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Behavior associated with joint attention is among the most important human
functionalities for communicating with others. Previous studies indicate that even a
robot can learn these behavioral patterns as social skills through interaction with a
modeled/real caregiver by contingency evaluation. However, existing mechanisms are
too time-consuming, especially for implementation on a real-world interactive robot.
Also, they are poor in the acquisition of complex skills. In this paper, we propose a
fast mechanism that enables the acquisition of many complex social skills within a
short interaction time. The mechanism is realized by the utilization of two significant
ideas: evaluating contingency locally, and acquiring social skills by finding synergistic
contributions of values in contingencies. A comparison of our proposed mechanism in
a simple environment of computer simulation with other mechanisms in terms of speed,
accuracy, complexity, and noise resistance confirms the superior performance of our
mechanism. Furthermore, experimental results obtained with the proposed mechanism in
a more complex computer simulation environment, which more closely resembles a real-
world environment, indicate that the mechanism can be applied in real-world interaction
between a robot and a human.

Keywords: joint attention, chain of contingency, social skill acquisition

1. INTRODUCTION

Joint attention is one of the most basic cognitive functions in human communication. It is simply
defined as looking where someone else is looking (Butterworth and Jarrett, 1991), and extensive
research has been conducted by those investigating the developmental process of following the gaze
of others (Butterworth and Jarrett, 1991; Corkum and Moore, 1995; Moore et al., 1997), including
a report that a human infant shows this capability before birth (Scaife and Bruner, 1975). These
results have garnered research interest in cognitive science and developmental psychology owing
to its important role in the acquisition of social capabilities, such as language communication and
mind reading (Moore and Dunham, 2014). Recently, a number of research efforts in the field
of robotics have focused on the issue of joint attention in human–robot interaction (Kaplan and
Hafner, 2006) as it also appears to be a necessary building block in this type of interaction. The
development of robotics technologies and a consequent possible future for human society with
interactive robots adds to the importance of studies on joint attention, which has implications for
creating communicative robots (Imai et al., 2003; Kanda et al., 2004).
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Understanding the developmental process of the human infant
by producing an infant model based on the utilization of syn-
thetic approaches (Asada et al., 2009) has also garnered increasing
research interest. The role of joint attention-related behavior is
also being explored in this research area in an effort to understand
the mystery surrounding the development of a human being
(Nagai et al., 2003; Triesch et al., 2006). These synthetic studies
focused on the significant role of joint attention behavior in the
acquisition of social skills through the interaction of a human
infant with its caregiver. They considered the causality between
gaze behavior of the infant and the caregiver, and proposed that a
robotic model of an infant could acquire social behavior, such as
gaze following, by acquiring sensorimotor mapping from the face
pattern of the caregiver to its own motor command by estimating
the causality among them. In these works, the programmer had to
specify the set of variables onwhich the robot should focus to learn
the sensorimotor mapping. However, to acquire various types of
social behavior, the programmer needed to redefine the set of
variables for each of the behavioral types. Therefore, a mechanism
to automatically find the appropriate sets of variables seems to be
necessary to apply the learning robot in different interactive scenes
in different environments.

Oudeyer et al. addressed intrinsic motivation for the learning
robot, which enables open-ended development (Oudeyer et al.,
2007). They showed how an internal reward system that equates
a lower prediction error with a larger reward enables the learn-
ing robot to automatically acquire various types of behavior in
an incremental manner. However, they did not consider the
sequential properties of human behavior in the interaction in
depth, which seems to be essential for continuing the interaction.
For example, when a robot becomes more social by learning to
respond to a human in an appropriate way, the human will try
to continue the interaction with it by, for example, talking to it
or touching it in response to its reaction. Therefore, by learning
actions that result in contingent sequences, a robot would be able
to continue such interactions with the human.

Mugan and Kuipers extended the reinforcement learning
method to incrementally acquire dynamic Bayesian networks for
modeling predictable events in a continuous environment (Mugan
and Kuipers, 2012). Because a longer sequence of events gradually
becomes predictable by sequentially combining themodels found,
it can be used to plan the hierarchy of the actions to accomplish
the given tasks, ranging from simple tasks, such as hitting an
object, to complex ones, such as grabbing the object. However, it
is difficult to apply this method to learning social skills through
social interaction, because the tasks that have to be accomplished
in the interaction are not always (or even rarely) explicitly given.
Furthermore, the pure predictability of the events is considered
to evaluate the causality of the events, which is implemented by
dynamic Bayesian networks. Therefore, causalities that are inde-
pendent of the state of others are included in the found causalities.
In other words, there is no mechanism to detect and avoid these
causalities, which leads the robot to be incapable of choosing
a suitable action for interacting with the human through social
interaction.

In recent studies, Sumioka et al. (2008) derived a contingency
evaluation measure focusing on the effect of a robot’s own action

only in relation to specific conditions, including those reflecting
the state of others. An informational theoretical measure based
on transfer entropy (Schreiber, 2000) was utilized for the eval-
uation, and applied to the model of an infant robot interacting
with a human caregiver model in a computer simulation. The
result shows that evaluating contingency among variables leads
the robot to find a combination of the variables that should be
focused on to acquire a sensorimotor mapping, which enables
the robot to behave in a social way, such as performing gaze
following and social referencing. Regarding the gradual changes
of the response of the caregiver model with the emergence of
the infant-robot’s communicative abilities, which were designed
based on those reported for the interaction of a human caregiver
with its infant (Bruner et al., 1982; Adamson and Bakeman, 1984),
the robot obtained a meaningful response from the caregiver
model when it used an acquired social skill. For example, the
caregivermodel had a strict rule such as looking at the robot when
the robot successfully performed the acquired gaze following
skill. Therefore, the robot could find further contingency between
“using the gaze following skill” and “consequent face direction
of the caregiver” (which is looking at the robot due to the strict
rule). This contingency was expressed as a chain of contingencies,
which consists of a sequence of two consequences: (1) finding
the object (by following the gaze of the caregiver) and (2) finding
the caregiver’s frontal face (by looking at the caregiver after gaze
following).

In Sumioka et al. (2010), they focused on the importance of
the sequence of contingent sub-actions in several social behaviors
of human infant, where lots of them such as social referencing
behavior consist of these sequences. Therefore, they extended
the mechanism to find the chain of contingencies by evaluating
contingency among the skill that was used, the action that was
taken, and the consequent observation of the robot. However, in
their method, the acquisition of complex skills, i.e., skills consist-
ing of a contingency chain, is too time consuming; in addition,
they did not sufficiently check whether complex skills with longer
sequences could be acquired. Accordingly, only the acquisition
of the simple skills is reported in the implementation of this
system in a real-world robot (Sumioka et al., 2013). Moreover, the
performance of this mechanism is not compared with the results
obtained by others, such as Oudeyer et al. (2007) and Mugan
and Kuipers (2012), in which simple concepts, such as the pure
predictability of the events for the evaluation of the causalities,
are used.

