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Just Imagine! Learning to Emulate
and Infer Actions with a Stochastic
Generative Architecture
Fabian Schrodt* and Martin V. Butz

Cognitive Modeling, Department of Computer Science, University of Tübingen, Tübingen, Germany

Theories on embodied cognition emphasize that our mind develops by processing
and inferring structures given the encountered bodily experiences. Here, we propose a
distributed neural network architecture that learns a stochastic generative model from
experiencing bodily actions. Our modular system learns from various manifolds of action
perceptions in the form of (i) relative positional motion of the individual body parts, (ii)
angular motion of joints, and (iii) relatively stable top-down action identities. By Hebbian
learning, this information is spatially segmented in separate neural modules that provide
embodied state codes and temporal predictions of the state progression inside and
across the modules. The network is generative in space and time, thus being able to
predict both, missing sensory information and next sensory information. We link the
developing encodings to visuomotor and multimodal representations that appear to be
involved in action observation. Our results show that the system learns to infer action types
and motor codes from partial sensory information by emulating observed actions with the
own developing body model. We further evaluate the generative capabilities by showing
that the system is able to generate internal imaginations of the learned types of actions
without sensory stimulation, including visual images of the actions. The model highlights
the important roles of motor cognition and embodied simulation for bootstrapping action
understanding capabilities. We conclude that stochastic generative models appear very
suitable for both, generating goal-directed actions and predicting observed visuomotor
trajectories and action goals.

Keywords: artificial neural networks, mental imagery, embodied simulation, sensorimotor learning, generative
model, action understanding, action emulation, Bayesian inference

1. INTRODUCTION

It appears that humans are particularly good at learning by imitation, gaze following, social
referencing, and gestural communication from very early on (Tomasello, 1999). Inherently, the
observation of others is involved in all of these forms of social learning. Learning by imitation, for
instance, is assumed to develop from pure mimicking of bodily movements toward the inference
and emulation of the intended goals of others from about 1 year of age onward (Carpenter et al.,
1998; Want and Harris, 2002; Elsner, 2007). Yet how are goals and intentions inferred from visual
observations, and how does this facilitate the activation of the respective motor commands for
imitation? The intercommunication between specific brain regions, which are often referred to as
mirror neuron system or action observation network, has been suggested to enable this inference
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of others’ intentions and imitation of their behavior (Buccino
et al., 2004; Rizzolatti and Craighero, 2004, 2005; Iacoboni, 2005,
2009; Iacoboni and Dapretto, 2006; Kilner et al., 2007). While
a genetic predisposition may supply the foundation to develop
such a system (Rizzolatti and Craighero, 2004; Ferrari et al., 2006;
Lepage and Théoret, 2007; Bonini and Ferrari, 2011; Casile et al.,
2011), its development – per se – seems to be strongly determined
by social interaction (Meltzoff, 2007; Heyes, 2010; Nagai et al.,
2011; Froese et al., 2012; Saby et al., 2012), sensorimotor experi-
ence, motor cognition, and embodiment (Gallese and Goldman,
1998; Catmur et al., 2007; Gallese, 2007a; Gallese et al., 2009).
Due to observations such as the foregoing, cognitive science has
recently undergone a pragmatic turn, focusing on the enactive
roots of cognition (Engel et al., 2013).

Embodied cognitive states, according to Barsalous simulation
hypothesis (Barsalou, 1999, 2008), are situated simulations that
temporarily activate – or re-enact – particular events by means
of a set of embodied modal codes. However, if mental states are
grounded in own-bodily experiences and self-observations, how
does the brain establish the correspondence to the observation of
others in the first place?Wehave recently shown that this so-called
correspondence problem [cf. Heyes (2001) and Dautenhahn and
Nehaniv (2002)] can be solved by an embodied neural network
model that is adapting to the individual perspectives of others
(Schrodt et al., 2015). This model clustered sensorimotor con-
tingencies and learned about their progress in a single competi-
tive layer composed of cells with multimodal tuning, enabling it
to infer proprioceptive equivalents to visual observations while
taking an actors perspective.

In this paper, we propose a stochastic variant of the clustering
algorithm, which we introduced in our previous work, that is
generative in multiple, distributed domains. The system can be
considered to develop several hiddenMarkovmodels from scratch
and incorporates them by integrating conditional state transition
probabilities statistically. It thereby learns an embodied action
model that is able to simulate forward in time consistent visual-
proprioceptive self-perceptions. This bodily grounded simulation
is primed when observing biological motion patterns, leading
to the ability to re-enact the observed behavior using the own
embodied codes. Hence, our model supports the view that mental
states are embodied simulations [cf. Gallese (2007b)] and provides
an explanation to how the perception of others’ actions can be
consistently incorporated with the own action experiences when
encoded at distributed neural sites.

Our model can be compared to an action observation net-
work, in that it models the processing of (i) visual motion sig-
nals, believed to be processed in the superior temporal sulcus;
(ii) spatiotemporal motor codes, which can be related to neural
activities in the posterior parietal lobule and the premotor cortex,
and (iii) compressed, intentional action codes, which have been
associated with neural activities in the inferior frontal gyrus [see,
e.g., Iacoboni (2005), Kilner (2011), and Turella et al. (2013)].
Accordingly, we train and evaluate a tripartite network structure,
interpreting and referring to (i) relative positional body motion
as visual biological motion stimuli, (ii) joint angular motion as
motor codes, and (iii) action identities as intentions or goals in
our experiments. In doing so, we focus on bodily movements,

including walking, running, and playing basketball, where the
stimuli originate frommotion captures of human subjects. Despite
the simplicity of these stimuli, our results show that it is possible
to identify compressed intention codes from observing biological
motion patterns and to concurrently infer consistent motor emu-
lations of observed actions using distributed, bodily grounded
encodings. Analogously, actions can be simulated in visual and
motor modalities when only an intention prior is provided, offer-
ing a possible explanation to how simulation processes may drive
forth goal-directed and imitative behavior, and link it to social
learning.

In the following, we refer to related work in Section 2 and spec-
ify the model architecture, including its modularized structure
as well as the probabilistic learning and information processing
mechanisms in Section 3. We then describe the motion capture
stimuli, the bottom-up processing, and clarify the connection of
the resulting perceptions to encodings involved in action under-
standing in Section 4. The model is evaluated on motion track-
ing data, showing action inference, completion, and imagination
capabilities in Section 5. Finally, we discuss current challenges and
future application options in Section 6.

