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In the past decade neurofeedback (NF) has become the focus of a growing body of 
research. With real-time functional magnetic resonance imaging (fMRI) enabling online 
monitoring of emotion-related areas, such as the amygdala, many have begun testing 
its therapeutic benefits. However, most existing NF procedures still use monotonic uni-
modal interfaces, thus possibly limiting user engagement and weakening learning effi-
ciency. The current study tested a novel multi-sensory NF animated scenario (AS) aimed 
at enhancing user experience and improving learning. We examined whether relative to 
a simple uni-modal 2D interface, learning via an interface of complex multi-modal 3D 
scenario will result in improved NF learning. As a neural-probe, we used the recently 
developed fMRI-inspired EEG model of amygdala activity (“amygdala-EEG finger print”; 
amygdala-EFP), enabling low-cost and mobile limbic NF training. Amygdala-EFP was 
reflected in the AS by the unrest level of a hospital waiting room in which virtual charac-
ters become impatient, approach the admission desk and complain loudly. Successful 
downregulation was reflected as an ease in the room unrest level. We tested whether 
relative to a standard uni-modal 2D graphic thermometer (TM) interface, this AS could 
facilitate more effective learning and improve the training experience. Thirty participants 
underwent two separated NF sessions (1  week apart) practicing downregulation of 
the amygdala-EFP signal. In the first session, half trained via the AS and half via a TM 
interface. Learning efficiency was tested by three parameters: (a) effect size of the 
change in amygdala-EFP following training, (b) sustainability of the learned downregu-
lation in the absence of online feedback, and (c) transferability to an unfamiliar context. 
Comparing amygdala-EFP signal amplitude between the last and the first NF trials 
revealed that the AS produced a higher effect size. In addition, NF via the AS showed 
better sustainability, as indicated by a no-feedback trial conducted in session 2 and 
better transferability to a new unfamiliar interface. Lastly, participants reported that 
the AS was more engaging and more motivating than the TM. Together, these results 
demonstrate the promising potential of integrating realistic virtual environments in NF 
to enhance learning and improve user’s experience.

Keywords: EEG–fMRI integration, EEG-neurofeedback, fMRI-neurofeedback, real-time fMRI, amygdala, emotion 
regulation, interface, virtual reality
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INTRODUCTION

Neurofeedback (NF) training is defined as learned volitional regu-
lation of one’s own brain activity via a closed-loop reinforcement 
protocol, usually interfaced by visual or auditory stimuli. The 
introduction of real-time functional magnetic resonance imaging 
(rt-fMRI) has generated a growing interest in the clinical and 
behavioral benefits of the procedure, as it made it possible to target 
specific anatomical areas, including subcortical regions, such as 
the amygdala (Johnston et al., 2010). The majority of the research 
done so far, particularly in fMRI-NF, focused in proving the feasi-
bility of learning to volitionally regulate localized brain activity in 
different areas (Hamilton et al., 2011; McCaig et al., 2011; Zotev 
et al., 2011; Lawrence et al., 2014; MacInnes et al., 2016) with some 
also showing behavioral changes following the NF procedure 
(Scheinost et  al., 2013; Young et  al., 2014; Keynan et  al., 2016). 
While importantly proving that individuals can obtain volitional 
regulation of local blood oxygen level-dependent (BOLD) activity, 
the research so far has paid little attention to substantial theo-
retical aspects regarding the learning mechanisms underlying NF 
training (Sulzer et al., 2013a,b; Thibault et al., 2016).

Neurofeedback learning is commonly considered as a type of 
associative learning with the online neural feedback providing 
reinforcement (Birbaumer et al., 2013). Accordingly, the learner 
explores different mental and cognitive strategies while some 
are reinforced by the feedback showing successful regulation. 
Strategies that are repeatedly reinforced are, thus, gradually 
adopted by the trainee. Viewed as a learning challenge, the design 
of the NF interface may critically influence its efficiency. In a sys-
tematic inquiry of the effects of teaching methods on memorizing 
and comprehension, Mayer (2009) showed a considerable advan-
tage of multi- over uni-modal techniques in terms of memory 
and comprehension, which was replicated over about 50 tests. 
The advantage of multi-modal stimuli has been demonstrated 
also in various contexts of perceptual learning, including various 
detection tasks (Gibson and Maunsell, 1997; von Kriegstein and 
Giraud, 2006; Shams and Seitz, 2008). A recent theoretical model 
further explains the effect of multi-modal stimuli on learning in 
terms of integrative processes at the neural population level (van 
Atteveldt et al., 2014). However, most existing NF paradigms use 
simple uni-modal 2D graphic simplified representations of brain 
activity, such as bars, meters, or single tones (Sulzer et al., 2013a,b), 
composing only one dimension (size/height, volume/tone) in one 
modality (visual/auditory). This trend does not exploit current 
developments and increasing availability of virtual environments 
encouraging the use of multi-modal information presentation, 
also in the context of NF (Mueller et  al., 2012). While simple 
interfaces may provide the individual with the necessary informa-
tion in order to learn volitional regulation (Thibault et al., 2016), 
complex multi-modal interfaces may produce a more effective 
learning and a more favorable experience (Mishra et al., 2016).