In this paper, we propose a mechanism to overcome these two
significant problems, namely poor skill acquisition and the large
number of time-consuming steps. Our proposed mechanism is
based on two main ideas. First, we introduce a new informational
measure, named transfer information, which evaluates contin-
gency among specific values of variables. Previously (Sumioka
et al., 2008, 2010, 2013), the expectation of contingency among
whole values of the variables was utilized to evaluate contin-
gencies. Therefore, gathering a sufficient number of samples for
all values of the variables was highly time consuming. Instead,
in the proposed method, it is sufficient to gather samples of
specific values of the variables for the evaluation. In this way,
fast contingency evaluation is realized in the proposed method.
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Second, we utilize transfer information to produce a measure that
evaluates the synergistic contribution of values in contingencies.
It enables the robot to distinguish the contingencies, which consist
of the synergistic effect of taking a specific action in a specific
state to the environment, from those composed of a single effect.
This approach leads the robot to acquire more complex skills, i.e.,
skills with a longer contingency chain and interaction sequences,
compared with work by other researchers.

In the results section of this paper, we compare the perfor-
mance of our proposed mechanism with those of others using
computer simulation: work that utilizes simple concepts, such
as predictability for the skill acquisition process of the robot,
such as Oudeyer et al. (2007) and Mugan and Kuipers (2012);
and work that uses more complex concepts, such as finding
saliency of contingencies among variables to prevent the acqui-
sition of a huge number of behavioral rules, as well as those
unrelated to the state of the interacting person, such as Sumioka
et al. (2008, 2010), and (Sumioka et al., 2013). In this paper,
the former is implemented using transfer information to eval-
uate events at the value level (locally), whereas the latter uti-
lizes transfer entropy that evaluates events at the variable level
(globally). We refer to these methods as “local pure predictability
method” (l.p. method) and “global contingency method” (g.c.
method), respectively. For comparison, we consider the interac-
tive environment used in Sumioka et al. (2010), but the measure
used in the skill acquisition process of the robot differs for each
method.

The remainder of this paper is organized as follows: first, we
describe the assumed interactive scene of the robot with its care-
giver in our experiment. Then, we explain the system schema
of the proposed mechanism and its components. After that, we
analyze the results of the two experiments, i.e., the computer sim-
ulation performed to validate our system. In the first simulation,
we compare the performance of the proposed method with the
other mechanisms in a simplistic interactive world model. In this
comparison, accuracy and speed of skill acquisition as well as
robustness against uncertainty is examined. In the second sim-
ulation, we examine whether our system remains feasible when
the robot has additional sensing and action modalities and the
caregiver behaves accordingly based on more complex rules. It
shows the capacity of the proposed mechanism for application in
a more complex environment, such as in real-world interaction
between robots and humans.

2. MECHANISM

We assume a face-to-face interaction between a human care-
giver and an (infant) robot (Figure 1). In each time step, the
robot observes its environment and sends action commands to
its joints. The robot obtains the observation as sensory vari-
able S, and taken action as action variable A. In addition, the
robot retains the resultant observation after taking the action as
resultant variable R. These variables consist of some elements,
Si (i= 1, 2, . . .,Ns; Ns denotes the number of types of sensory
data), Aj ( j= 1, 2, . . .,Na; Na denotes the number of different
kinds of actions), and Rk (k= 1, 2, . . .,Nk; Nk denotes the number
of types of resultant sensory data), respectively.

FIGURE 1 | Interactive environment: a human caregiver interacting
with a robot across a table.

FIGURE 2 | System schema.

Figure 2 shows the structure of the proposed mechanism.
The system consists of two main components: a contingency
detecting unit (CDU) and an action producing unit (APU). After
the observation of the current state at time t, i.e., updating the
variables St and Rt, the APU produces an action for each joint
of the robot (At) based on the current state. The robot observes
the consequent result of taking action At, and saves it as Rt+1.
The CDU evaluates the contingency based on the variables St,
Rt, At, and Rt+1. If the CDU detects contingency, it adds a new
contingency reproducer (CR) to the APU, which enables the robot
to reproduce the found contingency by taking suitable action
when it is observing a specific state. The action is mentioned
as A∗ in Figure 2. Therefore, at the beginning, there is no CR
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in the APU; the APU produces action based on the output of
another component, named the reaction producer (RP). The RP
is designed to enable the robot to take pre-programed reactive
action to a specific observation. The RP outputs suggested action
A∗ in each time step. To produce many reactions, the system can
have several RPs, from RP1 to RPNR. A component named Action
Selector, finally, selects the outputting action to each joint of the
robot, among the suggested actions A∗ from the RP and the CR
(if any). Therefore, at the beginning of the interaction of the robot
with the caregiver, the APU outputs the action based on the A∗

produced by RPs. Continuing the interaction leads the CDU to
find contingency and add CRs to the APU. After that, the Action
Selector chooses the outputting action At from the A∗ of the CRs
and the RPs. The robot continues the interaction and continues
acquiring additional CRs if there are further contingencies during
the interaction. In this section, we explain each of the components
in detail.

Note that the global structure of the g.c. and l.p. method
that we implemented for the comparison are same with the
proposed mechanism, which have/will be described in this
section/following subsections. In the last part of the following
subsections, we will mention about them if there is any difference
among the proposed method and the g.c./l.p. methods. For the
detail of the g.c. method, see Sumioka et al. (2010).

2.1. Contingency Detection Unit
The CDU has two roles: detecting contingent experiences and
generating new CRs based on them. It tries to find the contingen-
cies using a histogram of experiences obtained through the inter-
action. The CDU is equipped with an informational measure to
evaluate the contingency of the experiences. Once an experience
is judged to be contingent, a CR is added to the APU to enable the
robot to “reproduce” the contingency, i.e., take a suitable action in
a specific state to be able to repeat the experience. We define the
quaternion e = (rt+1

k , sti, atj, rtk), where rt+1
k , rtk ∈ Rk, atj ∈ Aj, and

sti ∈ Si as an experience. It indicates that in state sti taking the action
atj made the transition of rtk to rt+1

k .
Using this definition, the system tries to learn the knowl-

edge “when, what to do, for which transition.” It is expressed as
acquiring social skills in our study.

2.1.1. Evaluating Contingency
Assume that X and Y denote two discrete-time stochastic pro-
cesses that could be approximated by a stationaryMarkov process.
When X takes the value xt at time t, the evolution of the process
is described by the transition probability p(xt+1|xt). Using transfer
entropy (Schreiber, 2000), the dependency of the processX on the
process Y can be quantified as:

TY→X =
∑

xt+1,xt,yt
p(xt+1, xt, yt) log p(xt+1|xt, yt)

p(xt+1|xt) . (1)

In other words, transfer entropy evaluates the effect of process
Y on the transition of process X. We introduce “transfer infor-
mation” that estimates the effect of a specific value of process Y,

i.e., yt, on the specific transition of process X, i.e., xt to xt+1 as
follows:

Iy→x = log
p(xt+1|xt, yt)
p(xt+1|xt) . (2)

If the value of the transfer information is high, it shows that
the specific transition of xt to xt+1 has high dependency on the
specific value yt. We refer to this dependency as local contingency,
or simply “contingency.” It is named local, because it does not eval-
uate the (averaged) dependency among all values of the processes
(such as transfer entropy); instead, it performs the evaluation
among the specific values of these processes.