2. RELATED WORK

Lallee and Dominey (2013) implemented a model that integrates
low-level sensory data of an iCub robot, encoding multimodal
contingencies in a single, 3D, and self-organizing competitive
map. When driven by a single modal stimulus, this multimodal
integration enables mental imagery of corresponding perceptions
in other modalities. In accordance with findings from neuro-
science, the modeled self-organizing map is topographic with
respect to its discrete multimodal cell tunings. The states gen-
erated by our model can also be embedded in metric spaces.
In contrast, however, our model encodes modal prototype vec-
tors separately and activates them stochastically. This allows to
encode multimodal perceptions without redundancies. Moreover,
it enables the resolution of ambiguities over time by predictive
interactions between the encoded modalities. Our results show
that cells can be activated by multimodal perceptions without
necessarily encoding multimodal stimuli locally, while moreover
being able to encode specific actions by means of distributed
temporal statistics.

Taylor et al. (2006) implemented a stochastic generative neu-
ral network model based on conditional restricted Boltzmann
machines (RBMs). When trained on motion captures similar to
those used in our evaluations, the model is able to reproduce
walking and running movements as well as transitions between
them in terms of sequences of angular postures. Although the
encoding capacity of RBMs is theoretically superior in comparison
to Markov state-based models because they encode multidimen-
sional state variables, the experiments show the typical tradeoff
of requiring considerably more training trials and randomized
sampling. Our model is able to expand its encoding capacity on-
demand and thus avoids both a sampling and frequency bias.
Our model, nevertheless, accounts for scalability and encoding
capacity since states are distributed over several Markov models.
This enables to learnmodal state transition densities locally and to
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reconcile them with sensory signals and cross-modal predictions
as required.

Comparable to the realization by Baker et al. (2009) of a
qualitative cognitive model suggested by Gergely et al. (1995),
intention inferences in our model are based on Bayesian statistics
given visually observed action sequences. In contrast, our model
learns the sensorimotor contingencies that facilitate this inference
without relying on specific behavioral rationality assumptions.
Comparably, the intention priors in our model are statistically
determined by assessing the own behavioral biases during an
embodied training phase. Thereby, our experiments are based on
the assumption that an observer expects an actor to behave in the
same way they would behave – that is, by inferring cross-modal
observation equivalences based on the own-bodily experiences –
and thus essentially models the development of social cognition
[cf. Meltzoff (2007)].

Similar to Friston et al. (2011), our neural network models
action understanding by inferring higher level, compact action
codes, given lower level sensory motion signals. However, in con-
trast to Friston et al. (2011), no motion primitives are provided,
but they are learned in the form of intention clusters, which
integrate sensory–motor information over space and time.

3. NEURAL NETWORK ARCHITECTURE

The stochastic generative neuralmodel consists of several stochas-
tic neural layers or modules, which process information in iden-
tical fashion. The layers can be arranged hierarchically and con-
nected selectively. Each layer calculates a normalized, discrete
probability density estimate for the determination of a state in
a specific state space. Each neuron corresponds to a possible
state, and the binary activation of a single cell corresponds to
the determination of that state. The neurons are activated by
developing and incorporating prototype tunings and temporal
state predictions. Each neuron sends intramodular state transition
predictions to the other neurons in the layer and cross-modular
predictions to associated layers, such that the distributed states
are able to develop self-preserving, generative temporal dynamics.
The development of these predictions can be compared to pre-
dictive coding (Rao and Ballard, 1999) and results in a Hebbian
learning rule similar to Oja’s rule (Oja, 1989) as described in
Section 3.3.

Figure 1 shows the particular network architecture developed
here. Referring to the human action observation network, three
layers of this kind interact with each other in a hierarchy of two
levels: at the bottom level, a vision layer processes bottom-up
visual motion cues and predicts the continuation of this visual
motion over time as well as corresponding action intentions
and motor codes. Further, a motor layer processes bottom-up
proprioceptions of joint angular motion and predicts the con-
tinuation of these signals over time as well as corresponding
action intentions and visual motion. Finally, at the top level,
an intention layer encodes the individual actions for which the
system is trained on, predicts possible action transitions over
time, and top-down the corresponding vision and motor layer
states that may be active during a particular action. Hence, at
the bottom level, top-down and generative activities are fused

FIGURE 1 | Architecture overview in the context of action inference
and simulation. The model consists of three stochastic layers: a vision layer,
a motor layer, and an intention layer. All layers predict the next state in other
layers (red arrows) and the next state in the same layer (blue arrows). The
vision and motor layers can be driven by sensory, bottom-up signals (green
arrows 1 and 2), while the top layer can be driven by top-down signal input
(green arrow 3). Normalization of a layer input is indicated by the circled Σ.

with bottom-up sensory signals, in common with the intramodu-
lar and cross-modular predictions generated by the bottom lay-
ers themselves. In a context where each bottom module repre-
sents a specific modality, the intramodular predictions can be
considered to represent the expected state progression in the
respective modality, while cross-modular predictions implement
cross-modal inferences. The cross-modular predictions enable the
inference of motor and intention codes from visual observations
during action observation, where only visual motion cues are
available.

The streams of sensory information are assumed to be provided
by populations of locally receptive cells with tuning to specific
stimuli, which is in accordance with findings in neuroscience
(Pouget et al., 2000). These populations essentially forward the
information bymeans of a full connection to the bottom stochastic
layer that reflects the correspondingmodality. Section 4 elaborates
further on how the respective perceptions and stimuli are encoded
and how they can be related to an action observation network.
This encoding has been published recently as part of a perspective-
inference model given dynamic motion patterns (Schrodt et al.,
2015). The following sections thus focus on the stochastic neural
layers on top of the populations.