A multi-modal animated interface may be of specific value in 
the context of NF training. Based on Gallese and Lakoff ’s (2005) 
theory of embodied learning, it may be predicted that an anthro-
pomorphic feedback (i.e., the use of human-like animation) will 
facilitate better NF performance. These theorists maintain that 
knowledge is “mapped with our sensory-motor system” so that 

successful learning relies on embodied simulation of the learned 
content. Thus, an anthropomorphic feedback that encodes the 
target process (e.g., amygdala downregulation) as a sensory-motor 
human-like stimulus may allow for better learning in comparison 
with a more abstract interface, such as a dynamic thermometer 
(TM). Such anthropomorphic metaphorical encoding may be 
specifically beneficial in case of long-term learning in which it 
can be more easily invoked by mental imagery in the absence 
of an actual feedback. Furthermore, multi-modal animated sce-
narios (ASs) may enhance user engagement and motivation, thus, 
not only preventing dropout but also providing a challenging 
environment, allowing better realization of individual learning 
potential (Mishra et al., 2016). Previous work has demonstrated 
the feasibility of using 3D multi-modal scenarios with rt-fMRI 
(Mueller et al., 2012; Cavazza et al., 2014). However, prior studies 
have yet to investigate whether such ASs could facilitate a quanti-
tatively and qualitatively different NF experience with respect to 
the underlying learning mechanisms.

The current study tested a newly developed NF interface 
composed of a multi-modal AS designed to enhance learning 
efficiency (Cavazza et al., 2014). Brain activity in the AS is rep-
resented by the unrest level of a group of virtual characters in 
a virtual hospital waiting room. Unrest manifests itself so that 
during baseline, the AS is noisy (people shouting and crying) and 
the characters behave impatiently, trying to reach the admission 
desk and complain to the helpless secretary (Figure 1B; Video 
S1 in Supplementary Material). Thus, our AS incorporates both 
visual (ratio between sitting and standing characters and their 
bodily gestures) and auditory (soundtrack agitation level) anthro-
pomorphized features to facilitate enhanced embodied cognition. 
The NF trainees are instructed to find the mental state that 
corresponds to an ease in the unrest level of the AS (i.e., causes 
people to seat down calmly). It is explained to the trainees that 
the unrest level is determined by modulations in their brain activ-
ity as recorded online. NF training in the current work targeted 
downregulation of limbic activity using a novel fMRI-inspired 
EEG model termed the “amygdala electrical finger print” (amyg-
EFP). The amyg-EFP was recently developed in our laboratory 
to enable accessible limbic targeted NF by applying advanced 
machine learning algorithms on EEG data acquired simultane-
ously with fMRI (Meir-Hasson et al., 2014, 2016; Keynan et al., 
2016). We examined whether relative to a standard 2D TM visu-
alization, learning via an interface of complex multi-modal 3D 
scenario will result in a more effective NF learning as measured 
by three parameters: (a) learning effect size (b) sustainability, and 
(c) transferability. The learning effect size was used to evaluate the 
overall effect of the training on the targeted brain activity and was 
measured by comparing the mean amyg-EFP signal amplitude in 
the last compared to the first NF trial. Sustainability commonly 
refers to the time period that participants can retain the learned 
skill of volitional regulation after the initial training is over, in 
the absence of online feedback (Thibault et al., 2016). In the cur-
rent study, we tested sustainability by conducting a no-feedback 
trial 1  week following the initial training and, additionally, by 
testing whether the effect exhibited in the first NF training trial 
could be replicated in a second training trial. Lastly, we tested 
whether learning in one context could be transferred to a different 
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TABLE 1 | Experimental design.

