts (1999), and Lowe et al.
(2011). However, this must be modified in order to establish the
contact with the external world. For that purpose, we need an
internal representation for the relation between motor and sensor
values. Aswe need only the rates of change, we relate the new (after
a short time step) velocity vector ẋ′ to the old velocities ẋ and ẏ as

ẋ′ = Sẋ+ Aẏ+ η (2)

with the n× n matrix S and the n×m matrix A, η denoting the
error in this relation. Let us introduce a new quantity ˙̃y that is
implicitly defined as

ẋ′ = Sẋ+ A ˙̃y (3)

so that it incorporates the effect of the error, see Section “From
Directed to Circular Causation” below for a more detailed discus-
sion. The equation can be solved for ˙̃y by using the (generalized)
inverse of A. Including a decay term, we define the rate of change
of the synaptic strength as

τ Ċij = ˙̃yiẋj − Cij (4)

where τ is the time scale for the synaptic dynamics.Wewill for the
moment put the bias term h= 0, giving a law for its dynamics in
equation (11) further below.

As we will see by the experiments, this extremely simple, purely
deterministic rule [or its even more reduced counterpart given in
equation (10) below] generatesmost complex behavior patterns as
observed in the experiments. Metaphorically speaking, equation
(4) is the internal law that enables the agent to realize a self-
determined, independent development, establishing in this way its
autonomy.

This new unsupervised learning rule is characterized by the
metaphor of “chaining together what changes together.” As com-
pared to Hebbian learning, this rule not only treats time in a
more fundamental way (by considering rates of change instead of
the pure firing rates) but includes in addition the chain of cause
and effect in an inverse way from the behavior level down to the
synaptic dynamics. This step grounds the behavior at the physical
level deep in the internal world of the agent (at the level of the
synaptic dynamics). Both features together make the system able
to self-organize its behavior in close coupling between agent and
environment. In view of these arguments, we will call the new rule
behavior-driven differential Hebbian learning (BDDHL).

2.2. Empirical Gain Factor
The emergence of modes is contingent on the overall feedback
strength of the sensorimotor loop. For controlling the latter,
we introduce a gain factor for the neuron so that the action is
defined as

y = g
(
κĈx+ h

)
(5)

1We use the common overdot notation for rates of change or velocities.

instead of equation (1), where the C matrix is obtained from
equation (4) and Ĉ is normalized i.e., Ĉ=C /||C|| with ||C|| the
(Frobenius) norm of C. κ is an empirical factor of order one that
has to be chosen such that the overall feedback strength is slightly
overcritical. In the subcritical region, the dynamics converges
toward the resting behavior. In order to avoid numerical problems
in this regularization procedure, we may either add a very weak
noise to the vectors ˙̃y and ẋ in equation (4) or regularize the
expression for Ĉ. In applications, an individual gain factor for each
neuron is often more appropriate. This is strongly supported by
neurophysiological findings on synaptic normalization (Caran-
dini and Heeger, 2011), such as homeostatic synaptic plasticity
(Turrigiano and Nelson, 2004), and the balanced state hypothesis
(Tsodyks and Sejnowski, 1995; Monteforte and Wolf, 2010).

2.3. A First Discussion
Some obvious properties of that controller can easily be seen from
following the signal flow in the closed sensorimotor loop (con-
sider h= 0 for this argument). In each time step, the controller
receives x and generates at first the postsynaptic potential z=Cx.
By construction,Cx is a linear combination of velocities so that the
controls y= g(Cx) also live in velocity space but are interpreted by
the actuators as new target positions. So, the system can have a
fixed point (FP) only if spatial positions (like the angle of a hinge
joint) and the associated velocities (like the angular velocity of that
hinge joint) are compatible over a time horizon set by τ . Trivially,
there is a FP matching that condition if the controlled system is
at rest so that ẋt = 0 for t≫ τ . In fact, with ẋ= 0 we have C= 0
implying y= 0, i.e., all actuators are at their central positions (in
the present setting andwith h= 0). As the experiments show, if the
gain factor is subcritical, this FP is even an attractor of the system
with a wide basin.

However, the actual life of the system happens outside of that
basin. In the behaving system, i.e., with velocities ẋ ̸= 0, the target
positions of the actuators are defined as a linear combination of
these (past) velocities, which in general will be different from the
values of x given by the current pose of the robot. This challenges a
strong response of the system that on its hand is changing C what
is producing new values for y, pulling x into new directions, and so
on. This may lead to a self-amplification of modes if the feedback
strength of the sensorimotor loop, as regulated by the gain factor
κ, is sufficiently large.