3.1. Stochastic Neural Layers
Each stochastic neural layer learns a discrete, prototypic repre-
sentation of the provided sensory input information. To do so,
the layer grows a set of cells on demand with distinct sensory
tunings. The recruitment of cells and adaptation of prototypes
is accomplished by unsupervised mechanisms as explained in
Section 3.2. Each cell in a layer learns predictions of the tem-
poral progress of these prototypic state estimates in the layer.
Furthermore, each cell learns to predict the cell activations that
may be observed in other, associated layers, which is explained
in Section 3.3. An exemplary stochastic neural layer connected to
another layer in this way, together with the neural populations that
forward sensory signals is shown in Figure 2. In the following,
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FIGURE 2 | Two stochastic state layers in hierarchical compound. The
bottom-up sensory state recognition signal is provided by multiple
populations of tuned cells. The signals Pk |S provided by the match mk

between cell prototypes w⃗k and the current stimulus a⃗M are indicated by the
green connection diagram. Analogously, top-down recognition signals can be
defined. Lateral recurrences in blue represent state transition probabilities,
including the self-recurrence to preserve a state. Red lines denote
cross-modular predictions of states. Arrow head lines indicate signals that are
summed up by a cell, while bullet head lines indicate modulations of cell
inputs [cf. equation (2)].

the determination of states and incorporation of predictions is
formalized.

The layers in our model simplify competitive neural processes
such that only a single cell in each layer is activated at the same
time. Cell activations are binary and represent the event that a spe-
cific state in the corresponding state space is determined. This is
comparable to a winner-takes-all approach [cf. Grossberg (1973),
for evaluations]. However, the determination of the state in each
layer depends on a fusion of predictive intramodular and cross-
modular probabilities and sensory state recognition probabilities.
By stochastic sampling, a single cell is selected as competition win-
ner in each time step, where the winning probability is determined
by the fused inputs to each cell. In the process, the input vector to a
layer depicts a discrete probability density for the stochastic event
of observing a particular state. For this reason, each layer uses a
specific normalization of incoming signals that ensures that the
all signals sum up to 1.

We denote cells inside a layer by an index setM and cells outside
by an index set N. The binary output xk(t) of a state cell indexed
k∈M is determined by the normalized probability term

Xk(t) = P(x(t) > xj(t) ∀j ̸= k, j ∈ M)

=
netk(t)∑
j∈M netj(t)

(1)

where Xk(t) denotes the winning event probability, and
xk(t)∈ {0,1} denotes the realization of this probability or
abstract, binary cell activation calculated by stochastic sampling

at time step t. The input netk(t) to the cell k is provided by the
probability fusion

netk(t) =
(
Pk|S(t) + Pk|C(t)

)
· Pk|I(t) (2)

where Pk|S(t) is a sensory (S) recognition signal depicting the
probability that the state k is considered the current observation
given sensory inputs, Pk|I(t) is the intramodular (I) prediction of
the successor state, and Pk|C(t) is the cross-modular (C) prediction
of the succession, defined by

Pk|I(t) =
∏
i∈M

1 − xi(t− 1) · (1 − P(xk(t) = 1|xi(t− 1) = 1))

(3)

Pk|C(t) =
∑
j∈N

xj(t− 1) · P(xk(t) = 1|xj(t− 1) = 1) (4)

Taken together, equation (2) firstly fuses probabilistic sensory
recognition signals with probabilistic cross-modular predictions
coming in from the last winner cells of other layers. Then, it
restricts the activation of cells to probabilistic intramodular pre-
dictions propagated from the last winner cell in the layer to all
potential successors (including the last winner itself), as indicated
in Figure 2.

The sensory recognition probability Pk|S(t) is also responsible
for clustering the sensory streams into discrete, prototypic states.
In the following, we explain the segmentation by unsupervised
Hebbian learning.

3.2. Segmentation and Recognition of
Population-Encoded Activations
For generating the above binary stochastic cells, we use an instar
algorithm that is capable of unsupervised segmentation of nor-
malized vector spaces similar to Grossberg’s Adaptive Resonance
Theory (Grossberg, 1976a,b,c). In contrast, our approach pro-
vides state recognition probabilities and can thus be applied to
implement non-deterministic learning and recognition. Another
difference to common implementations is that cell prototypes are
created on demand and initialized with zero vectors.

We define the sensory recognition probability Pk|S(t) of a state
k∈M as a function of the congruence or match mk(t) between a
state cell’s prototype vector w⃗k and the current activation vector
a⃗M(t) jointly provided by all population cells. The concatenated
population activation dedicated to a state layer is assumed to
be normalized to length 1. Since the model is designed for a
separate learning and testing phase, we provide separate recogni-
tion functions, assuming full sensory confidence during training,
and some sensory uncertainty during testing, which generally
means observing previously unseen data. During training, this
assumption inevitably results in the sensory recognition of the best
matching state via

Ptraining
k|S (t) =

{
1 if mk(t) ≥ ml(t) ∀l ∈ M
0 else

(5)

as well as a sensory recognition that is distributed over all states
during testing, which we define by

Ptesting
k|S (t) = β · 2

1 + exp(−κ(mk(t)− 1)) (6)
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where κ denotes an uncertainty measure for sensory data, and β

denotes the maximum sensor confidence. The prototype match to
the current stimulus is described by

mk(t) =
{

a⃗M(t)⊙w⃗k
||w⃗k|| if k is recruited

θ if k is free
∈ [−1, 1] (7)

where⊙ denotes the scalar product, such that the match function
is based on the angular match between the normalized prototype
vector w⃗k encoded in cell k and the current normalized stimulus
a⃗M(t). Each layer expands its capacity on demand, comparable to
Growing Neural Gas by Fritzke (1995). When a cell has fired a
sensory recognition signal [Pk|S(t)= 1] once during training, it
is converted from a free cell to a recruited cell in the sense that
its prototype vector is adapted from zero to the current stimulus
[following the learning rule in equation (8)]. The match of a free
cell is fixed to θ, such that when no cell match is greater than θ,
the free pattern is recruited and another free cell is created with
zero vector prototype. Thus, we call θ the recruitment threshold
in the following. Assuming a small learning rate, we can ensure
that each training input is encoded in the network with a tolerance
mismatch of θ, irrespective of the amount of data, the presentation
order, or frequency. Further, it was suggested previously that
adding noise to the match function introduces a specific degree of
noise robustness to this segmentation algorithm during training
(Schrodt et al., 2015).

Prototype vectors of cells are trained to represent the current
population activation using the Hebbian inspired instar learning
rule:

∇w⃗k(t) = ηs · xk(t) · (⃗aM(t)− w⃗k(t)) (8)

where ηs denotes the spatial learning rate. Since learning is gated
by the binary cell realization xk(t), only the prototype of the
winner cell is adapted.