Experimental timeline

Session 1   I.	 Baseline trial: AS/TM NF (5 min)
 II.	 Training trial I: AS/TM NF (15 min)

Session 2  
(1 week following session 1)

  I.	 No-feedback trial (5 min)
 II.	 Training trial II: AS/TM NF (10 min)
 III.	 Transfer trial I: (Skateboard; 10 min)
IV.	 Transfer trial II: TM/AS NF (20 min)
 V.	 IMI questionnaire (10–15 min)

In session 1, the groups were trained with either the AS or the TM interface. In session 2,  
participants first underwent a no-feedback trial followed by a second NF trial using 
the same interface as in session 1. Then each group underwent the first transfer trial, 
using a new unfamiliar interface (skateboard). Lastly, each group experienced NF using 
the interface originally assigned to the other group (i.e., AS for the TM group and 
vice versa). At the end of session 2, participants filled the IMI questionnaire regarding 
both interfaces in a counter balanced order.

FIGURE 1 | NF training procedure and conditions. (A) Participant’s EEG is continuously recorded via one Pz electrode (marked in red) and momentary 
amyg-EFP activity is calculated online through rest. NF and washout periods (a time course for one training cycle is shown in the box on the right) (B) The training 
interfaces: either AS (AS. left) or thermometer (TM. Right). (C) Interfaces presented on the second session. The no-feedback consisted of a dark screen with a 
fixation cross (left) and the first transfer trial consisted of a 2D moving skateboard interface.
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unfamiliar context. Together these three aspects may be critical in 
evaluating the possible befits of NF training in daily life outside 
the laboratory.

Participants in the current study underwent two separate 
NF sessions practicing downregulation of the amyg-EFP (see 
Table 1 for the experimental time line). In the first session, half 
of the participants trained via the multi-modal AS and half via a 
standard TM interface. A week later, we tested learning sustain-
ability using a no-feedback trial, followed by a second trial using 
the same interface as in the first session. Subsequently, we tested 
participant’s ability to transfer the NF learning to a new context 
using a third unfamiliar interface (“transfer trial I”). Lastly, each 
participant practiced NF with the interface initially assigned to 
the other group (“transfer trial II”). Improvement in the learning 
effect size was done by comparing the overall mean amyg-EFP 
signal amplitude during the last relative to the first NF trial in 
each group. To evaluate differences in the engagement and moti-
vation induced by the different interfaces, participants rated their 
learning experience in each of the interfaces using the Intrinsic 
Motivation Inventory (IMI) (Ryan, 1982). We hypothesized that, 
relative to the TM interface, training via the AS will result in a 
more effective learning as indicated by effect size, sustainability, 
and transfer measures. We further hypothesized that the AS 
interface will be rated as more engaging and more motivating.

MATERIALS AND METHODS

All experiments and data analysis were conducted at the Tel-
Aviv Center for Brain Functions, Wohl Institute for Advanced 

Imaging, Tel-Aviv Sourasky Medical Center and were approved 
by the Sourasky ethics review board.

Participants
Thirty-two participants were randomly assigned either to the TM 
group [n = 16; 8 females, aged (mean ± SD) 27 ± 5] or to the 
AS group (n = 16; 7 females, aged 26 ± 4). All participants gave 
written informed consent were healthy, and had normal hearing 
and normal or corrected-to-normal vision.

Procedure
The experiment consisted in two separate sessions (Table  1). 
During session 1, the TM group underwent NF training guided 
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by the TM interface and the AS group underwent NF guided by 
the AS interface. During session 2 (1 week following session 1), 
in order to test the sustainability of the NF learning obtained in 
session 1, participants underwent a “no-feedback” trial practic-
ing downregulation of the amyg-EFP without online feedback. 
Subsequently, participants underwent a second training trial 
(“training trial II”) practicing NF guided by the same interface 
as in session 1 (TM for TM group and AS for AS group). Next, 
participants underwent a transfer trial testing their ability to 
transfer the NF learning to a different context using an unfa-
miliar interface (“transfer trial I”), followed by “transfer trial II” 
in which participants practiced NF guided by the interface 
originally assigned to the other group (TM for AS group, AS for 
TM group). Lastly, participants answered the IMI regarding both 
the AS and the TM interfaces in a counter balanced order. Two 
participants (1 AS, 1 TM) were unable to meet the study time line 
and were, thus, excluded from results analysis. The final analysis 
included 30 subjects (15 AS; 15 TM).

NF Training
The NF trials in both sessions followed a similar block design 
(see Figure 1A) differing only in the number of cycles. Each cycle 
comprised one rest block (60  s), one NF block (60–90  s), and 
one wash-out block (30 s). During rest blocks participants were 
instructed to passively view the interface animation and were 
explained that at this time the animation is not influenced by their 
brain activity. During NF blocks participants were instructed to 
downregulate amyg-EFP signal amplitude by practicing mental 
strategies. Instructions were intentionally unspecific, allowing 
individuals to adopt the mental strategy that they subjectively 
found most efficient (Shibata et al., 2011). During washout blocks, 
participants were instructed to tap their thumb to their fingers 
according to a 3 digit number that appeared on their screen.