2.4. From Directed to Circular Causation
The trick leading from equations (2) to (3) is the essential step
for making the system able to self-organize. The common way
of seeing a sensorimotor loop is to consider the actions y as the
cause for the reaction of the system as reported by its sensor
values. This postulates a signal flow from sensors to actions to
new sensor values and so on. In this sense, the actions are seen as
the causes for the sensorimotor dynamics. Of course, depending
on contexts and given the complexity of the physical world, each
action may generate a variety of effects. This is reflected by the η
term in equation (2). Hence, the signal flow is still directed but not
monocausal as it interweaves a specific cause with several effects.

Still, this corresponds to a directed causality. In this already
pretty complex scenario, equation (3) introduces the auxiliary
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quantity ˙̃y, which incorporates implicitly the effects of the actions
y. As ˙̃y drives C, which on its hand determines the actions, even-
tually the actions are defined by their own effects. This is a clear
case of circular causation in this complex dynamical system of
interconnected causes and effects.With positive feedback strength
in the sensorimotor loop, this principle elicits the self-organized
behavior modes observed in the experiments.

2.5. Some Technical Details
Before going to the applications, let us note some details of the new
rule. For a first reading, this part may be skipped.

2.5.1. Learning of the Response Matrix A
Inverse relations between sensor andmotor spaces are notoriously
difficult to find as they involve the physical response of the system
to the applied controls. However, as demonstrated already in ear-
lier work on homeokinesis (Der and Martius, 2012), a very coarse
relation between these two worlds is entirely sufficient for the
phenomenon of emerging whole-bodymodes. In the experiments
of this paper, we put S= 0 so thatA is updated in each time step as

Ȧ = εA
(
ẋ′ − Aẏ

)
ẏT (6)

where ẏ is the rate of change of y in the current and ẋ′ that of x
in the next time step. The matrix A can be initialized either by
hand, reflecting the known couplings between motor values and
the corresponding sensor values, or can be found from a low-
frequency and low-load motor babbling in an initiation phase
of the development. Also, the inversion of A necessary to obtain
the virtual controls ˙̃y can be done with pseudoinverse techniques
involving inversion only in motor space, given an arbitrary num-
ber of sensors. As an alternative, the inverse matrix can also be
learned directly. Anyway, in most applications of this paper, the
matrixAwas simply taken as the unitmatrix, hypothesizing a one-
to-one sensor to motor coupling. Many technical details about
these procedures may be found in Der and Martius (2012).

2.5.2. Explicit Expressions
The update rule generates the matrix C as a weighted average over
the projectors on the past velocities in sensor space2, i.e., switching
to discrete times and usingmatrix notation,Ct being the controller
matrix at time t

Ct = ⟨ ˙̃yẋT⟩t0 ≈ 1
τ

t−1∑
t′=0

˙̃yt′ ẋ
T
t′ e−(t−t′)/τ + e−t/τC(0) (7)

As the experiments show, the weighted average can be replaced
with a simple windowing operation so that (assuming t≫ τ )

Ct =
1
τ

t−1∑
t′=t−τ

˙̃yt′ ẋ
T
t′ (8)

without losing much. In the experiments, τ ranges from 10 to 100
(roughly 0.2 to 2 s).

2The solution of the matrix differential equation τ Ċ(t) = R(t) − C(t) is used as
C(t) = 1

τ

∫ t
0 R(t′)e−(t−t′)/τdt′+e−t/τC(0). The discrete expression is obtained

by taking the Riemannian sum, which is exact if τ→∞.

These explicit expressions also reveal a basic feature of the
approach. Using equation (8) in equation (5) shows that the
controller is given by a deterministic, explicit expression over the
past sensor states. In fact, as ˙̃yt is a function of ẋt+1, we may
rewrite equation (5) as

yt = K (xt, xt−1, . . . , xt−τ ) (9)

by approximating (with a convenient time scale) any ẋt′ by xt′ −
xt′−1.

This demonstrates that the actions of the agent are defined
by an explicit, fixed function of its recent sensor history. That
this function is fixed, i.e., is not depending explicitly on time,
does not mean that the behavior of the agent is fixed. Instead,
as seen in the experiments, new experiences may well create new
histories, leading to new behaviors creating new experiences and
so on. Grounding the current behavior on its recent history is
the qualitatively new feature of the approach that produces the
observed variety of behaviors, seemingly out of nothing.

3. THE SPHERICAL

The Spherical is ideally suited for showing how BDDHL recog-
nizes and amplifies dynamical structures in sensor space, creat-
ing thereby specific behavioral patterns in physical space. The
spherical has a ball-shaped body and is driven by moving internal
masses3, shifting thereby the center of gravity, see Figure 1. The
control yi defines the target position of the mass on its axis i. The
only information the “brain” gets comes from three exteroceptive
sensors, measuring the axis-orientation (with respect to the z-axis
of the world coordinate system), and three proprioceptive sensors
measuring the positions of the masses on their respective axes.
Altogether the sensors give the robot only an extremely reduced
information on its physical state.