During testing, the sensory recognition function [equation (6)]
ensures the distribution of sensory state recognition probabili-
ties over all stochastic cells rather than a single one to account
for sensory uncertainty. Perfectly matching cells are recognized
with probability β (before normalization), whereas the probability
to recognize states not perfectly in the center of the stimulus
decreases in dependency on κ and the mismatch. This means also
that when no learned prototype matches sufficiently well dur-
ing testing, the sensory recognition distribution becomes nearly
uniform, such that intramodular and cross-modular predictions
gain a relatively strong influence on the determination of the
current state [cf. equation (2)]. Therefore, the network is able
to dynamically switch from a bottom-up driven state recogni-
tion to a forward simulation of the state progression when sen-
sory information is unknown or uncertain. In the following, we
detail how intramodular and cross-modular predictions can be
learned by a Hebbian learning rule that is equivalent to Bayesian
inference.

3.3. Learning Intramodular and
Cross-Modular Predictions
Upon winning, a cell learns to predict which observations will
be made next in the same and in other layers. This is realized

by asymmetric bidirectional recurrences between cells in a layer,
representing the intramodular predictions Pk|I(t), and between
cells of two layers, representing the cross-modular predictions
Pk|C(t). Intramodular recurrences propagate the state transition
probability from the last winner to all cells in the same layer
and thus implement a discrete-time Markov chain, where Markov
states are learned from scratch during the training procedure.
Cross-modular connections bias the state transition probability
density in other layers, given the current sensory observation, by
means of temporal Bayesian inference.

Taken together, in a fully connected architecture, intramodular
and cross-modular state predictions are represented by a full
connection between all state cells in the network (including self-
recurrences). These connections generally encode conditional
probabilities for the subsequent observation of specific states.
They can be learned by Bayesian statistics, which would result in
asymmetric weights.

wij(t) = P(xj(t) = 1|xi(t− 1) = 1) =
∑

t xi(t− 1) · xj(t)∑
t xi(t− 1) (9)

wji(t) = P(xi(t) = 1|xj(t− 1) = 1) =
∑

t xi(t) · xj(t− 1)∑
t xj(t− 1) (10)

To derive a neurally more plausible learning rule to train a
weight from cell i to cell j, we transpose the derivative of this
formula with respect to time:

∂wij(t)
∂t

=

∂
∑

t xi(t−1)·xj(t)
∂t

∑
t xi(t− 1)− ∂

∑
t xi(t−1)
∂t

∑
t xi(t− 1) · xj(t)(∑

t xi(t− 1)
)2

=
xi(t− 1) · xj(t) ·

∑
t xi(t− 1)− xi(t− 1) ·

∑
t xi(t− 1) · xj(t)(∑

t xi(t− 1)
)2

=
xi(t− 1) · xj(t)− xi(t− 1) · wij(t)∑

t xi(t− 1)

=
xi(t− 1)

(
xj(t)− wij(t)

)∑
t xi(t− 1)

= ηp · xi(t− 1) · (xj(t)− wij(t)), ηp =
1∑

t xi(t− 1) (11)

With the predictive learning rate ηp set constant, this is a
temporal variant of Oja’s associative learning rule (Oja, 1989),
also referred to as outstar learning rule. Thus, this form of
Hebbian learning is equivalent to Bayesian inference under the
assumption of a learning rate that decays inversely proportional
to the number of activations of the preceding cell i. In this
case, each cell calculates the average of all observed (temporally)
conditional probability densities in the same and other layers.
However, since the states are adapted simultaneously with the
learning of state conditionals, it is advantageous to implement a
form of forgetting. Hence, we define the learning rate by ηp =

1
(
∑

t xi(t−1))α , where α< 1 implements forgetting. All state pre-
dicting weights wij are initialized equally to represent multiple
uniform distributions, and adapt in accordance with learning
rule 11.
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The capability of simulating distributed state progressions, also
without sensory stimulation, follows from the stochastic selection
of cell activations based on the learned, conditional state pre-
dictions. As a result of the bidirectional connections, the model
becomes able to infer momentarily or permanently unobservable
states and to mutually synchronize, or keep consistent, activations
in the respective layers. By pre-activating a subset of cells in a layer,
also a subset of learned state sequences can unfold. In the context
of actions, this leads to the ability to synchronously simulate the
state progression that corresponds to one of multiple encoded
bodily movements in the vision and motor layers when biased
top-down by a constant intention signal. The probability fusion
in equation (2) accounts for an approximation of the respective,
multi-conditional state probabilities. In the following section, we
describe in further detail the application of this model to action
understanding and the respective stimuli used in our evaluations.

4. MODELING ACTION OBSERVATION

The focus of this paper lies on the learning of an embodied, dis-
tributed, and multimodal model of action understanding, which
involves bottom-up as well as top-down and generative processes.
It consists of three stochastic layers, each modeling codes and
processes that are believed to be involved in action observation,
the inference of goals, and respective motor commands that facil-
itate the emulation of observed actions. The first layer comprises
visual biological motion patterns. The second layer encodes the
corresponding joint angular motor perceptions. Accordingly, the
model includes two groups of modal input populations, which
encode visual and proprioceptive stimuli. Moreover, we include
an amodal or multimodal intrinsic representation of action inten-
tions. These codes are believed to be represented at distributed
neural sites. It is typically assumed that action goals and intentions
are encoded inferior frontally, motor codes and plans posterior
parietally, and biological, mainly visually driven motion patterns
in the superior temporal sulcus [cf. Iacoboni (2005), Kilner (2011),
and Turella et al. (2013)]. Inferences and synchronization pro-
cesses between these neural sites are modeled by cross-modular
state predictions between the layers in the network, while the
intramodular predictions restrict the state progression to the expe-
rienced, own-bodily contingencies. Figure 1 shows an overview of
the implemented learning architecture in this context.

In the following, we describe the bottom-up processing chain
of our model referring to psychological and neuroscientific evi-
dence. We start with the simulation environment and the motion
capture data format that provides the respective stimuli for our
evaluations. Subsequently, we focus on important key aspects
for the recognition of biological motion, their implications, and
implementation in the model. Finally, we describe how the result-
ing perceptions are interpreted in the context of different modal-
ities involved in action perception, inference, and emulation.

4.1. Motion Captures and
Data Representation
We evaluate our model making use of the CMU Graphics Lab
Motion Capture Database (http://mocap.cs.cmu.edu/). Record-
ings from subjects performing three different cyclic movements

FIGURE 3 | Simulated body driven by motion capture data. The
left-sided image shows the limbs (blue lines between dots) and joints (green
dots) that provide relative visual and joint angular input to the model.
Moreover, three snapshots of the utilized motion tracking trials are shown:
basketball dribbling, running, and walking.