During session 1, participants underwent one baseline trial 
consisting of two cycles with NF block duration of 90  s, fol-
lowed by a training trial consisting of five cycles with NF block 
duration of 60  s (“training trial I”). The no-feedback trial at 
session 2 consisted one 3 min rest block followed by two 60 s 
long NF blocks. The subsequent second training trial guided by 
the familiar interface consisted of three cycles with NF block 
duration of 60 s. Both transfer trial I (skateboard interface) and 
transfer trial II (TM or AS) consisted of five cycles with NF block 
duration of 60 s.

The Intrinsic Motivation Inventory
To test for differences in the learning experience between the 
TM and AS interfaces, we used the IMI questionnaire (Ryan, 
1982), a multidimensional inventory, including seven subscales 
aimed to evaluate the subjective experience induced by an 
activity in laboratory experiments. Each subscale is scored in 
a scale of 1–7. In the current research, we used the following 
subscales:

	1.	 Effort/Importance – How motivated was the participant to 
succeed in the task and to what extent were they willing to 
make an effort toward the task?

	2.	 Interest/Enjoyment – How interesting and enjoyable was 
the task?

	3.	 Value/Usefulness – Did the participant find the learned skill 
useful to their daily life?

	4.	 Relatedness – To what extent was the participant able to relate 
to figures/objects presented in the task?

	5.	 Perceived competence – To what extent did the training make 
the participant feel competent in the skill at hand?

Two of the IMI subscales (perceived choice and felt tension) 
were not included in the current study as they were not relevant 
to both interfaces. The questionnaire was translated to Hebrew 
and adjusted to be compatible to the NF task.

Participants answered the IMI only once, at the end of 
session 2. Each participant rated both the TM and the AS inter-
faces in a counter balanced order.

The amyg-EFP Model
The amyg-EFP model was previously developed by our lab in 
order to enable the prediction of localized activity in the amyg-
dala using EEG only (Meir-Hasson et al., 2014, 2016). This was 
done by applying machine learning algorithms on EEG data 
acquired simultaneously with fMRI. This procedure resulted in 
a Time-Delay × Frequency × weight coefficient matrix. EEG data 
recorded from electrode Pz at a given time-point is multiplied by 
the coefficient matrix to produce the predicted amygdala fMRI-
BOLD activity at this point. Keynan et al. (2016) validated the 
reliability of the amyg-EFP in predicting amygdala BOLD activ-
ity by conducting further simultaneous EEG–fMRI recordings 
using a new sample not originally used to develop the model. 
For further specification, see Meir-Hasson et al. (2014, 2016) and 
Keynan et al. (2016).

EEG Raw-Data Acquisition
EEG data were acquired using the V-Amp™ EEG amplifier 
(Brain Products™, Munich Germany) and the BrainCap™ 
electrode cap with sintered Ag/AgCI ring electrodes providing 16 
EEG channels, 1 ECG channel, and 1 EOG channel (Falk Minow 
Services™, Herrsching-Breitburnn, Germany). The electrodes 
were positioned according to the standard 10/20 system. The 
reference electrode was between Fz and Cz. Raw EEG was sam-
pled at 250 Hz and recorded using the Brain Vision Recorder™ 
software (Brain Products).

Online Calculation of amyg-EFP Amplitude
Raw EEG data were collected online by Brain Vision RecView™ 
(Brain Products) at a sampling rate of 250 Hz. The RecView soft-
ware makes it possible to remove cardio-ballistic artifacts from 
the EEG data in real time using a built-in automated implemen-
tation of the average artifact subtraction method (Allen et al., 
1998, 2000). RecView™ was custom modified to enable export 
of the corrected EEG data in real time through a TCP/IP socket. 
Preprocessing algorithm and amyg-EFP calculation models 
were compiled from Matlab R2009b™ to Microsoft.NET™ in 
order to be executed within the Brain Vision RecView™ EEG 
Recorder system. Data were then transferred to a MATLAB.NET 
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compiled DLL that calculated the value of the EFP amplitude 
every 3 s.

Feedback Generation
Thermometer
Online amyg-EFP values were transferred from Brain Vision 
RecView™ to MATLAB™ which in turn set the TM’s height 
ranging across 30 different levels (Figure 1B). During rest blocks 
the TM was pre-set to level 15. During NF blocks, the TM’s 
height was set in accordance to the momentary amyg-EFP value. 
Mathematically, the height at time point t of the NF block is 
determined by the probability (p-value) of the amyg-EFP value 
received at time point t, under the amyg-EFP distribution of the 
rest block.