Applying this to our environment, we can evaluate the effect
of the specific values of the sensory variable Si, i.e., sti , and the
action variableAj, i.e., atj , on the specific transition of the resultant
variable Rk, i.e., rtk to rt+1

k , by the following equations, respectively:

Isi→rk = log
p(rt+1

k |sti, rtk)
p(rt+1

k |rtk)
(3)

Iaj→rk = log
p(rt+1

k |atj , rtk)
p(rt+1

k |rtk)
. (4)

In other words, they evaluate the contingency of a specific
transition on a specific state and action, respectively. Moreover,
the joint effect of the specific values of the sensory variable and
the action variable can be evaluated with the following equation:

I(si,aj)→rk = log
p(rt+1

k |sti, atj, rtk)
p(rt+1

k |rtk)
. (5)

In other words, it evaluates the contingency of a specific tran-
sition on a specific action in a specific state. Considering an expe-
rience e = (rt+1

k , sti, atj , rtk), we can evaluate the local contingency
of the experience on the state sti , on the action atj , or on the action
atj in the state sti , using equations (3) to (5), respectively:

Ls(e) = Isi→rk (6)
La(e) = Iaj→rk (7)
Lsa(e) = I(si,aj)→rk . (8)

We term them “single” contingencies (of experience e) on sti ,
on atj , and “joint” contingencies on (sti, atj), respectively. However,
evaluation of the joint contingency may reflect the contingency
only on either sti or atj , but not on both of them. To evaluate
the synergistic contribution of both of the values (sti, atj) on the
joint contingency, we need to eliminate the contribution of single
values, sti and atj . The following equations eliminate the single
contribution of values sti and atj , respectively:

SE(e) = log
p(rt+1

k |sti, atj, rtk)
p(rt+1

k |sti, rtk)
= Lsa(e)− Ls(e) (9)

AE(e) = log
p(rt+1

k |sti, atj, rtk)
p(rt+1

k |atj, rtk)
= Lsa(e)− La(e). (10)
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In the first equation, the transition probability p(rt+1
k |sti, atj, rtk)

in the numerator is compared with p(rt+1
k |sti, rtk) in the denomi-

nator. This compares the contribution of (sti, atj) on the transition
of rtk to rt+1

k , with the single contribution of sti . In other words, it
compares the dependency of the transition of rtk on (sti, atj)with the
dependency on sti . Therefore, SE(e) shows the difference of contri-
butions on joint contingency between those of (sti, atj) and sti . In
other words, it eliminates the single contribution of sti on the joint
contingency. According to equations (3), (6), and (5), (8), SE(e)
could be written as the subtraction of Ls(e) from Lsa(e). For the
same reason, AE(e) eliminates the single contribution of atj on the
joint contingency. To eliminate both of the single contributions
and to achieve the synergistic contribution of the values on the
joint contingency, the following measure could be used:

E(e) = min {SE(e),AE(e)}. (11)

Using this measure, the robot would be able to distinguish
the experiences which are dependent on both of si and aj, i.e.,
reflecting the knowledge “when (sti), what to do (atj), for which
transition (rtk to rt+1

k ).” The robot uses this measure to evaluate
experiences in the proposed mechanism.

Note that the measure used in the g.c. method for the eval-
uation is designed based on transfer entropy, which evaluates
contingency among the variables Si, Aj, and Rk (Sumioka et al.,
2010):

Cj
i,k = T(Si,Aj)→Rk − (TSi→Rk + TAj→Rk)

=
∑

rt+1
k ,rtk∈Rk

sti∈Si,atj∈Aj

p(rt+1
k , sti, atj, rtk) log

p(rt+1
k |sti, atj, rtk) p(rt+1

k |rtk)
p(rt+1

k |sti, rtk) p(r
t+1
k |atj, rtk)

.

(12)

Furthermore, the l.p. method uses Lsa(e) for the evaluation,
which reflects the (pure) predictability of the experience e, without
elimination of the single contributions of the values on the joint
contingency, such as those done in the equation (9) or (10).

2.1.2. Adding New CR to the APU
In each time step of the interaction, the robot calculates E(e) for
all experiences utilizing their histograms. If the robot experiences
specific emore than θ times and E(e) is higher than the acquisition
threshold CT, the robot accepts it as a contingent experience and
adds a new CR to the APU based on it. Using the CR, the robot
tries to reproduce the contingent experience in the next steps
of the interaction. Each CR is mentioned as πe based on the
experience e that the CR is generated.

When a CR πe is added to the APU, the CDU adds a new binary
sensory variable Sπ to the set of the sensory variable S. The new
variable indicates whether πe has been used in the previous time
step; it takes the value “1” if it has, and “0” otherwise. The CDU
then continues evaluating the E(e) of the experiences, including
the new variable Sπ. As a result, the CDU can evaluate a chain of
contingencies stemming from the use of the found contingency,
i.e., the contingencies relying onmore than one time step related to
the generated CR. Note that the CDU does not count experiences

that do not contain Sπ, when the robot has used an acquired πe.
We expect this trick to lead the CDU to focus on the effect of using
acquired πe on the environment, and consequently to enable the
robot to evaluate contingency chains in shorter time steps.

Note that g.c. and l.p. method uses Cj
i,k [equation (12)] and

Lsa(e) [equation (7)] instead of E(e) which described above,
respectively.

2.2. Action Producing Unit
The APU obtains the current state of the robot, and outputs an
action to each joint of the robot (see Figure 2). The unit consists
of three components: (1) contingency reproducer (CR), which
suggests an action that leads to reproduce found contingency,
(2) reaction producer (RP), which suggests an action designed
to produce a specific reaction to a specific state, and (3) Action
Selector, which chooses the outputting actions to each joint of the
robot from those suggested.

2.2.1. Contingency Reproducer
The CR obtains the current state of the robot, and outputs a sug-
gested action to reproduce the found contingency. It is generated
by the CDU and added to the APU as mentioned in Section 2.1.
Assume that a CR πe is created with e=(rt+1

k , sti, atj, rtk) where
rt+1
k , rtk ∈ Rk, atj ∈ Aj, and sti ∈ Si. Each CR is a sensorimotormap-
ping, which maps the robot’s current state (sti, rtk) to a suggested
action a∗; therefore, it is expressed as follows:

a∗ = f(sti, rtk), (13)

where f(sti, rtk) indicates the sensorimotor mapping of πe, which
outputs atj as a∗. The CR sends the a∗ to the Actions Selector
together with its predictability Z. We use AE(e) as the measure
reflecting the predictability of CR [see equation (10)], because it
considers the cases in which the robot has/has not taken the action
a∗ in the state (sti, rtk), and compares their transition probability
to the desired observation [i.e., comparing p(rt+1

k |sti, a∗, rtk) with
p(rt+1

k |sti, rtk)]. If the AE(e) is high, it means that taking action a∗
in the state (sti, rtk) increases the probability of achieving desired
observation rt+1, or in other words, the predictability of πe is high.

To enable comparability with previous works (Sumioka et al.,
2008, 2010, 2013), we mention the CR using another notation
Π(Rt+1

k = rt+1
k |Sti = sti,At

j = atj,Rt
k = rtk), which means that in state

(rtk, sti) the CR suggests the action atj to reproduce the found
contingency and expects the resultant observation rt+1

k .We denote
the expected resultant observation of CR with r∗. In addition, to
indicate the variables and the values separately, we may use the
notifications Π(Rk|Si, Aj) and π(rt+1

k |sti, atj , rtk) for the CR, respec-
tively. Both of them are labels we use to indicate the contingency
reproducer, the former shows the policy on the specific variables,
whereas the latter shows it on the specific values.