(walking, running, and basketball dribbling) in three trials each
were utilized, as shown in Figure 3. For each movement, we
chose a short, cyclic segment of the first trial as the training
set and the other two, full trials as the testing set. In this way,
the training set was rather idealized, while the testing set con-
tained more information which, although inside the same action
classes, strongly differed to the training data. Themotion tracking
data were recorded with 12 high-resolution infra-red cameras at
120Hz using 41 tracking markers attached to the subjects. The
resulting 3D positions were then matched to separate skeleton
templates for learning and testing to obtain series of joint angular
postures and coherent relative joint positions.

In the experiments, we chose the time series of 12 of the
calculated relative joint positions as input to the visual processing
pathway of the model. We selected the start and end points of the
left and right upper arm, forearm, upper and lower leg, shoulder,
and hip joints relative to the waist, as shown in Figure 3. Each was
encoded by a three-dimensional Cartesian coordinate. As input
to the motor pathway, we chose the calculated joint angles of 8
joints, each encoded by a one- to three-dimensional radian vector,
depending on the degrees of freedom of the respective joint. We
selected the left and right hip joints, knee joint, shoulder joints,
and the elbow joints, resulting in 16 DOF overall. A map of the
inputs at a single, exemplary time step is shown in Figure 3. The
visual and motor pathways are neural substructures of the here
proposed model and preprocess the raw data as described in the
following.

4.2. Aspects of Biological Motion and
Preprocessing
Giese and Poggio (2003) summarize critical properties of the
recognition of biological motion from visual observations, such
as selectivity for temporal order, generality, robustness, and view
dependence. First, scrambling the temporal order in which bio-
logical motion patterns are displayed typically impairs the recog-
nition of the respective action. This temporal selectivity is real-
ized in our model by learning temporally directed state pre-
dictions. Second, biological motion recognition is highly robust
against spatiotemporal variances (such as position, scale, and
speed), body morphology and exact posture control, incomplete
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representations (such as point-light displays), or variances in illu-
mination. We model these generalization capabilities by means of
(i) the usage of simplified forms of representation of biological
motion stimuli as described above, (ii) the extraction of invariant
and valuable information in a neural preprocessing stage, and
(iii) the simulation of observed motion with the own embodied
encodings. Third, the recognition performance decreases with
the amount of rotation an action is perceived from with respect
to common perspectives. The prototypic cells in our network
also respond to specific, learned views of observed movements.
However, the preprocessing of our model is able to also infer and
adapt to observed perspectives to a certain degree.

This neurally deployed preprocessing is a part of the model
that is not detailed in this paper. To summarize, the extraction
of relevant information results in fundamental spatiotemporal
invariances of the visual perception to scale, translation, move-
ment speed, and body morphology. This is achieved by (i) expo-
nential smoothing to account for noise in the data, (ii) calculation
of the velocity, and (iii) normalization of the data to obtain the
relative motion direction of each relative feature processed [see
Schrodt and Butz (2014) and Schrodt et al. (2014a,b, 2015) for
details]. For reasons of consistency, both the visual and motor
perceptions are preprocessed in this manner. As to visual percep-
tion, the preprocessing stage is able to account also for invariance
to orientation by means of active inference of the perspective
an observed biological motion is perceived from. Compensating
for the perspective upon observation solves the correspondence
problem, which can be considered a premise for the ability to infer
intrinsic action representations of others using the own, embodied
encodings, as detailed in our previous work. As a matter of focus,
however, we neglect the influence of orientation in the following
experiments, meaning that the orientation of the learned and
observed motions was identical.

Visual stimuli preprocessed in this manner are represented by a
number of neural populations, each encoding the spatially relative
motion direction of a specific bodily feature. Consequently, each
cell in a population is tuned to a specific motion direction of a
limb. Following this, the visual state layer accomplishes a segmen-
tation of the concatenation of all visual population activations into
whole-body, directional motion patterns. Analogously, the direc-
tions of changes in the joint angles are represented by populations
and segmented into whole-body motor codes. In the following,
we draw a comparison of this visuomotor perspective and our
representation of intention codes to findings in neuroscience and
psychology.

4.3. Visuomotor Perspective and Intentions
The superior temporal sulcus is particularly well known for
encoding (also whole-body) biological motion patterns (Bruce
et al., 1981; Perrett et al., 1985; Oram and Perrett, 1994) and
has been considered to provide important visual input for the
development of attributes linked with the mirror neuron system
(Grossman et al., 2000; Gallese, 2001; Puce and Perrett, 2003;
Ulloa and Pineda, 2007; Pavlova, 2012; Cook et al., 2014). Visual
motion cues are necessary and most critical for the recognition
of actions (Garcia and Grossman, 2008; Thurman and Grossman,
2008). As initially shown by Johansson (1973), the perception

of point-like bodily landmarks in relative motion is sufficient in
this process. Thus, we assume that the above relative directional
motion information can be perceived visually and is sufficient for
action recognition. In contrast, joint angular motion cannot be
perceived directly from such minimal visual information, which
particularly applies to inner rotations of limbs. Thus, we assume
that the directional angular limb motion is perceived propri-
oceptively. In the context of actions, we consider a prototype
of such whole-body joint angular motion a motor code. Similar
motor codes are assumed to be activated during the observation of
learnedmovements (Calvo-Merino et al., 2005) andmay be found
in posterior parietal areas and related premotor areas (Iacoboni,
2005; Friston et al., 2011; Turella et al., 2013).

Further, in the context of themirror neuron system, intentional
structures can be assumed to be encoded in the inferior frontal
gyrus (Iacoboni, 2005; Kilner, 2011; Turella et al., 2013). We sim-
plify these intention codes by top-down, symbolic representations
of specific actions. For the following experiments, we define three
binary intentions in line with the motion tracking recordings
explained before (basketball, running, and walking). Due to this
symbol-like nature, the resulting intention layer cells can also
be considered action classes or labels, while the derivation of
intentions can be considered an online classification of observed
bodily motion given visual cues. Since intentions are provided
during training, the intention state cells and their predictions can
be considered to develop by supervised training of action labels.
However, all state variables are segmented using the unsupervised
algorithm as described in Section 3.2.