	
H ght ( )

( )
ei t p

t
=

− ( )
( )








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



EFP EFP
EFP

Rest

Rest

µ
σ

.
	

EFP(t) is the amyg-EFP value at time point t, and μ( )EFPRest  
is the mean amyg-EFP value during the previous rest block. 
σ( )EFPRest  is the SD of the amyg-EFP distribution during rest.

Animated Scenario
This interface includes a virtual hospital waiting room that 
may be either agitated or relaxed (Figure  1B; Video S1 in 
Supplementary Material). The ratio between characters sitting 
down and protesting at the counter is considered as a two-state 
Boltzmann distribution (Atkins and De Paula, 2006), whose evo-
lution is driven by a “virtual temperature” whose value is derived 
from the momentary value of the amyg-EFP. In equivalence 
to the TM interface, the AS uses the probability (p-value) of 
the momentary amyg-EFP value to be sampled under the rest 
distribution. This p-value is used to determine the probability 
of virtual characters to be moving in the virtual room (Cavazza 
et  al., 2014). A matching soundtrack, recorded inside a real 
hospital complements the system output. Three alternative 
soundtracks with different agitation levels were produced and 
switched according to the amyg-EFP index. In the rest block, 
only half of the characters congregate at the front desk also 
expressing their frustration through body and verbal language. 
The system is implemented using the Unreal Development Kit 
(UDK™) game engine, which controls walking animations for 
individual characters.

Unfamiliar Interface for Transfer Trial I (Skateboard)
This visual interface consisted of a 2D uni-modal flash-based 
graphic interface of an animated figure standing on a skate-
board, skating down a rural road (Figure 1C). During training 
the participant is asked to control the speed of the skateboard. 
The feedback is generated in a technically and mathematically 
similar manner to the TM interface except that the online 
amyg-EFP value determines speed of the skating figure instead 
of height of a bar, which is represented through a speedometer 
on the top and the scrolling speed of the landscape (in one 
fixed, forward direction). The speed of the skateboard ranged 
between 50 and 130 km/h. During rest blocks, the skateboard 
moved at a constant pre-set speed of 90 km/h. During NF blocks 

the skateboard’s speed was set in accordance to the momentary 
amyg-EFP value.

Statistical Analysis
For each NF trial, we conducted a two-way repeated measured 
analysis of variance (ANOVA) with the amyg-EFP as a dependent 
variable and group (AS vs. TM) and condition (NF vs. rest) as fac-
tors. Effect size (Cohen’s d) was measured for the first session by 
comparing the mean amyg-EFP signal amplitude during training 
trial I relative to the baseline trial and by conducting a repeated 
measures ANOVA with the amyg-EFP as a dependent variable 
and group (AS vs. TM) and trial (baseline vs. training trial I) 
as factors. The overall improvement in the learning effect size 
was tested by comparing the mean amyg-EFP signal amplitude 
during the last NF trial relative to the first NF trial and by 
conducting a repeated measures ANOVA with the amyg-EFP 
as a dependent variable and group (AS vs. TM) and trial (first 
vs. last) as factors. Results of the IMI were analyzed in a similar 
manner with the self-report scoring as a dependent variable and 
group (AS vs. TM) and subscale as factors. Post hoc analysis 
of simple effects was Bonferroni corrected with respect to the 
number of comparisons in each analysis. All reported p-values 
are two tailed. Analysis was executed within MATLAB 2013R™ 
and Statistica 7™. Disrupted EEG recordings (one AS subject 
in training trial I, one TM subject in training trial II, and one 
TM subject in transfer trial II) were excluded from analysis of 
the relevant trial.

RESULTS

Session 1
Baseline Trial
As expected, during the first baseline trial participants of 
both groups (TM and AS) were yet unable to lower amyg-
EFP signal amplitude during NF relative to rest (Figure  2A). 
A  two-way repeated measures ANOVA revealed no effect of 
condition (NF vs. rest) [F(1,28)  =  0.01, p  >  0.99] nor group 
(AS vs. TM) [F(1,28) = 0.24, p > 0.62; AS: rest = −0.41 ± 0.76, 
NF = −0.39 ± 0.71; TM: rest = −0.28 ± 0.6, NF = −0.3 ± 0.5].