Note that in l.p. method, Lsa(e) [equation (7)] is used as the
predictability Z, because it reflects the (pure) predictability of the
experience e. For the g.c. method, refer to Sumioka et al. (2010).

2.2.2. Reaction Producer (RP)
The RP obtains the current state of the robot and outputs a
suggested action to produce a pre-programed reaction to a specific
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state. It sends the suggested action to the Action Selector as well
as its predictability Z. An RP sends a constant value α as the
predictability. To simplify the quantitative analysis of the research
result, in this work we assumed one RP for the system, which
outputs a random action for any inputting state.

2.2.3. Action Selector
The Action Selector selects one action among candidates from
the RP and the CR for each joint of the robot, regarding their
predictability Z. Assume that the number of candidate actions
generated by the RPs and CRs for a specific joint j are NR

j and
NC

j , respectively. We use a soft-max action selection method to
calculate the probability of selecting the action suggested from
component i for joint j:

P j
i =

exp(Zi/τ)∑
k∈NR

j +NC
j
exp(Zk/τ)

, (14)

where Zi is the predictability of component i, and τ is a tem-
perature constant. Note that if Zi is reduced to less than the
omission threshold CO, the action selector does not consider that
component as an input. With this mechanism, the system can
refrain from using the CRs that have been incorrectly acquired.
The calculated contingency of a CR usually decreases after the
acquisition due to the probabilistic feature of the environment,
such as unpredictability. We set CO =CT − ε to enable the system
to tolerate such a feature, where CT is the acquisition threshold
(see section 2.1.2) and ε is a constant value. Furthermore, to avoid
the acquisition of contingency chains that consist of a chain of
the same actions for the same results, such as executing the same
behavior for several time steps in a static environment and having
consistent observation, the Action Selector does not use those CRs
that do not change the observation, i.e., r∗ = rt.

3. COMPUTER SIMULATION

In this section, we discuss the two experiments we conducted to
evaluate our proposed mechanism using computer simulation. In
the first experiment, we compared the performance of our system
with the g.c. and l.p. methods (see section 1) in terms of precision
and recall, i.e., F-measure, learning speed, length of the acquired
sequence of skills, and noise tolerance, to determine whether
our system is more suitable for real-world implementation. In
the second experiment, we implemented our system in a more
complex environment to verify its ability to find (more complex)
rules produced by a more complex caregiver model, and acquire
(more complex) social skills related to these rules.

The basic assumptions used in the experiments were the same
as those adopted by Sumioka et al. (2010). The environment used
in the experiments is illustrated in Figure 1. The environment
comprises a robot and a human caregiver sitting across a table, and
an object on the table. There are n possible positions on the table
for the object, and the caregivermoves it to a random spot everym
time steps. In the experiments, we set (n, m)= (3, 10). We set the
other simulation parameters as (θ, α, ε)= (8, 0, 0.1) based on our
experiences (see sections 2.1.2, 2.2.2, and 2.2.3 for the parameters,
respectively).

3.1. The First Experiment
We utilized a simplistic environment for the first experiment
because comparison of the performance of the systems would
be difficult in a complex environment. We considered a small
number of sensory/action/resultant variables for the robot, and a
corresponding small number of behavioral patterns for the care-
giver model. Consequently, we were able to determine the combi-
nations of variables and values that should be evaluated as a con-
tingent experience. In otherwords, wewere able to compile a list of
CRs the robot should acquire in the experiment before performing
the computer simulation. This made it possible to evaluate and
compare the performance of the systems using F-measure, i.e.,
the harmonic mean of precision and recall of the skill acquisition
algorithm. To enable a fair comparison, we first determined the
best threshold parameter CT for each system. This parameter is
denoted asC∗

T and produces the best performance, i.e., the highest
F-measure, of the system. Then, we analyzed the learning speed,
length of the acquired sequence of CRs, and noise tolerance to
demonstrate the level by which our proposed method improved
on that achieved previously by others. In this experiment, we set
the constant parameter as τ = 0.3 (see section 2.2.3).

3.1.1. Experimental Setup
The same variables as those used by Sumioka et al. (2010) were
utilized in this experiment (see Table 1). The sensory variable,
S, consisted of two elements, the visual pattern of the caregiver’s
face (S1) and existence of the object (S2). The action variable, A,
consisted of two elements, gaze direction (A1) and hand gesture
(A2). Lastly, the resultant sensory variable, R, consisted of three
elements, the frontal face of the caregiver (R1), the profile of
the caregiver (R2), and existence of object (R3). S1 could be one
of five values: f 1, f 2, and f 3, which indicate the visual pattern
of the caregiver’s face when the caregiver looks at either of the
positions on the table; fr, which indicates when the caregiver
looks at the robot; and fϕ, which indicates that the robot was
not able to detect the caregiver’s face. S2 could have one of two
values: o, which indicates that the robot has detected an object,
and oϕ, which indicates the opposite situation. A1 could be one
of four values: g1, g2, and g3, which indicate whether the robot
is looking at the corresponding spot on the table; and gc, which
indicates that it is looking at the caregiver. A2 could also have one
of four values: h1 − h4, which indicates that the robot has made
the corresponding hand gestures. If the robot was able to sense the
frontal face of the caregiver, profile of the caregiver, and existence
of the object, the value of the resultant variables R1, R2, and R3
became one; otherwise, it was set to zero.

TABLE 1 | Variable setup for the experiment.

Type Variable name Symbol Elements

S Caregiver’s face C S1 = {f1, f2, f3, fr, fϕ}
Object O S2 = {o, oϕ}

A Gaze shifting G A1 = {g1, g2, g3, gc}
Hand gesture H A2 = {h1, h2, h3, h4}

R Frontal face of caregiver F R1 = {0, 1}
Profile of caregiver P R2 = {0, 1}
Object O R3 = {0, 1}
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3.1.2. Caregiver Model
We adopted simpler rules for the behavior of the caregiver by
simplifying the rules used by Sumioka et al. (2010) to facilitate
easier quantitative analysis of the performance of the system. In
each time step, the caregiver either looked at the object or the robot
in a randommanner (OR-behavior). The only exceptionwaswhen
the robot followed the caregiver’s gaze direction. In such a case,
the caregiver would look back at the robot with probability PLB
(LB-behavior). In this experiment, we set PLB = 1.0. This setting
enabled us to guesswhich experiencewould be acquired as theCR,
and consequently, which contingency chains would be detected.

3.1.3. Expected Contingencies
The simplistic implementation of the caregiver model in a sim-
plistic environment allowed us to infer the contingencies that
would be found and acquired as CRs by the robot. By analyzing all
combinations of the variables and their values in terms of whether
any dependencies exist among their current and future values,
we can find the combinations that should be treated as contin-
gent experiences. Namely, through these analyses, the proposed
method is expected to find the following combinations as CRs:

• First, the gaze following skill, GF, is expected to be acquired.
Since the caregiver always looks at either the object or the robot,
the robot should be able to find an object if it follows the gaze
of the caregiver when the caregiver is looking at the object.
The CR is ΠGF(R3 = 1|A1 = gj, R3 = 0, S1 = fi) where i= j and
i= {1, 2, 3}. This contingency is related to the transition from
time t to t+ 1; hence, it expresses transition in one time step.
Therefore, we define the “level” of this contingency as one. Let
SΠGF be a sensory variable that represents whether the robot used
ΠGF in the previous time step.