I have chosen this machine because it demonstrates how
BDDHL develops definite locomotion patterns starting from a
dynamics germ. Without control, the physical behavior is quite
simple if the weights are fixed in the center and the sphere is
rolling on a 2-d plane. It becomes a little more complicated when,
including friction and elasticity effects, opening the third dimen-
sion.With themasses outside of the center, the dynamics becomes
kind of staggering and with an imposed motion of the masses the
trajectory of the Sphericalmay become highly irregular, even if the
controls are harmonic. This is similar to the Barrel case treated in
some detail in Der and Martius (2012). So, any control scheme
has to make its deal with these specific physical conditions. As the
experiments show, the controller of this paper elicits without any
knowledge of the physics very well-defined locomotion modes.
Note that we use the notion of modes here as in physics, meaning
that all degrees of freedomare coherently taking part in a behavior.

In the first set of experiments, the robot is moving on level
ground that is elastic and has some friction to be as realistic
as possible. In all simulations, we choose τ = 10, h= 0, κ= 1
and start with C= 0 so that all masses are in the center (least
biased initialization). In the beginning, the robot is kicked by a

3Collisions of those masses are ignored in the simulations.
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A B

FIGURE 1 | Spherical with axis-orientation sensors. (A) Screenshot from a simulation. The red, green, and blue masses are moved by actuators (linear motors)
along the axes. (B) Schematic view of the robot with axis-orientation sensors (xi), with x1 <0. The masses can interpenetrate each other but are otherwise “normal”
physical objects. Proprioceptive sensors report the position of the masses on their respective axis.

FIGURE 2 | Parametric plots of the sensor and learning dynamics with robot on level ground. Top row: sensor values xi(t) against x0(t) when in a stable
rolling mode (left), when in one of the fast modes (middle), and in the chaotic behavior when switching between modes (right). Bottom row: several of the Cij(t) values
against x0(t) in the corresponding situations. See videos S1 and S2 on the supplementary materials site (Der, 2015).

mechanical force (an attracting force center marked by a red dot
in the simulations) so that it starts rolling. This initial motion is
rapidly picked up and amplified by BDDHL4, the most common
mode being the rotation around one of the axes with the masses
moving periodically on the other two axes. This mode is very sta-
ble against moderate external perturbations but can be switched
into another of those modes by a very heavy kick, see video S1 on
the supplementary materials site (Der, 2015).

When left alone, the future fate of the robot depends strongly
on the learning rate εA of the response matrix A, see equation (6).
This 6× 3 matrix consists of two submatricesAa andAw mapping
the control vector y to the axis orientation and the weight posi-
tion sensors, respectively. In the experiments, we choose initially
Aa = I and put all other matrix elements to 0. With εA below some
critical value εcrit, the emerging mode is stable for a very long
time. With faster model learning, the system develops through
a sequence of metastable rolling modes with widely differing

4Provided the parameter κ is large enough.

characteristics, developing also a kind of lolloping mode and very
fast locomotion as demonstrated in video S2 on the supplemen-
tary materials site (Der, 2015). In this way, the robot may be said
to explore its behavioral spectrum of locomotion. More details are
revealed by the parametric plots of the sensorimotor dynamics,
showing a high degree of sensorimotor coordination when in the
mode and a highly irregular behavior in the transition regions, see
Figure 2.

In a next series of experiments, the robot is dropped into a
large circular basin with an elastic, wavy ground, see video S3
on the supplementary materials site (Der, 2015). Dropped a little
outside the center, the robot starts rolling downhill passively but,
different from level ground, the robot first has to overcome an
initial “orientation” phase with irregular motions, although there
is no noise or any external stochasticity. After that, the robot goes
into a stable mode running at constant height in the basin. Upon
increasing εA a little, the sphere goes through several metastable
states – running in orbits at a certain height – and leaves the
basin after another increase in the learning rate εA, see also
Figure 3.
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FIGURE 3 |Motion of the Spherical in a basin. Trajectory as seen from above (left panel), parametric plot of the controls yi(t) with i ∈ {1,2,3} vs. the sensor x2(t) in
the early “orientation” phase (middle) and later on when the robot is in an orbit of constant height in the basin (right).

Video S4 shows the behavior when five robots are started at
the same time. Despite strong interactions between the individual
robots, all five reach (essentially) the same orbit after some time.
Two of the robots are seen to even return to their orbits after
colliding. Later, the learning rate εA was increased making the
robots to spiral higher and higher, eventually leaving the basin.

Interestingly, without knowing anything about the geometric
structure of the world the robot is moving in, the emergence of
the stable mode demonstrates that BDDHL, in a particular way, is
sensitive to the agent–environment coupling (ACE). This will even
be more obvious from the next example.