NF Training Trial I
Analysis of amyg-EFP signal modulations during NF relative 
to rest indicated that, as hypothesized, both groups learned 
to downregulate the amyg-EFP during NF relative to rest 
(Figure 2B). A two-way repeated measures ANOVA revealed a 
main effect of condition (NF < rest) [F(1,27) = 20.41, p < 0.001; 
rest  =  −0.36  ±  0.83, NF  =  −0.51  ±  0.63] with no interaction 
between the groups [F(1,27) = 0.05, p > 0.8]. Post hoc analysis 
(Bonferroni) further indicated that this effect (NF  <  rest) was 
significant within both groups (AS: p < 0.02, rest = −0.53 ± 0.84, 
NF  =  −0.67  ±  0.64; TM: p  <  0.02, rest  =  −0.19  ±  0.81, 
NF = −0.35 ± 0.62).

First Session Learning Effect Size
Comparing the mean amyg-EFP signal amplitude during 
the baseline trial relative to the first training trial at session 1, 
revealed no difference between the groups in learning effect 
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FIGURE 3 | Pre vs. post training results. Training with the AS interface 
resulted in an overall stronger effect on the targeted brain activity. The 
figure demonstrates that only the AS group showed a reduction in the 
mean amyg-EFP signal amplitude (y-axis) during the last (solid fill) 
compared to the first (dashed fill) NF trial. Furthermore, while pre-training 
no differences were observed between the groups, during the last NF trial 
the AS group showed lower amyg-EFP signal amplitude. *p < 0.05, 
***p < 0.001.

FIGURE 2 | Session 1 NF Training Results. (A) As expected at the first baseline trial (5 min) participants were yet unable to down regulate the amyg-EFP 
(Y-axis) during NF (solid bars) relative to rest (dashed bars), and no differences were observed between the groups (red bars for AS; blue for TM) (All p > 0.8). 
(B) By the end of the first session, during the first training trial (15 min), both groups decreased the amyg-EFP signal amplitude during NF relative to rest with no 
group differences. *p < 0.05.
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size [F(1,27)  =  1.63, p  >  0.2; AS: training I  =  −0.60  ±  0.82, 
baseline  =  −0.40  ±  0.70, Cohen’s d  =  −0.07; TM: training 
I = −0.27 ± 0.62, baseline = −0.29 ± 0.53, Cohen’s d = 0.24].

Session 2
Effect Size: First vs. Last NF Trial
As hypothesized, the AS group showed a robustly stronger effect 
size compared to the TM group (Figure  3). Analysis of mean 
amyg-EFP signal amplitude for both groups during the last NF 
trial (transfer trial II) compared to the first NF trial (baseline trial) 
revealed a significant group by trial interaction [F(1,28) = 4.52, 
p  <  0.05], indicating that only the AS group showed lower 
amyg-EFP activity during the last relative to the first NF trial 
[AS: p(Bonferroni)  <  0.001; transfer II  =  −1.56  ±  0.79, base-
line = −0.40 ± 0.70, Cohen’s d = −1.56; TM: p(Bonferroni) > 0.90; 
transfer II  =  −0.53  ±  1.32, baseline  =  −0.29  ±  0.53, Cohen’s 
d = −0.27].

No-Feedback Trial
As hypothesized, during the no-feedback trial the AS group showed 
better downregulation relative to the TM group (Figure  4A). 
A group (AS vs. TM) by condition (NF vs. TM) interaction 
[F(1,28)  =  9.16, p  <  0.01] indicated that compared to the TM 
group, amyg-EFP signal amplitude of the AS group was lower dur-
ing NF relative to rest. While the AS group showed a trend toward 
lower amyg-EFP signal amplitude during NF relative to rest 
[p(Bonferroni) < 0.15, rest = −1.25 ± 0.80, NF = −1.51 ± 0.61], 
the TM group showed the opposite pattern [p(Bonferroni) < 0.03, 
rest = −1.13 ± 0.60, NF = −0.93 ± 0.63].

Training Trial II
When practicing NF with the familiar interface for the second 
time, the mean EFP signal amplitude across both groups was low-
ered during NF relative to rest (Figure 4B); however, this effect 