• Second, we expect the gaze returning skill, GR, to be acquired.
This is a complex skill in which the robot returns its gaze to the
caregiver after using the acquired skill of gaze following, i.e.,
GF, which leads it to perceive the face of the caregiver from the
front. Since the caregiver looks at the robot with high proba-
bility (PLB = 1) after the GF behavior, ΠGR(R1 = 1|A1 = gc,
R1 = 0, SΠGF = 1) should have a high value for E(e) and be found
by the CDU. This contingency expresses a transition in two
time steps, from t− 1 to t, and then from t to t+ 1; therefore,
the level of this contingency is two. Let SΠGR be a sensory variable
that signifies whether the robot used ΠGR in the previous
time step.

• The next expected skill, which is named “object looking after
gaze returning” (OL), is a complex skill with a level of three.
Acquisition of this skill enables the robot to look back at the
previous place where the object had been found after using
GR and lead it to find the same object again. The CR is
ΠOL(R3 = 1|A1 = gi,R3 = 0, SΠGR = 1), where i= {1, 2, 3}. The
gi is the same as that used in the two preceding steps, i.e., used in
GF. This contingency is at level three because it is based on three
transitions: from t− 2 to t− 1 by GF, from t− 1 to t by GR,
and from t to t+ 1 by itself. Let SΠOL be a sensory variable that
signifies whether the robot usedΠOL in the previous time step.

• Finally, a complex skill at level four was also expected. After
usingOL, keeping the gaze direction at the current place should
result in reconfirmation of the current object. This skill is

denoted as OL2, with ΠOL2(R3 = 1|A1 = gi,R3 = 1, SΠOL = 1),
where i= {1, 2, 3}. Its contingency belongs to four transition
steps: from t− 3 to t− 2 by GF, from t− 2 to t− 1 by GR, from
t− 1 to t by OL, and from t to t+ 1 by itself, therefore its level
is four.

These contingencies are referred to in the evaluation of the
system performance, in the next section, as those which should
be acquired by the robot. As mentioned above, a consistent and
simple behavior rule of the caregiver model in combination with
a simplistic environment ensures that the robot is not disturbed
in its attempts to detect and acquire the skills. However, there
is another contingency that is not counted in the evaluation of
the system performance in the next section, because it could be
acquired or not. It is named “Object Permanency” (OP) and the
CR ismentioned asΠOP(R3 = 1|A1 = gi,R3 = 1, SΠGF = 1), where
i= {1, 2, 3}. The gi is the same as that used in a step before, i.e., used
in GF. It means that after using GF, keeping the gaze in the same
direction leads to reconfirmation of the same object. However,
the acquisition of GR disturbs the acquisition of OP, because in
the state Si = SπGF, GR outputs A1 = a∗GR = gc, since OP needs the
experience of A1 = g1/g2/g3 in that state, to be experienced and
acquired by the robot. Conversely, the acquisition of OP does not
disturb the acquisition of GR, because the Action Selector will not
choose the output of acquired OP while r∗OP = rtOP (see section
2.2.3 for the selection prevention algorithm). Therefore, OP is not
counted in the evaluation of the next section.

3.1.4. Results and Discussion
In this section, we compare the performance of three different
methods: the proposed, g.c., and l.p. methods. The performance
is expressed as the accuracy of each method in terms of the
acquisition of CRs, and defined as their F-measure:

F = 2 · precision · recall
precision + recall . (15)

For the calculation of precision and recall, the CRs listed in 3
are counted as the relevant elements. An acquired CR is regarded
as true positive if it is listed in 3, and false positive otherwise.

However, the number of true positives and false positives are
strongly affected by the value of acquisition threshold CT. A large
value of CT leads to the acquisition of only those experiences with
very high contingency as CR (or even not to acquire any CR),
whereas setting CT to a very small value leads to the acceptance
of many experiences as contingent ones and the acquisition of all
of them as CR. The former decreases the number of true positives,
whereas the latter increases the number of false positives; hence,
both of them decrease the F-measure of the system. Therefore,
we need to determine the best value of CT for each method, i.e.,
the value which leads to the highest performance. We mention it
with C∗

T, and denote it for each method as C∗
T1, C∗

T2, and C∗
T3 for

the proposed, g.c., and l.p. methods, respectively. Moreover, the
highest performance is denoted with F∗: F∗1 , F∗2 , and F∗3 for the
three methods, respectively.

To find the value of C∗
T, we ran the simulation with different CT

values, from 0 to a very large value (which results in F= 0). We
ran 30 simulations for each value ofCT, where each run comprised
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FIGURE 3 | Top: F-measure of the algorithms. Changing acquisition threshold CT to find C∗
T . It and F∗ are denoted with vertical and horizontal dotted lines,

respectively. Middle: number of acquired CRs, categorized to omitted ones, true positives (T.P.), and false positives (F.P.) Bottom: precision and recall of the methods
when CT = C∗

T , mentioned with the ratio of acquired CRs: true positives and false negatives (F.N.) for recall; true positives and false positives for precision.

100,000 time steps. The average F-measure in the 30 runs for each
value of CT is plotted in Figure 3 (top row). The F-measures of
the methods are compared in this graph. C∗

T and F∗ are denoted
with vertical and horizontal dotted lines, respectively. According
to the graphs, we have F∗1 = 0.85 with C∗

T1 = 0.75, F∗2 = 0.51
with C∗

T2 = 0.01, and F∗3 = 0.33 with C∗
T3 = 1.7. Therefore, it

could be concluded that the proposedmethod delivers the highest
performance compared with the other methods. The middle row
of Figure 3 shows the average number of acquired CRs in different
CT. It is categorized to the omitted CRs (see section 2.2.3 about
the omission), true positives (T.P.), and false positives (F.P.). Note
that the maximum capacity for the number of CRs is set to 100 in
the simulation. In the proposed and g.c. methods, increasing CT
from 0 to C∗

T leads the number of F.P. to be decreased, and T.P.
to be increased. In addition, the total number of acquired CRs is
reduced, which means that with a suitable CT, i.e., C∗

T, the system
could avoid acquiring a huge number of CRs. However, in the l.p.
method, the system continues to acquire many CRs (NC = 100)
even with C∗

T. According to the graph, most of them are omitted
or are F.P., and the ratio of T.P. seems to be small. Consequently,
theF∗ of the l.p.method is smaller than the corresponding value of
the other methods. The bottom row of Figure 3 shows the ratio of
T.P., F.P., and false negatives (F.N.) of each method with CT = C∗

T,
in terms of precision and recall. It is obvious that for the proposed

method they are both high (more than 75%); for the g.c. method
they are around 50%; and for the l.p. method the number of T.P. is
very small, which makes both of them small (less than 25%) and
consequently the F-measure of the system is also reduced.