4. THE SNAKE

Let us consider another machine – the Snake – in order to
demonstrate the emergence of fundamental modes by the self-
amplification process. This machine is completely different in
physics as compared to the Spherical. Yet, we apply the same
controller network, differing only in the number of motor neu-
rons and the nature of the sensors, and apply the DHL rule as
defined above, tuning nothing but the overall feed-back strength
given by κ and the time scale τ . In this setting, mode generation
will be established as a scalable phenomenon in the following
experiments.

The Snake robot is composed of k capsules connected pairwise
by a ball joint with two degrees of freedom (DOF) corresponding
to two angles running from −ϕ to ϕ coded as y=−1 and y= 1.
In every step, each angle is measured and reported as sensor value
−1< xi < 1. The motors driving each DOF receive a target value
for the desired joint angle in the next step. The translation into the
physical forces (like the torques of a joint) is done by an embedded
PID controller tuned such as to simulate the elasticity of muscles.
Driven by the physical forces acting between the individual ele-
ments, this elasticity effect makes the true angles to differ vastly
from their target values once the robot is in full activity. Let me
emphasize that all the information the robot has comes from these
proprioceptive sensors giving no information about the physical
situation of the robot in its environment.

4.1. Simplifying the Learning Rule
Despite this high physical complexity, the experiments show that
the forward model, given by the matrix A, can be kept very
simple – it turns out that it is sufficient to learn the model by a
simple, low-frequencymotor babblingwhen the joints are without
load (as it would be in 0 gravity space without obstacles and/or

ground contact). In the current setting, this reduces the forward
model to A= I. As it turns out, the concomitant model learning
can be switched off altogether so that equation (4) becomes

τ Ċij = ẋ′i ẋj − Cij, (10)

where ẋ= ẋ(t) and ẋ′ = ẋ(t+ 1) are the rates of change of the joint
angles as reported by the sensors. This simplified BDDHL rule is
what was used in the experiments discussed in the following, i.e.,
in both the Snake and in the Hexapod case, as well as in many
other applications done so far. Together with the normalization
procedure [equation (5)], this extremely simple rule was found in
the applications to elicit within minutes (real time) an amazing
variety of sensorimotor patterns without any scaffolding from
outside.

In the experiments, in all cases, the controller was initialized in
the least biased setting, meaning C= 0 and h= 0 so that all actu-
ators are in their central positions. In the Snake case, this means
that the body is completely stretched. This situation corresponds
to the trivial attractor, where the system is at rest so that, initially,
the system must be started by a mechanical impact on the robot
body5 or by adding some noise to the sensor values.

4.2. Emerging Locomotion Patterns
In a first set of experiments, we put the snake on even ground
giving it a kick in the very beginning and whenever it comes to
rest. What we observe is that the system develops right from the
outset after a very short time (seconds) a collective mode with all
degrees of freedom changing coherently. What kind of mode may
develop in this initial phase depends on the initial kick and/or
the sequence of kicks one is applying in order to get the system
going. In the experiments, we see two qualitatively differentmodes
emerging, either ameanderingmotion like crawling with a certain
velocity over ground, or a kind of siderolling, reminiscent of the
sidewinding motion known from snakes in sandy deserts, which
has also been reproduced by artificial evolution (Prokopenko
et al., 2006), see videos S5 and S6 on the supplementary materials
site (Der, 2015).Figure 4 gives a few examples of emergingmotion
patterns together with the C matrices. Obviously, the latter show
distinct structures in close relation to the motion patterns. This
will be discussed in Section “Spontaneous Symmetry Breaking –
the Pattern Behind the Patterns” below.

These emerging locomotion modes in general are metastable
but may last for very long times if there are no external

5In the simulator, this is realized by a force center marked by a red dot in the videos.
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FIGURE 4 | The controller matrix C (above) with the Snake in various stable siderolling locomotion modes (below).

perturbations. The system can be forced by mechanical kicks to
leave the current mode, but is engaging into another mode after
some time, often just a few seconds real time, see video S6 on
the supplementary materials site (Der, 2015). In the transitional
phase, the system is highly irregular, as is best seen by considering
the parametric plots in Figure 5.

4.3. The Constitutive Role of the
Agent–Environment Coupling
Another point of interest is the active role of the
agent–environment coupling in generating the behavior.
This is demonstrated by two effects. On the one hand, modes
may switch in a definite way by interacting with the environment.
When colliding with a wall, or any other obstacle, the Snake will
change actively its direction of motion so that it kind of reacts to
the collision with the boundary, see videos S8 and S9. Note that
there is no contact sensor or the like, the Snake simply reacts to
the different coupling with the environment it experiences at the
boundary. In the collision, the velocities of the joint angles go to
0 (due to the friction between body and obstacle) giving rise to a
mode switching.