During the observation of others, neither information about
their proprioceptions nor their intentions are directly accessible.
According to the embodied simulation hypothesis, the developing
embodied states can nevertheless be inferred when observing oth-
ers (Barsalou, 1999, 2008; Calvo-Merino et al., 2005).Hence, in the
following experiments, we evaluate the inference and embodied
simulation capabilities of our model.

5. EVALUATIONS

In the following experiments, we evaluate (a) the embodied learn-
ing of modal prototypes and predictions by means of the seg-
mentation of different streams of information into prototypic
state cells, (b) the resulting ability to infer intentions and motor
states upon the observation of others’ actions, and (c) the model’s
capability to simulate movements without sensory stimulation,
keeping visual and motor states consistently. For all of the exper-
iments, we chose the parameterization ηs = 0.01, α= 0.9, β= 0.5,
κ= 16, and θ= 0.85 unless stated otherwise.

5.1. Experiment 1: Learning a Sensorimotor
Model Mediated by Intentions
In the first experiment, we show how state cells develop from
scratch given streams of relative visual and motor motion input.
As shown in Figure 4, all layers are driven by data, assuming
maximum sensory confidence and thus disabling the influence of
predictions. Training consisted of learning perfectly cyclic motion
tracking snippets: first, a 115 time steps or 0.96-s basketball trial
where a single dribble and 2 footsteps were performed was shown
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11 times in succession, resulting in 1265 time steps of training.
Then, a 91 time steps or 0.75-s running trial performing 2 foot-
steps was shown 14 times, resulting in 1274 frames. Finally, a 260
time steps or 2.17-s walking trial performing 2 steps was shown

FIGURE 4 | Experiment 1: state segmentation and learning. Dashed
lines indicate the learning of prototype states and temporal predictions.
During learning, all information is assumed to be available, sensory signals are
fully trusted.

B

A

FIGURE 5 | (A) The systematic time series of prototype matches and resulting recognition signals of five visual states, developing during training with θ= 0.1. Three
different, cyclic motion tracking trials were learned repeatedly during this procedure (the first two repetitions are shown). Light red patches tagged with btrain indicate
the time intervals the basketball training trial was shown, the light green patches rtrain indicate the intervals of the running trial, and the light blue patches tagged
wtrain indicate training on the walking trial. It can be seen that the time series of prototype matches (blue lines) are comparable when re-enacting the presentation of a
motion tracking trial, since cells learn to encode specific parts of the data. Because the movements were cyclic, also the determined visual states (red lines) formed
cyclic time series. Initially, some state prototypes were recoded when another movement was shown. (B) Equivalent evaluation of the state cell development in the
motor layer.

5 times repeatedly, resulting in 1300 frames. The training data
thus consisted of 3.88 s of unique data samples. The whole cyclic
repetition of these trials was streamed into the model five times,
while recruiting states, learning state prototypes and the resulting
intra- and cross-modular predictions.

Figure 5 shows the recruitment of five visual and three motor
state cells from scratch and the respective match to the driving
stimuli in the example of a recruitment threshold θ= 0.1. Because
of the cyclic nature of the trained movements, the activations of
those states form cyclic time series. The recruitment threshold θ

basically defines the discretization of the state spaces. Hence, the
higher the recruitment threshold θ, the more states develop, as
concluded inTable 1. Note that learningwas deterministic in these
settings, whichmeans that (a) adaptedweights were not initialized
randomly, but with a zero vector and (b) we assumed full sensor
confidence such that the probability to recognize a state is a binary
function. In consequence, there was no variance in the developing
states.

Figure 5 also indicates that non-disjunct state encodings
develop for the three differentmovements: only one of the states is
recognized exclusively during the perception of a specific move-
ment. Thus, classifications of movements are barely possible using
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TABLE 1 |Overview of the number of developing states during learning in dependency on θ and the resulting classification performances during observation
of movements not seen during training.

θ Layer No. of developing states Correct classifications (%) Classifier confidence (%)

Basketball Running Walking Basketball Running Walking

0.1 Visual 6 21.49 92.36 96.14 44.71 44.65 47.00
Motor 3
Intentions 3

0.3 Visual 8 60.31 98.28 95.43 50.90 50.95 50.75
Motor 7
Intentions 3

0.5 Visual 16 51.64 99.66 99.71 53.97 59.88 65.99
Motor 15
Intentions 3

0.7 Visual 31 43.26 98.51 99.24 60.83 67.97 75.79
Motor 37
Intentions 3

0.85 Visual 72 53.02 99.02 99.18 65.10 73.50 80.73
Motor 107
Intentions 3

Correct classification denotes the percentage of time steps the maximally likely intention output corresponded to the actually shown movement. The classifier confidence shows the
average inferred probability of the maximally likely intention during testing.

Bayesian statistics with such a low recruitment threshold. Hence,
in the following section, we examine the influence of increasing
the visual and motor state granularity on the model’s ability to
infer movement classes.

5.2. Experiment 2a: Inference of Intentions
upon Observation
For the classification of movements, or in this context, for the
inference of intentions, the distinctness of the state structures
with respect to the movements developing during training plays
a major role. Since the information the state cells are encoding
in their prototype vector is hard to visualize, we calculated the
average pixel snapshot of the simulation display for each state
while it was recognized [using an averaging formula analogously
to equation (11)]. Basketball movements were displayed in red,
running movements in green, and walking movements in blue.
Consequently, if only a single state was created to represent all
of the training data, the resulting state snapshot would show a
mixture of all postures included in all of the movements, while
overlapping postures would be black and non-overlapping pos-
tures would be colored. On the contrary, a state cell that was rec-
ognized only at a single time step during training would result in
a snapshot showing only the corresponding posture in the respec-
tive color of the movement. Hence, the color of the snapshots can
be considered a qualitative measure for the distinctness of states
with respect to the three movements. Also, each snapshot shows
the segments of the movements a state cell responds to and thus
the model’s “imagination” of the movement when modalities are
inferred or simulated. Figure 6 shows exemplar snapshots of cells
created during the training phases using different recruitment
thresholds θ. As expected, higher thresholds lead to the creation
of movement-exclusive states.