was significant only within the AS group. Similarly to training 
trial I, repeated measures ANOVA revealed a main effect of con-
dition (NF < rest) [F(1,27) = 4.35, p < 0.05; rest = −1.03 ± 0.68, 
NF  =  −1.13  ±  0.88] with no interaction between the groups 
[F(1,27) = 0.001, p > 0.9]. Post hoc analysis (Bonferroni) showed 
that this effect (NF  <  rest) was significant only within the AS 
group (AS: p < 0.05, rest = −1.30 ± 0.67, NF = −1.40 ± 0.79; TM: 
p > 0.3, rest = −0.76 ± 0.69, NF = −0.86 ± 0.96).
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FIGURE 4 | Sustainability testing at session 2. (A) At the no-feedback trial conducted at the beginning of session 2, the AS group (red) exhibited better down 
regulation of the amyg-EFP (NF relative to rest) compared to the TM group (blue) as indicated by a significant group by condition interaction [F(1,28) = 9.16. 
p < 0.01] (B) When practicing for the second time with the same interface assigned initially, only the AS group was able to replicate the success of the first training 
trial. *p < 0.05, **p < 0.01.
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Transfer Trial I
Analysis of the NF trial guided by the skateboard interface 
interestingly revealed that although both groups successfully 
downregulated amyg-EFP signal amplitude during NF relative to 
rest. The AS group exhibited an overall lower amyg-EFP signal 
amplitude across both conditions (Figure 5A). Repeated meas-
ures ANOVA revealed a main effect of group [F(1,28)  =  8.66, 
p < 0.02] indicating that the mean amyg-EFP signal amplitude 
of the AS group (−1.43  ±  0.76) was lower relative to the TM 
group (−0.67 ±  0.86). The effect of condition (NF <  rest) was 
also significant [F(1,28) = 120.70, p < 0.001] with post hoc analy-
sis (Bonferroni) indicating that both groups showed reduced 
amyg-EFP signal amplitude during NF relative to rest (AS: 
p < 0.001, rest = −1.32 ± 0.76, NF = −1.54 ± 0.82; TM: p < 0.001, 
rest = −0.52 ± 0.85, NF = −0.82 ± 0.86).

Transfer Trial II
Similar to transfer trial I, the AS group showed an overall 
lower amyg-EFP signal amplitude compared to the TM 
group [F(1,27)  =  6.53, p  <  0.02; AS  =  −1.55  ±  0.77; TM = 
−0.53  ±  1.325] (Figure  5B). A main effect for condition (NF 
vs. rest): [F(1,27)  =  25.79, p  <  0.001] was also found with no 
group interaction. However, this condition effect (NF < rest) was 
significant only for the AS group, and marginally significant for 
the TM group [AS: p(Bonferroni) < 0.001, rest = −1.43 ± 077, 
NF = −1.68 ± 0.82; TM: p(Bonferroni) < 0.06, rest = −0.44 ± 1.36, 
NF = −0.62 ± 1.23].

IMI Questionnaire
In line with our hypothesis, a repeated measures ANOVA revealed 
a main effect of interface [F(1,27) = 13.63, p < 0.001] showing 
higher ratings for the AS interface (5.37 ± 1.14) relative to the 
TM interface (4.67 ± 1.25). Post hoc (Bonferroni) analysis further 
indicated that while participants reported that it was equally 

important for them to succeed with both interfaces (p  >  0.78, 
AS = 6.13 ± 0.81, TM = 6.18 ± 0.99) the AS interface was rated 
higher on all of the other subscales (Figure 6): interest/enjoyment 
(p < 0.03, AS = 5.23 ± 1.29, TM = 4.25 ± 1.29); value/usefulness 
(p < 0.057, AS = 5.20 ± 1.21, TM = 4.79 ± 1.38); Relatedness 
(p < 0.05, AS = 5.31 ± 0.75, TM = 4.83 ± 1.10); Perceived com-
petence (p < 0.03, AS = 5.00 ± 1.63, TM = 3.41 ± 1.53). Group 
assignment (TM or AS) had no effect on individual IMI ratings 
[F(1,27) = 1.48, p > 0.23].

DISCUSSION

The current work introduced a novel multi-modal 3D AS for 
NF training and demonstrated its advantages over a commonly 
used uni-modal 2D TM interface. Our results indicate that the 
NF experience induced by such a virtual scenario may facilitate 
a stronger and more sustainable learning effect that could be eas-
ily transferred to different learning contexts. While participants 
reported that it was equally important for them to succeed with 
both interfaces, the AS interface was reported by participants as 
more engaging and more motivating, and as providing a feedback 
to which participants could relate to more easily. Moreover, par-
ticipants reported that they had felt more competent following 
training with the AS interface compared with the TM interface.