On the other hand, the modes are a direct consequence of the
agent–environment coupling. This becomes most obvious when
this coupling is switched off. Let us consider an experiment with
the robot in a stablemode (rolling or crawling). As video S7 on the
supplementary materials site (Der, 2015) shows that the modes
decay rapidly once the gravity is temporarily being switched off
so that the contact with the ground is lost. So, the coupling with
the ground is an inexorable ingredient of the mode formation
and existence. As an explanation, we note that, given the friction
and elasticity of the ground, the different degrees of freedom
strongly interact by the forces exerted on each other whenmoving
on the ground. More details on this so-called physical cross-talk

effect may be found in Der (2014). This physical cross-talk has an
immediate influence on the velocities of the sensor values, which
feeds back to the behavior via theCmatrix in a synchronizing way.

Videos S8 and S9 demonstrate another effect of the
agent–environment coupling: when colliding with a wall or
any other obstacle, the Snake experiences a strong physical cross
talk by the reactive forces exerted on the joints. This leads, via
the induced synaptic dynamics, to a collective reorganization of
the system that expresses itself as a reversion of the locomotion
velocity. Note that there is nothing like a contact sensor reporting
the collision. Instead, the emerging reaction is a pure whole
system effect, generating a variety of reactions depending on the
circumstances.

4.4. Emergent Dimensionality Reduction
Another important feature is the emergent reduction of dimen-
sionality when converging to themode. At amore qualitative level,
the parametric plots are a convincing indication that the system
is confined to a low-dimensional manifold at least in a blurred
sense, see Figure 5. Interestingly, we also observe that the life time
of a mode is directly related to the structure of the parametric
plot. The more stable a mode is, the cleaner are the orbits of the
sensor values in the parametric plot and the closer is the system to
moving on a low-dimensional manifold. Moreover, the life time
of the modes is observed to be directly related to the velocity of
the Snake over ground. So, the higher the velocity of locomotion,
the cleaner the plot. This may be explained by the assumption that
the synchronization via the forces across the ground is best if the
DOFs cooperate in producing an effective locomotion pattern.

On a quantitative level, there are first results (Martius and
Olbrich, 2013) that the dimension of the manifold is a little above
two, stipulating an appropriate coarse graining. Note that the
phase space of the constrained physical system is of 2× (6+ 2K)
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FIGURE 5 | Parametric plots demonstrating the formation of a mode and the emerging dimensionality reduction. The first three panels depict the sensor
values xi(t) with i= 0. 13 against the controller output y6(t) in a time interval of 500 steps (10 s). Top left depicts the behavior in the transition phase between two
modes with fully developed chaos, top right depicts the formation of a new mode, and bottom left corresponds to the fully developed mode demonstrating the high
degree of sensorimotor coordination. The time between these three phases is about 1min. The bottom right depicts the behavior of some of the matrix elements of
C vs. y6, demonstrating the tight correlation of the synaptic dynamics with the behavior of the physical system.

dimensions, with K+ 1 the number of segments and K= 8
in the video.

5. DISCOVERING NEW CONTROL
PARADIGMS

The last example is to demonstrate the “creative” power of
BDDHL to discover new ways of controlling high-dimensional
systems. For this purpose, let us modify our system by adding a
rule for the dynamics of the bias vector h∈Rm in equation (1).
The idea is that the bias dynamics drives the neurons toward their
region of maximal sensitivity. With the bipolar tanh neurons used
in this paper a convenient choice is

ḣ = −εhy, (11)

where y is the output vector of the controller neurons as defined by
equation (5) and εh is the update rate to be chosen by hand. This
dynamics is of particular interest in hysteresis systems as discussed
in earlier work (Der and Martius, 2012).

For a discussion, let us consider still another machine, the so-
called Hexapod, see Figure 6. Apart from its morphology, the
robot is constructed in its functionality like the Snake robot, with
synaptic dynamics given by equation (10) and the bias dynamics
of equation (11). As with the Snake, we may put A≈ I and con-
sider first the case of a diagonal controller matrix C= cI. Then,

FIGURE 6 | The Hexapod.

the system dynamics is split into individual, decoupled feedback
loops. As discussed inDer andMartius (2012) andDer (2014) and
others, if h= 0 and the coupling strength c is overcritical, each of
these loops has two FPs. Considering only the six vertical shoulder
joints, the system has 26 FPs corresponding to each joint angle
either high or low.
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FIGURE 7 | Just for fun? Stotting behavior in animals. The animals spring into the air vertically with all feet lifting simultaneously. The evolutionary advantage
seems to be unclear. Authors: Yathin Sk (left), Pam from near Matamata (middle), Rick Wilhelmsen (right), all pictures from Wikimedia commons.

If the h dynamics is switched on, each of those individual
circuits becomes a so-called hysteresis oscillator producing a peri-
odic oscillation. Interestingly, these non-linear oscillators have a
high tendency to synchronize so that collective locomotion and
other dynamical patterns are created, see for instance the so-called
A robot in Der and Martius (2012) and the videos under
playfulmachines.com.