Checking the acquired CRs for the g.c. method indicates that
it could usually acquire GF, but difficult to acquire GR, OL, and
OL2. According to equation (12), the contingency is evaluated
among the variables in the g.c. method. Therefore, the averaged
dependency of different values of Rk on each value of Si and
Aj is evaluated. However, in GR, OL, and OL2, the averaged
dependency would be small, because the dependency only exists
among a specific value of Rk on a specific value of Si and Aj. For
example, in OL, the dependency exists only among Rt+1

3 = 1,
Rt

3 = 0, StGR = 1, and At
1 = g1/g2/g3. Therefore, the g.c. method

could not acquire them easily, and consequently its F-measure
was unable to attain a high value. In the case of the l.p. method,
although it acquires many predictable experiences as contingent
ones, as mentioned in section 1 and according to equation (8),
it could not detect which one is dependent on the state of the
caregiver. Therefore, the desired CRs, such as GF and GR, could
not be distinguished from the others, and as a result the F-measure
of the system is very small.

After detecting C∗
T and comparing the performance of the

methods, we are now able to compare another important factor
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FIGURE 4 | Required time steps for the acquisition of skills in each method. The proposed method is four to eight times faster than the g.c. method.

for the implementation of the system in real-world robots: the
speed of the algorithms. Figure 4 shows the speed of acquiring
CRs at different levels. We ran the simulation consisting of 30,000
time steps 30 times for each method with CT = C∗

T, and plotted
the average remaining time steps to the end of the simulation,
when the CR is acquired. For the g.c. method, which uses the
global contingency measure, we judged the CR of a level to be
acquired when the set of variables (Si, Aj, Rk) is determined to
be contingent using equation (12). To ensure a fair comparison,
in the case of the proposed and l.p. methods, which use a local
contingency measure, the level is judged to have been acquired
when all of the CRs denoted in the list in section 3.1.3 for each of
the levels are obtained by the robot. For example, GF was judged
as acquired when the gaze following to the left (g1), right (g2), and
central (g3) directions were obtained.

According to the graph, the proposed mechanism acquired CR
with level 1 (i.e., GF) four times faster than the g.c. method, and
CR with level 2 (i.e., GR) eight times faster. Furthermore, the
proposed method was able to acquire CRs with levels three (OL)
and four (OL2) even in shorter time steps than the g.c. method
for CRs with level 2, whereas the g.c. method could not acquire
CRs with levels 3 and 4. The result of the l.p. method is 0 for all
levels of CRs, because it could not acquire all possible CRs denoted
in the list in section 3.1.3, for any of the levels. The reason seems
to be shown in the middle graph of Figure 3. According to the
graph, it acquired many CRs of which most are not true positive,
having used full acquisition capacity NC = 100. Therefore, even
for the level of one it could not acquire all of the true positives,
i.e., the CRs denoted in the list of GF in section 3.1.3. The reason
for the late contingency detection of the g.c. method is the same
as that described for Figure 3: evaluating contingency among the
variables. Since there is contingency among specific values of the
variables, evaluating the average of the contingency among all of
the values of the variables leads to the underestimation of the con-
tingency. Therefore, the system needs to gather more experiences

until the average exceeds the threshold value CT, which requires a
larger number of time steps to acquire a CR.

Figure 5 shows the effect of uncertainty on the performance of
the system. It is implemented by considering wrong data/action
for both the perception and motor commands of the robot,
because we cannot ignore any of these in a real-world robot.
The probability of the uncertainty is defined by the variable η.
We ran 100,000 time-step simulations 30 times for different val-
ues of η, with CT = C∗

T. The average of the F-measure over
the 30 runs is plotted in Figure 5. As expected, increasing η

causes a reduction in the F-measure of the system, for all the
methods. Since the contingency is evaluated based on the his-
togram of the experiences, having wrong data disturbs the his-
togram and increases the calculation error of the contingencies,
which leads the F-measure to be decreased. However, as Figure 5
shows, the F-measure of the proposed method is more than the
twice as large as those of the other methods when η < 0.25.
Therefore, in real-world implementations, small mistakes in the
behavior of the human or the sensors of the robot are expected
to be tolerated when our proposed mechanism is used in the
implementation.

3.2. The Second Experiment
In the previous section, we showed that our system operates faster,
finds more complex CRs, and displays a higher resistance against
uncertainty comparedwith the othermethods. However, the envi-
ronment was simplistic: the number ofmodalities of the robot was
small and the contingencies stemmed from a single rule of the
caregiver’s response to the robot. As a result, the question as to
whether the system would be capable of acquiring social behavior
in amore complex environment, whichmore closely resembles the
interactive environment of humans, arose. In this section, we use a
more complex environment to examine our proposedmechanism.
The number of modalities is increased and the response of the
caregiver is designed with multiple rules relying on the different
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FIGURE 5 | Performance of the systems with uncertainty.

modalities. In this experiment, we set the constant parameters as
(CT, τ )= (0.75, 1.0) base on our experiences.

3.2.1. Experimental Setup
We add a new modality and variables to the robot for this exper-
iment (see Table 2). Specifically, we enable the robot to utter a
sound, and to hear the voice of the caregiver. In addition, we
enable the robot to recognize the emotion on the face of the care-
giver. Thus, A3 represents the utterance of the robot, u indicates
that the robot utters, whereas uϕ indicates that it does not. R4
represents whether the caregiver uttered, whereas R5 indicates
whether the caregiver is smiling.

3.2.2. Caregiver Model
We increase the behavioral complexity of the caregiver model
according to the changes in the variables. In principle, the care-
giver behaves in the same way as described in section 3.1.2, but
also executes the following additional actions:

1. If the robot uttered to the caregiver after following the gaze of
the caregiver, the caregiver responds to the robot by uttering
(UU·GF-behavior).

2. After the gaze following behavior of the robot, if the robot
returned to the caregiver and kept looking at him/her for a
while (here, it is one time step), the caregiver utters to the robot
(UK·GR-behavior).

Note that in this experiment, the caregiver smiles when the
robot looks at the caregiver after the GF behavior, in addi-
tion to LB-behavior (see section 3.1.2). We denote this with
SLB-behavior.

3.2.3. Expected Contingencies
Since new response rules are added to the behavior of the care-
giver model (section 3.2.2), the following behavior is expected

TABLE 2 | Additional variables for the experiment.

Type Variable name Symbol Elements

A Utterance U A3 = {u, uϕ}

R Utterance of the caregiver T R4 = {0, 1}
Smile of the caregiver M R5 = {0, 1}

to be acquired by the robot in addition to that described in
section 3.1.3:

• uttering after GF behavior, which would lead the caregiver to
respond to the utterance of the robot (GU behavior) and

• keeping the gaze on the caregiver after GR behavior, which
would lead the caregiver to utter (KT behavior).

However, a quantitative analysis of the performance of the
system, such as in section 3.1.4 is not feasible. This is because there
were many parallel causal behavioral actions from the caregiver
model in this experiment, and acquisition of one contingencymay
disturb the acquisition of another one. For example, acquiring
the KT behavior may disturb the acquisition of OL behavior,
because KT suggestsA1 = gc as the output a∗, whereasOL suggests
A1 = g1/g2/g3. Therefore, instead of performing a quantitative
analysis, we inspected the acquired CRs one by one after the
simulation to determine what kind of behavior the robot could
represent by each of them.

3.2.4. Results and Discussion
Weran the simulation consisting of 10,000 time steps to determine
the interaction of the robot with the caregiver model. Table 3
shows all 28 of the CRs acquired by the robot in this experiment,
which are classified in 11 behavioral categories (note that in this
example, the system acquired 34 experiences as CR, but during
the interaction 6 of them were omitted which none of them
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TABLE 3 | Social skills acquired by the robot.