To evaluate the influence of the multimodal state segmenta-
tion on the model’s ability to infer intentions and to test for

A B C D

FIGURE 6 | Average simulation display while specific sensory states
were observed. (A) Displays an example snapshot of a state created with
learning threshold θ= 0.3. It shows that the state was recognized
non-exclusively, that is, for each of the learned movements. The disjunction of
patterns improves when increasing the threshold, such that for θ=0.85,
movements and specific parts of the movements are clearly identifiable by
observing specific states [snapshots (B–D)].

generalization at the same time, we measured the influence of θ
on the correctness of the inferred values and the model’s confi-
dence, when different movements were presented after training.
As indicated above, the testing set did not contain the motion
tracking trials trained on. Rather, it contained two other basketball
trials of 4.39 and 3.2 s, two other running trials of 3.56 s each, and
two other running trials of 1.15 and 1.27 s. The testing data thus
consisted of 17.13 s of unique data samples. Some trials included
motion segments very different from the learnedmovements. Par-
ticularly, the basketball testing trials contained segments where
the subject stood still and was lifting the ball or segments where
the dribbling was incongruent with the footstep cycle, whereas the
model was only trained on a single, congruent basketball dribbling
snippet. Also, as indicated in Figure 7, only the visual modality
was fed into the network during testing trials, which accounts for
the fact that intentions and also motor commands are not directly
observable during observation of actions. Note that the model did
not obtain information about the time stepwhen a newmovement
was shown during testing.
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Classification results for four different θ averaged over 6 inde-
pendent testing trials are shown in Figure 8. Despite the missing
motor modality and the deviations in the observed posture con-
trol, the model was able to identify the character of the running
and walking movements throughout, as concluded in Table 1. In
doing so, accurately recognized visual state cells were enough to
push the visual, motor, and intention state determination into
temporal attractor sequences that consisted of the cyclic emula-
tion of the respective movement using the embodied encodings.
Following inputs then either maintained this emulation when
close enough to the encodings or forced the convergence to

FIGURE 7 | Experiment 2a/b: inference of intentions and motor
commands from visually observed movements. Solid lines indicate the
propagation of sensory signals (green), cross-modular predictive signals (red),
and intramodular predictions (blue). During testing, only the visual sensor is
available and fused with the emerging predictions, assuming some uncertainty
in sensory information. Intentions are inferred visually, while corresponding
motor commands are inferred from vision and the derived intention.

FIGURE 8 | Inference of intentions from visually observed movements shown for different θ. The red line indicates the moving average (one-second time
window) of the derived basketball state probability in the intention layer, while light red background shows the interval in time the testing trials btest and b

test were
actually presented. Analogously, green indicates running and blue indicates walking. The classifier confidence improves with θ as a result of learning more disjunct
sets of states per movement.

another attractor sequence, that is, a shift in the perception. This
effect can be seen clearly in the basketball trials, were episodes
similar enough to the training data existed. However, as explained
above, the basketball training trials were short and idealized,
and they did not contain incongruent dribbling. The model then
partly inferred a similarity with the trained walking movement in
these segments, resulting in a bistable perception as shown in the
graphs. This effect shows how the model is limited to the learned,
embodied encodings when inferring intentions. It can be avoided
by adding further training data.

When the learned movements were represented by a higher
number of mainly disjunct states with respect to the movements,
the model’s ability to infer the intentions slightly improved. As a
result of the more disjunct patterns, however, the confidence in
classification improved consistently with θ from about 45 to 73%
on average. As explained in the following, the classifier confidence
has an influence on the inference of motor states.

5.3. Experiment 2b: Inference of Motor
Commands upon Observation
Analogously to the preceding experiment, where we could show
that intentions could be classified purely from visually observed
motion patterns, we now evaluate if also the corresponding motor
commands can be inferred using the same mechanisms. Poten-
tially, this task is more difficult, since the set of available motor
commands consists of a larger number of states in the motor
layer when compared with the intention layer, and since the
motor state transitions typically underlie faster dynamics. Seeing
that the observed movements differed severely from the learned
movements, we evaluate if the inferred motor state snapshots
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FIGURE 9 | Example clips of the state sequences recognized in the visual layer and inferred in the motor layer when observing three different
movements (basketball, running, and walking testing trials). Each row shows the sequence of states by means of the representing snapshots over time (FLTR)
for the respective modality and motion capture trial. Snapshots at the same position show the same time step in the sequence of visual and motor states and mostly
show very similar parts of the movements. Because the inference is a stochastic process and because visual and motor states are not segmented in identical fashion
as a result of the different information coding in the modalities, slight misalignments can occur. However, strong incongruence is avoided because of the visuomotor
coupling. Moreover, although ambiguous patterns are included in the sequence, the network maintains the activation cycle of the movement-specific states because
pattern transition probabilities are biased by top-down propagated intention signals.

correspond to the visual state snapshots at the same time steps
and if the sequence in which they occur during the observation
is plausible.

Figure 9 shows the coincidence of state snapshots of the rec-
ognized visual states and inferred motor states when observing
the testing trials. When similar state snapshots are activated in
both the visual and the motor domains, the two modalities can be
considered to be synchronized in the emulation of the observed
movement. In this process, both the cross-modular prediction
from the vision to motor layer and the motor states predicted by
the currently inferred intention bias the activation of motor states
as indicated in Figure 7. The classifier confidence depicts the
probability that a cell in the intention layer is selected as winner.
Thus, increasing the classifier confidence will also increase the
probability that movement-specific motor states are determined.
Thus, since the classifier confidence increases with θ, the ability to
imagine a sequence ofmotor codes corresponding to the currently
observed visual motion, and the interpreted intention improves
with the discretization of the state spaces.

5.4. Experiment 3: Simulation of Actions
Learning a tripartite model of visual motion states, corresponding
motor codes, and intentions enables the inference of various bits of
missing information. Seeing that information is encoded in nor-
malized probability densities and information transfer is realized
stochastically, activities in the network are self-sustaining even

FIGURE 10 | Experiment 3: movement simulation with visuomotor
coupling. No sensory signal is provided. While the stochastically emerging
visual and motor states are biased by the top-down predictions induced by a
constant intention signal, the coupling between vision and motor codes
ensures the synchronization of the simulated pattern sequences.

when sensory input is completely suppressed. When only pro-
vided with a top-down activation of a particular motion intention
in the intention layer (cf. Figure 10), the model simulates likely
sequences of modal visual and motor state sequences according
to the learned temporal statistics.