5.1. Experiments – From Motion Germs to
Organized Behavior
Now let us drive the parameters of the controller by equation
(10) together with the bias dynamics equation (11). Depending on
both the starting conditions of the mechanical system and of the
controller, we get a vast variety of possible behavior patterns. In all
experiments, we start with the least biased controller using C= 0
and h= 0 so that y= 0, corresponding to the central position of
all actuators. Jumping patterns emerge in a natural way if we drop
the robot from a certain height. With the trunk in a horizontal
pose, the robot hits ground with all its legs at the same time.
Due to the muscle-like flexibility of the motor-joint system, the
robot responds with a damped vertical oscillation. Similar to the
Spherical case treated in Section “The Spherical,” the BDDHL
controller picks up and amplifies this motion germ so that the
robot almost immediately executes a more or less stable hopping
motion, see video S10 on the supplementary materials site (Der,
2015).

Jumping with all four legs into the air simultaneously is called
stotting or pronking and is observed in many quadruped ani-
mals, with gazelles in particular, see Figure 7. It seems not to
be observed in hexapods but we will call the emerging motion
patterns also a stotting behavior. With quadrupeds, there must be
some evolutionary advantage for the development of this behavior
but it seems not to be clear what exactly that is. Nevertheless, it is
interesting that BDDHL automatically develops such a behavior
without any rewards or evolutionary pressure. I will give an argu-
ment in terms of the symmetry group considerations that may
explain the preferential emergence of this behavior, see Section
“Spontaneous Symmetry Breaking – the Pattern Behind the Pat-
terns” below. Moreover, the frequency of this stotting motion
pattern can be regulated by the value of εh in a certain range.

FIGURE 8 | Structure of the control matrix when in the jumping motion
pattern (left). The upper left 12×12 matrix, referring to the shoulder joints,
shows a regular chess board-like pattern. In a later, more complex motion
(right) the chess board pattern has been resolved into a more complex
geometrical structure, indicating a more intricate cooperation between the
various degrees of freedom. Quite generally, different modes correspond to
different geometric patterns of the control matrix.

Shaping the pattern is also possible by playing with the time
scale parameter τ of equation (4) and the gain factor of the neu-
rons κ. By varying these parameters while the robot is behaving,
the robot can also be brought into a forward jumping behav-
ior, sometimes called a bound gait (Yamasaki et al., 2013), see
video S11.

5.2. Stotting and Collective Hysteresis
The jumping pattern gets an explanation if we look at the emerged
structure of the controller matrix C that defines the behavior
together with the bias dynamics of equation (11). As illustrated
by Figure 8, behaviors are identifiable by the geometrical pattern
of their control matrix. It is interesting to see that and how (see
below) BDDHL develops control structures that are intimately
related to the physical properties, like the dynamics and morphol-
ogy, of the mechanical system it is controlling.

In the stotting case, it is essentially the synchronous motion
of the vertical shoulder joints that generates the jumps. This is
directly reflected by the large values of the corresponding sensor
to motor coupling elements of the upper left 12× 12 matrix.
Numerically, we observe that all matrix elements involving the
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up–down shoulder joints, i.e., C(0,0), C(0,2), . . . , C(10,10) are
self-regulating toward roughly the same value c= 0.2. Ignoring all
the other (much smaller elements) for the moment and putting
h= 0, the systemhas two stable FPs corresponding to all legs either
up or down simultaneously.

This is easily explained by comparing the present situation with
that of the individual hysteresis loops (see above) generating 26

FPs if c> 1. In the present situation, a hysteresis loop is generated
by the cooperation between the individual feedback loops. In
fact, summing the feedback strengths of all loops contributing
to one motor output gives just the slightly overcritical feedback
6× c≈ 1.2 for the signal flow through that neuron. So, all the
feedback loops are intermingled in a systematic way and when
including the h dynamics, a strongly synchronized motion is
emerging. Importantly, as the videos show, the repeated contact
with the ground helps stabilizing this synchrony by the muscle-
like flexibility of the motor-joint system. This is another example
of the constitutive role of the agent–environment coupling.

We may call the emerging control scheme a whole-body hys-
teretic controller and note that this new way of controlling
emerged directly from the BDDHL rule under the given physical
initialization. With more complex Cmatrix patterns, see Figure 8,
more complex motion patterns are readily produced by this new
control paradigm. This will be investigated in a later paper. It is
also to be noted that the pronounced systematics in the structure
of the controller matrix can also be used for editing behaviors
ex post.

Many other interesting motion patterns can be seen by the
videos on the emergence and decay of locomotion patterns at the
beginning of the supplementary material page (Der, 2015).