CR level Variables Symbol CR Number Input (rt, st) Output (r∗, a∗) E(e) Z Interpreted function

1 Π(O|C, G) GF π1 (0, f2) (1, g2) 1.50 1.12 Gaze following
π2 (0, f1) (1, g1) 1.46 1.06
π3 (0, f3) (1, g3) 1.53 1.10

2 Π(O|GF, G) OP π4 (1, π2) (1, g1) 1.25 1.68 Object permanency
π5 (1, π3) (1, g3) 1.39 1.43
π6 (1, π1) (1, g2) 1.36 1.32

2 Π(M|GF, G) GR π7 (0, π2) (1, gc ) 1.58 1.83 Gaze return
π8 (0, π1) 2.00
π9 (0, π3) 2.30

2 Π(T |GF, U) VR π10 (0,π2) (1, u) 0.86 2.40 Vocal response
π11 (0, π1) 0.76
π12 (0, π3) 0.83

3 Π(O|VR, G) CA π13 (0, π11) (1, g2) 0.75 0.98 Check again
π14 (0, π10) (1, g1) 0.97 0.90
π15 (0, π12) (1, g3) 1.26 1.02

3 Π(T |GR, G) GU π16 (1, π7) (1, gc ) 1.20 1.21 Get utterance
π17 (1, π8) 1.22
π18 (1, π9) 1.21

3 Π(T |VR, G) KT π19 (1, π10) (1, gc ) 0.76 0.87 Keep talking
π20 (1, π11) 1.06 1.08

4 Π(T |CA, U) VR4 π21 (0, π13) (1, u) 0.77 0.67 Vocal response (Lv4)
π22 (0, π14) 1.10 0.59
π23 (0, π15) 0.75 0.79

4 Π(O|CA, G) OP4 π24 (1, π13) (1, g2) 1.51 1.48 Object permanency (Lv4)
π25 (1, π14) (1, g1) 1.57 1.68
π26 (1, π15) (1, g3) 1.33 1.53

4 Π(M|CA, G) GR4 π27 (0, π14) (1, gc ) 1.18 0.47 Gaze return (Lv4)

5 Π(O|VR4, G) CA5 π28 (0, π21) (1, g2) 0.85 0.94 Check again (Lv5)

represented any contingency, and 28 skills were remained). The
column labeled “CR Level” indicates the length of the contingency
chain of each skill, which is described in section 2.1. The column
“Variables” determines the variables of the CRs. In the column
“Symbol,” we assigned a symbol to CRs based on the behavior of
the robot when it uses the CRs. We use the symbols to indicate
the Sπ of added CR, in the column “Variables” of Table 3. In
“CR Number,” we allocated an ID to each CR. This would enable
the value to be used if the CR is the input of another CR. The
columns “Input” and “Output” show the input and the output of
the sensory-motor mapping of each CR. Furthermore, the value
of E(e) when the robot acquired the CR and the predictability Z
at the end of the simulation is shown for each CR. Finally, an
interpretation of the CR is given based on the functionality in the
last column. Below, we explain each behavioral type briefly:

• GF: this behavior, named Gaze Following, enables the robot to
follow the gaze of the caregiverwhen it detects that the caregiver
is looking at a point of the table (when C= f 1/f 2/f 3, outputs
G= a∗ = g1/g2/g3). Due to the OR-behavior of the caregiver
and infrequent movement of the object (m= 10), using GF

leads the robot to (usually) find the object (Ot+1 = r∗ = 1).
Therefore, GF appears to be a social skill for finding the object.

• OP: this behavior, named Object Permanency, enables the
robot to keep its gaze along the same direction, when it used
GF behavior and detected an object (when GF= 1 and O= 1,
outputs G= a∗ = g1/g2/g3). Due to the infrequent movement
of the object (m= 10), using OP leads the robot to (usually) see
the object again (Ot+1 = r∗ = 1). Therefore, OP appears to be a
social skill to keep looking at the found object.

• GR: this behavior, named Gaze Return, enables the robot to
look at the caregiver when the robot used GF behavior (when
GF= 1, outputs G= a∗ = gc). Due to the SLB-behavior of the
caregiver, using GR leads the robot to detect the smiling face
of the caregiver (Mt+1 = r∗ = 1). Therefore, GR appears to be a
social skill for looking back at the caregiver to obtain a prize by
smiling, when it succeeded in finding the object (by GF).

• VR: this behavior, named Voice Response, enables the robot to
utter a sound when it used GF behavior (when GF= 1, outputs
U = a∗ = u). Due to theUU·GF-behavior of the caregiver, using
VR leads the robot to detect the vocal response of the caregiver
(Tt+1 = r∗ = 1). Therefore, VR appears to be a social skill for

Frontiers in Robotics and AI | www.frontiersin.org March 2016 | Volume 3 | Article 1011

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Mahzoon et al. Observing the State of Balance

uttering a sound to elicit a vocal response from the caregiver,
after the robot succeeded in finding the object (using GF).

• CA: this behavior, named Check Again, enables the robot
to look at the previous location of the object when it used
VR behavior (when VR= 1, outputs G= a∗ = g1/g2/g3, where
gi would be the same as that used in GF two time steps
before).Due to the infrequentmovement of the object (m= 10),
using CA leads the robot to (usually) see the object again
(Ot+1 = r∗ = 1). Therefore, CA appears to be a social skill to
again verify the existence of the found object in the same place,
which is detected in the previous time steps (by GF).

• GU: this behavior, named Get Utterance, enables the robot to
keep looking at the caregiver when it used GR behavior (when
GR= 1, outputs G= a∗ = gc). Due to the UK·GR-behavior of
the caregiver, using GU leads the robot to detect the utterance
of the caregiver (Tt+1 = r∗ = 1). Therefore, GU appears to be
a social skill to elicit an utterance from the caregiver by con-
tinuing to look at the caregiver after receiving a smiling prize
(by GR).

• KT: this behavior, named Keep Talking, enables the robot to
look at the caregiver when it used VR behavior (when VR= 1,
outputs G= a∗ = gc). Due to the UK·GR-behavior of the care-
giver and GR behavior of the robot in the previous time step
(note that when VR behavior is used, GR behavior would be
used simultaneously according to the formerly acquired CRs
of the robot), using KT leads the robot to detect the utterance
of the caregiver (Tt+1 = r∗ = 1). Therefore, KT appears to be
a social skill in response to the vocal response of the caregiver
(due to VR), in which the robot continues looking at the care-
giver whereupon the caregiver utters again and which appears
to be the ability to induce the caregiver to continue talking to
the robot.

• VR4: this behavior, named Vocal Response Lv4, enables the
robot to utter a sound when it used CA behavior (whenCA= 1,
outputs U = a∗ = u). Due to the UU·GF-behavior of the care-
giver, using VR4 leads the robot to detect the utterance of the
caregiver (Tt+1 = r∗ = 1). Therefore, VR4 appears to be a social
skill to elicit a vocal response from the caregiver, after the robot
succeeded in finding the object (using CA).