In this experiment, we recorded the coinciding visual and
motor state sequences generated by the model when a top-down
intention-like action code is kept active in the intention layer.
The results in Figure 11 show that the learned sequences can
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FIGURE 11 | Example clips of the state sequences simulated synchronously in the visual and motor modalities when three different intention priors
(basketball, running, and walking) are provided. Each row shows the respective modality and intention prior. As during motor inference, snapshots at the same
position mostly show very similar parts of the movements, while misalignments are mostly avoided. Again, the network maintains the activation cycle of the
movement-specific states because pattern transition probabilities are biased by the provided top-down-propagated intention signals.

be replicated accurately both in the visual and in the motor
domains. Although multiple ambiguous states were learned, as
can be seen in the visual imaginations that are multi-colored,
the simulated state sequence remains in the correct sequence and
movement class. This is because the transition probabilities in
the respective modalities are biased by the top-down intention
signal.

The results also show that motor and visual state estimates
remain approximately synchronized, seeing that the simulated
states represent similar visual and motor imaginations at similar
time steps. This indicates that the sensorimotor coupling is capa-
ble of synchronizing different modalities for periods of time. The
reason for this synchronization lies in the lateral predictive con-
nections between vision and motor layers: upon a transition from
one visual state to another, the conditional probabilities for motor
states given the new visual state change in an according fashion,
such that the current motor state is more likely to transit to the
most likely successor, which is not only determined by the top-
down intention layer signal but also by the intramodular motor
state transition probabilities and by the cross-modular activation
predictions from the vision layer. Vice versa, the motor states bias
the transition in the visual modality, leading to the observable
mutual synchronization.

6. SUMMARY AND CONCLUSION

Our work shows that stochastic generative neural networks can be
used to model action inference, mental imagery, and action simu-
lation capabilities. Referring to Barsalou’s simulation hypothesis,

it suggests that simulation processes in the brain may help to
recognize, generalize, and maintain action perceptions and infer-
ences using the own embodied encodings. In our model, these
embodied simulations enable a consistent, multimodal interpre-
tation of observed actions in abstract domains. In particular, we
have shown that action observationmodelsmay rely on encodings
that represent actions in a distributed and predictive manner:
although some cells were encoding motion components that were
active during the observation of various actions, cross-modular
predictions enabled the consistent simulation of specific action
sequences. Due to the predictive visuomotor coupling, temporal
synchronicity of the activated states was ensured. Thus, the pre-
dictive, stochastic, and generative encodings resulted in the main-
tenance of overall consistent, multimodal motion imaginations.
In combination with the previously published substructure of the
model that resolves spatiotemporal variances by preprocessing of
stimuli and inference of the perspective (Schrodt et al., 2015), a
neural network architecture can be generated that infers the type
of observed actions and possibly underlying motor commands,
irrespective of the vantage point and despite variations of the
movements. The model is thus able to establish the correspon-
dence between self-perceptions and the perception of others,
which can be considered an essential challenge inmodeling action
understanding.

Despite these successes, the model is currently based on sev-
eral assumptions. For one, we assume that raw visual and motor
perceptions and intentions can be simplified by compressed codes
without losing model relevance, and that the respective motion
features can be identified reliably. Although it is particularly
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unclear how to incorporate realistic motor and intention codes
in computational models, future model versions can be enhanced
toward the processing of raw video streams of actions: the sim-
ulation snapshots in the experiments (see Figures 9 and 11)
were calculated analogously to the conditional state predictions
[equation (12)]. This shows that the states developed by the system
can be suitably mapped onto lower level visual modalities. Thus,
further developed models may hierarchically process lower level
visual information similar to Jung et al. (2015), however, based
on top-down predicted, higher level, and bodily groundedmotion
estimates.

Further, without sensory stimuli, the system’s simulation of
action states is a discrete time stochastic process. While the
sequence of simulated states was mostly correct, the temporal
duration of the activation was characterized by relatively high
variance. Adding further modal state layers could diminish this
variance. Particularly, the current model incorporates motion
signals only and no static or postural information is processed.
Exemplarily, the model implemented by Layher et al. (2014)
triggers a reinforcement learning signal upon the encounter
of low motion energy, which was used to foster the genera-
tion of posture snapshots in extreme poses. Comparably to the
variance of simulated states, also the mean durations of state
activations were partially distorted because of the approximate
fusion of predicted state probability densities during testing.
Integrating the systems predictions also during learning to a
certain extent may improve the fusion of probabilities. It may
also improve noise robustness and the establishment of disjunct
modal state sequences. As shown in the experiments, disjunct
states and state transitions are advantageous for the correct clas-
sification and emulation of actions. Techniques are available
that can prevent the system to fall into an illusionary loop,
when overly trusting the own predictions (Kneissler et al., 2014,
2015).

Moreover, the system currently simplifies a cell activation
competition such that only one cell in each layer is adapted
at each iteration. Using Mexican hat or softmax functions for
the adaptation of learned states may speed up learning. Along
similar lines, learning may be further improved when allowing a
differential weighting of the provided input features. Currently,
each input feature has the same influence in determining the
creation of a new state. The recruitment of new prototypic states
may be made dependent on the predictive value of all currently
available states, including their specificity and accuracy, as is, for
example, done in the XCSF learning classifier system architec-
ture (Stalph et al., 2012; Kneissler et al., 2014). Another current

challenge to the system is to infer limb identities purely from
visual information. The observed limb positions are fed into the
dedicated neural network inputs. An adaptive confusion matrix
could wire respective limb information appropriately, possibly
by back-propagating mismatch signals. Additionally, lower level
Gestalt constraints may be learned and used to adapt such a
matrix.

Finally, despite the challenges remaining, also in its current
form, the system may be evaluated as a cognitive model, and it
may be used in robotics applications. Main predictions of the
cognitive model come in the form of how visual motion will be
segmented into individual motion clusters and how predictive
encodings of the modalities modeled in the system will influence
each other. Also, false information or distracting information
from one module is expected to impair action recognition and
simulation capabilities in the connected modules. On the robotics
side, related techniques were applied using virtual visual servoing
for object tracking (Comport et al., 2006) and for improving the
pose estimates of a robot (Gratal et al., 2011). Our model offers
both generative, visual servoing options and temporal motion
predictions and inference-based, action recognition capabilities.
In future work, this offers the opportunity to develop a cognitive
system that is able to identify and subsequently emulate specific
intention- or goal-oriented actions, striving for the same goal but
adapting themotor commands to the own-bodily experiences and
capabilities.
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