6. SPONTANEOUS SYMMETRY
BREAKING – THE PATTERN BEHIND THE
PATTERNS

The role of symmetries of the system for the pertinent motion
patterns has been extensively studied in the literature, see Schöner
et al. (1990), Collins and Stewart (1993), Strogatz and Stewart
(1993), Golubitsky et al. (1998, 1999), van der Weele and Banning
(2001), Golubitsky (2012), and Tero et al. (2013). In those works,
gaits are driven by central pattern generators (CPGs) that are con-
structed of non-linear oscillators. The CPGsmay be considered as
open-loop controllers imposing their rhythms on the mechanical
system as was the case in the earlier models (Collins and Stewart,
1993; Strogatz and Stewart, 1993; Golubitsky et al., 1998, 1999),
or they may respond to the interaction with the body, closing the
sensorimotor loop, see Tero et al. (2013).

6.1. Geometric Symmetries
Systems of coupled oscillators are well known from classi-
cal mechanics and can be analyzed to some degree. As the
investigations show, the various gaits can be associated with the
symmetries of the controlled system. In particular, one can study
the role of the invariance of the body’s geometry against permuta-
tions. With quadrupeds, these are the invariance against right–left
or back–front permutations, e.g., in the case of the Hexapod, the

corresponding symmetry group is given by the permutations of
all legs (assuming complete forward backward symmetry). In the
periodically driven systems, there is still the invariance against
time shifting by the period duration T.

In those papers, starting from the most general group com-
prising the maximum number of invariance, hierarchies of sym-
metry groups were constructed by progressively reducing the set
of invariance. Special behaviors, such as different locomotion
patterns, can be associated with a definite symmetry group. For
instance, stotting may be associated with the group of maximum
symmetry. Transitions between gaits can be associated with sym-
metry breaking bifurcations (Collins and Stewart, 1993; van der
Weele and Banning, 2001). So, the approach leads to natural hier-
archies of gaits, ordered by symmetry, and to natural sequences of
gait bifurcations.

In the bifurcation scenario discussed in those papers, symmetry
breaking was induced by changing the controller parameters, such
as the amplitude and frequency of the driving force in Collins
and Stewart (1993) and van der Weele and Banning (2001), from
outside: when crossing the bifurcation point, the system becomes
instable and the system state jumps into one of the emerging alter-
natives. With BDDHL, we have a self-referential system (Der and
Martius, 2012), a dynamical system that changes its parameters by
itself, driven by the BDDHL mechanism.

6.2. Symmetries of the Physical Dynamics
The geometric symmetries are only the upper level of the whole
spectrum of symmetries associated with the physical dynamics
of the mechanical system. For a sketch, let us consider the robot
in its least biased initialization as discussed above, correspond-
ing to the central position of all actuators (with corrections due
to the load on the joints). When linearizing around that state,
the resulting dynamical system is characterized by a bunch of
symmetries like the invariance against inverting the sign of joint
angles. These symmetries are approximate since they can be
perturbed by non-linearities, the actions of the controller, and
the interaction with the environment and/or other body parts.
Yet, starting from an unspecific dynamics germ, we observe the
emergence of motion patterns reflecting the original symmetries
of the physical system to a high degree [the principle of parsimo-
nious symmetry breaking, see Der and Martius (2013) and Der
(2014)].

When starting with the least biased initialization, i.e., C= 0
and h= 0, these broken symmetry patterns are emerging in the
interaction process of the controller with the body and the envi-
ronment. This has been demonstrated by the emerging struc-
tures of the controller matrix C, see Figures 4 and 8, which
directly reflect the permutation symmetries of the body. Why
is that? The decisive point in this scenario is the fact that the
BDDHL mechanism is invariant against just the involved sym-
metry groups. Considering the explicit expressions for the C
matrix given in equations (7) and (8), this is most obvious in
the case of sign inversion and permutations of the sensor–motor
pair x,y. A more involved symmetry is given by rotations of the
sensor–motor space. For a discussion, let us consider the case
A= I as discussed with the Snake and the Hexapod. With x →
Ux where U is a rotation matrix so that UT =U−1, we obtain
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Cx → UCx so that, according to equation (1), y → Uy. This
establishes the (approximate) invariance of the system against
(x, y)→ (Ux, Uy) (if the non-linearities can be ignored, as is
the case in the starting phase of a mode out of the least biased
initialization).

Having stated that, why do the symmetry broken motion pat-
terns emerge? The point now is that BDDHL, with an over-
critical value of the global feedback strength (controlled by the
gain factor κ), destabilizes the system so that an initial pertur-
bation is amplified. As this amplification process is (approxi-
mately) invariant under the operations of the symmetry group,
the emerging dynamics stays in the largest symmetry group
that is compatible with the initial perturbation. This is like
a kind of conservation rule for the symmetry group the sys-
tem is in. This argument explains why the system goes for
the largest group, the stotting in the case of the Hexapod:
the larger the group, the larger is the probability that the ini-
tial perturbation is consistent with the group, in the sense
that it is approximately invariant under the operations of the
group.