• OP4: This behavior, named Object Permanency Lv4, enables
the robot to maintain its gaze along the same direction, when
it used CA behavior and detected (rechecked) an object (when
CA= 1 andO= 1, outputsG= a∗ = g1/g2/g3). Due to the infre-
quent movement of the object (m= 10), using OP4 leads the
robot to (usually) see the object again (Ot+1 = r∗ = 1). There-
fore,OP4 appears to be a social skill to enable continued looking
at the rechecked object.

• GR4: this behavior, named Gaze Return Lv4, enables the robot
to look at the caregiver when the robot usedCAbehavior (when
CA= 1, outputs G= a∗ = gc). Due to the SLB-behavior of the
caregiver, using GR4 leads the robot to detect the smiling face
of the caregiver (Mt+1 = r∗ = 1). Therefore, GR4 appears to be
a social skill for looking at the caregiver again to obtain a prize
by smiling, when it succeeded in finding (rechecking) the object
(by CA).

• CA5: this behavior, named Check Again Lv5, enables the
robot to look at the previous location of the object when it

used VR4 behavior (when VR4= 1, outputs G= a∗ = g1/g2/g3,
where gi would be the same as that used in CA two time steps
before).Due to the infrequentmovement of the object (m= 10),
using CA5 leads the robot to (usually) see the object again
(Ot+1 = r∗ = 1). Therefore, CA5 appears to be a social skill
to again verify the existence of the found object in the same
location detected in the previous time steps (by CA).

Table 3 indicates that the proposed method was capable of
acquiring several social skills based on the response of the
caregiver, even in a more complex environment. Compared with
the first experiment, social skills with longer sequences, such
as CA5 and VR4, are acquired, and more complex interaction
between the robot and the caregiver is observed. This suggests that
it would be possible to apply ourmethod to real-world interactions
between the robot and a human.

To compare the performance of the proposed method under
the condition of the second experiment with the other methods,
we run 10 independent simulations for each methods, i.e., pro-
posed, g.c., and l.p. methods, where each simulation consists of
10,000 time steps. The average of the number of the acquired
CRs (NAC) and the maximum level of the used skill during the
interaction [maximum chain length (MCL)] were compared. The
average of NAC was 48.6, 1.7, and 93.9 with the SD of 9.1, 0.48,
and 6.1 for the proposed, g.c. and l.p. methods, respectively.
The average of MCL was 4.2, 1.5, and 2.6 with the SD of 0.42,
0.53, and 0.97 for them, respectively. Larger MCL shows that the
robot could interact with the human during longer time sequence,
and able to produce more complex behavior. The average of the
MCL for the proposed method is larger than the others, which
ensures its higher performance even in the complex environ-
ment of the second experiment. Although the MCL of the g.c.
method is smaller than that of the l.p. method, considering NAC
of them could be important. In l.p. method, it is close to 100,
i.e., the maximum capacity for the skill acquisition as mentioned
in section 3.1.4. It means that the same thing with the result of
the first experiment could be occurred for l.p. method, even in
the condition of the second experiment. It is considered that the
system acquires lots of sensory-motor mapping as CRs, while
lots of them do not reflect the condition of the caregiver and
are useless for the interaction (see section 3.1.4 for detail). On
the contrary, in the case of the g.c. method, the system does not
acquire lots of CRs, but NAC seems to be too small, i.e., 1.7. This
seems to be similar with the result acquired for the g.c. method
in the first experiment (see the middle graph of Figure 3 for
the case of the g.c. method). It is difficult to acquire complex
skills in case of the g.c. method while there is only one non-
complex (i.e., simple) contingent experience set for our exper-
iment, i.e., GF. Therefore, the NAC in the case of g.c method
became close to the number of the existing simple experiences,
i.e., one.

To more analyze the implication of the result with NAC, we
considered a fact that we can identify a part of the combinations
that does not reflect any contingencies. For example, the combina-
tions that contain A2 (hand gesture of the robot) can be identified
as non-contingent ones because the caregiver is designed not
to produce any responses to the hand gesture of the robot in
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this experiment. We evaluated RNC, which is the ratio of non-
contingent combinations included in the all combinations found
in the interaction as a measure implying the accuracy of finding
contingencies. In the analysis of this ratio, the found combination
is identified as a non-contingent one if a skill satisfies either of the
following conditions:

• it contains A2 (hand gesture of the robot),
• it is level one but is not equal to GF (the only level one

contingency exists in our problem setting is GF),
• it is level two but its S variable is not equal to GF (the contin-

gency belongs to two time steps appears only after the execution
of GF by the robot in our problem setting), or

• it is level three or higher but its S variable is equal to one of the
above (non-contingent) skills.

The average of RNC among the 10 times of the simulations
for the proposed, g.c. and l.p. method were equal to 0.17, 0.10,
and 0.58 with the SD of 0.09, 0.21, and 0.20, respectively. RNC
of the l.p. method is (around two times) larger than that of
the proposed method, and it is similar to the result of the first
experiment. It means that lots (around 60%) of acquired skills
in l.p. method contain non-contingent variables and are useless
for the interaction. For case of the g.c. method, RNC is small.
However, since it acquires only one or two skills in this problem
setting (NAC is equal to 1.7), it does not mean that the robot
with the g.c. method succeeds in acquiring contingent complex
skills. As a conclusion, the analysis with RNC and NAC for these
three methods implies that the similar properties on the accuracy
of them appeared in the first experiment, which were treated as
an evidence of higher performance of the proposed method, are
reproduced in the second experiment, too.

4. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel mechanism for the acquisition
of social skills utilized in face-to-face interaction between a robot
and its human caregiver. We introduced a new contingency evalu-
ationmeasure that estimates contingencies among the value of the
variables utilizing transfer information. Furthermore, we showed
that our proposed mechanism improves aspects, such as system
precision and recall, contingency chain length, speed, and noise
resistance. We additionally examined the feasibility of our pro-
posed system in a more complex environment that more closely
resembles real-world interaction of a robot with humans, and

showed that the system remained capable of acquiring complex
social skills. The resulting fast, accurate, noise tolerant, and com-
plex skill acquisition by the robot encourages us to take the next
step, i.e., to implement the system in an actual real-world robot.

However, the skill acquisition threshold CT was constant in
our simulation. In a real-world interaction of a robot with a
human, the value of contingency would vary for different types
of modalities and different types of interactions. Although we
have started to check the performance of the proposedmechanism
with a real-world robot, and confirmed the acquisition of even
some complex skills by the robot, but in this primitive experiment
the parameters including CT were tuned very carefully and the
behavior of the human caregiver were very strict. Therefore, for
a natural interaction, a mechanism to adaptively regulate the
acquisition threshold through interaction seems to be necessary
for the implementation of the proposed method in a real-world
robot. It is same for the other prefixed parameters, however,
dynamically adjusting all of the parameters by the system seems to
be very complex and time-consuming; therefore, discussion about
the trade-off of this approach seems to be necessary. Furthermore,
to simplify the quantitative analysis of the system performance,
RP was considered as a random movement generator in the work
described in this paper. However, for a robot in the real world,
more complex or human-like RP, such as imitating the caregiver’s
motions, or orienting to the ostensive signals like motherese is
expected to induce more complex response from the human care-
giver. Therefore, such a human-like design of the RP is considered
to be one of the design issues to further enhance the perfor-
mance of the proposed mechanism, which might also promote
to establish closer relationship between a human and a robot that
keeps providing it with contingent experiences necessary for its
open-ended development.
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