The initial perturbation can also be realized by some noise
that is invariant under the operations of the group. Then, the
perturbation is fully unspecific so that the symmetry breaking
is truly spontaneous. Otherwise, as already mentioned, when
kicking the system by an external impact, the perturbation is not
fully unspecific, one even can usher the system into a specific
symmetry group, like in the case of the Snake with its emerging
crawling or siderolling modes. This is another interesting feature
of the BDDHL approach.

7. CONCLUSION

This paper proposes a new synaptic law for the organization
of behavior that replaces Hebb’s original metaphor of “wiring”
together what “fires together” by “chaining together” what
“changes” together, linking themotor neurons by a feedback chain
to the behavior in the physical world consisting of body and
environment. This feedback chain is the essential new feature
of the proposed synaptic rule and is what makes the synaptic
dynamics behaviorally relevant in an immediate way.

In applications to a number of complex robots, it was demon-
strated that neurocontrollers with that new rule elicit an amaz-
ing variety of complex behavior patterns, contingent on the
specific embodiment and the agent–environment coupling. The
patterns have been shown to directly reflect the symmetries
of the body and the agent–environment coupling. In particu-
lar, a physical system with many degrees of freedom like the
Snake is seen to self-organize into definite locomotion pat-
terns without rewarding or prestructuring the system in any
way. This example also showed the tremendous reduction of
dimensionality emerging in the controlled systems. For instance,
in the examples with the Snake, the constrained physical sys-
tems live in a phase space of up to 40 dimensions. Yet, the
controlled system converges within seconds toward a (blurred)
low-dimensional manifold, hosting the definite locomotion
pattern.

The results suggest new ways for robotics. With the self-
organization ability realized by the BDDHL rule, robots can
be driven into different behaviors by external influences and
can switch between behaviors just by interaction with the envi-
ronment or a human trainer. This also opens new ways for a
kinesthetic teaching as will be detailed in a later paper. BDDHL
realizes a “search and converge” strategy in behavior space that
can be guided by just two metaparameters – the time scale τ

of the synaptic dynamics and the gain factor κ of the con-
troller neurons. Different from most search strategies, BDDHL
realizes a self-determined search, a deterministic process with
actions being defined as a plain function of the sensor values
(over the recent past) so that all behaviors are repeatable and
utilizable as building blocks in behavioral architectures. This
is an advantage over other approaches, such as homeokinesis
(Der and Liebscher, 2002; Der and Martius, 2012), which also
produce interesting behaviors but are more inclined to search
and less to a convergence toward definite (though metastable)
behaviors.

Neural networks often are blamed for the opacity of the solu-
tions found by a learning procedure. Interestingly, this is different
with the present approach. In the experiments with both the
Snake and the Hexapod, definite structures of the synaptic matrix
were observed, revealing transparent relations between emerg-
ing behavior and control structure. So, given the pronounced,
behavior-related structure in the controller matrix, the emerg-
ing behaviors can be understood and even be edited to shape
behaviors into desired directions.

The presented results may also have some impact on biology.
It was demonstrated that an extremely simple synaptic rule can,
contingent on the morphology and the agent–environment cou-
pling, elicit a vast variety of behavioral patterns that may have
an immediate evolutionary advantage. On a speculative level,
this may be considered as a new factor in natural evolution. It
is commonly assumed in natural evolution that new behaviors
are the result of a mutation in morphology accompanied by an
appropriate mutation of the controller so that the probability of
selection is the product of two (very small) probabilities. Had
nature discovered the BDDHL rule, new species with new behav-
iors could emerge just by mutations of the morphology, trust-
ing that BDDHL will drive the modified system to new, fitness
relevant modes of behavior. As proposed by Baldwin (Baldwin,
1896; Weber and Depew, 2003), such new behaviors, reoccurring
in every generation, could be made permanent eventually by
another mutation freezing the behavior. It would be interesting
to look for indications of the new synaptic plasticity in living
systems.

Let me conclude with a few words on the question in what
sense are the emerging behaviors autonomous? The nature of
autonomy is still widely debated, see, for instance Di Paolo (2005)
and Bertschinger et al. (2008). My attitude is a very modest one,
just stating that autonomy is large if the agent unfolds a rich
spectrum of different behavioral patterns, driven by an internal
law that is as free as possible on the wishes and intentions of its
designer. This freedom postulate is fulfilled almost ideally with
the rules of equation (4) or (10) as the behavior of the agent
is entirely determined by a universal law that is formulated at
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the synaptic level, two levels deeper than that of the behavior,
and it is formulated entirely in terms of the sensor values the
robot has generated by its actions in its recent past. So, in this
setting, there is no room for the designer to sneak its intentions
in. However, quantifying the richness of the behavior spectrum is
an open question so that, in this sense, autonomy remains in the
eyes of the beholder.
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