As shown in previous fMRI-NF studies (Sulzer et al., 2013a,b; 
Bruhl et al., 2014; Lawrence et al., 2014; Paret et al., 2014), we 
found that volitional regulation of localized limbic activity could 
be obtained even after one session. Interestingly, comparing the 
two NF trials conducted in session 1 (baseline vs. training I)  
revealed that, at this stage, no significant difference existed in 
the effect size facilitated by the AS relative to the TM (Figure 2). 
However, the results of the second session clearly demonstrated 
that relative to the TM interface, NF learning via the AS had a 
substantially larger effect on the targeted brain activity. Compared 
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FIGURE 6 | Intrinsic motivation inventory (EMI). At the end of session 2, after practicing NF both with the TM and the AS, participants rated the learning 
experience induced by each interface. While participants reported that it was equally important for them to succeed with both interfaces, the AS interface was 
reported more enjoyable and as providing a feedback to which participants could more easily relate. Furthermore, participants reported that they felt more 
competent following training with the AS interface relative to the TM interface. The interface assigned at the first session had no influence on individual ratings. 
*p(Bonferroni) < 0.05.

FIGURE 5 | Transfer testing at session 2. (A) When introduced to an unfamiliar context (skateboard interface) although both groups were able to downregulate 
the amyg-EFP during NF relative to rest, the AS group showed an overall lower amyg-EFP signal amplitude. (B) Similar to the first transfer trial, the AS group 
showed an overall lower amyg-EFP activity relative to the TM group. The condition effect (NF < rest) was significant only for the AS group. *p < 0.05, **p < 0 01, 
***p < 0.001.
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to the TM group, the AS group showed a larger reduction in 
mean amyg-EFP activity during the last relative to the first NF 
trial (Figure 3). The results further showed that during the last 
NF trial the AS group showed lower amyg-EFP activity relative 
to the TM group. This group difference in amyg-EFP activity 
was not observed pre-training (Figure  2A), thus indicating an 
overall stronger learning effect of the AS interface. These results 
are consistent with prior work in other learning domains showing 
that multi-modal techniques may facilitate better memory and 

comprehension compared to uni-modal techniques (Gibson and 
Maunsell, 1997; von Kriegstein and Giraud, 2006; Shams and 
Seitz, 2008; Mayer, 2009).

In addition to effect size, we tested learning sustainability by 
conducting a no-feedback trial at the beginning of session 2. The 
results showed that participants who initially trained via the AS 
interface were better able to regulate the amyg-EFP in the absence 
of online feedback (open-loop Brain–Computer Interface), 
indicating better learning sustainability (Figure  4A). This 
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“sustainability effect” in a no-feedback trial was demonstrated in 
previous studies, although mostly conducted immediately after 
one NF session (i.e., at the same day) (deCharms et al., 2004, 2005; 
Ruiz et al., 2013; Sulzer et al., 2013a,b). In the current study, we 
further challenged our trainees by conducting the no-feedback 
trial 1 week following the initial NF session, with no refresher 
training in between. This better sustainability of the AS group was 
further demonstrated by the fact that only the AS group were suc-
cessful in the subsequent “training trial II” in which participants 
trained NF for the second time via the interface initially assigned 
at session 1 (Figure  4B). The observed difference in sustain-
ability might be explained by the anthropomorphic metaphorical 
encoding induced by the AS, that is more easily invoked by 
mental imagery in the absence of online feedback. The finding 
that only the AS group maintained the successful performance 
with the same interface for a second time (“training trial II”) may 
also be related to the higher potential of multi-modal content to 
be readily learned, as well as to the more motivating nature of the 
AS interface, keeping participants engaged on the task at hand. 
The latter explanation is also consistent with the results of the IMI 
questionnaire, indicating that the learning experience via the AS 
interface was rated as more interesting and more enjoyable rela-
tive to the TM interface (Figure 6). When aiming toward multiple 
NF sessions, this engaging factor could be crucial.

To further assess learning efficiency, we tested whether par-
ticipants could transfer NF learning to a different context using 
a third unfamiliar interface followed by a second transfer trial at 
which participants trained with the interface initially assigned to 
the other group. In a previous study, we have shown that training 
in one sensory modality (auditory or visual) and context (differ-
ent interfaces) can be transferred to a completely different context 
and even a different modality, as long as the same localized brain 
activity is targeted (Keynan et al., 2016). In the current study, we 
used an unfamiliar 2D graphic, flash-based interface (skateboard 
visualization; Figure 1C) to test for differences in transferability 
of learning between the AS compared to the TM. Comparing 
the success of the groups in down-regulating amyg-EFP signal 
amplitude during NF relative to rest baseline revealed no differ-
ence between the groups. However, a closer look at the results 
indicated an overall lower amyg-EFP signal amplitude for the 
AS group relative to the TM group already at the baseline rest 
condition (Figure  5A). Not only did the AS group started the 
first transfer trial with lower amyg-EFP activity at rest baseline 
but they were able to further lower this activity during NF. In the 
following second transfer trial, additionally to showing a similar 
overall lower amyg-EFP amplitude relative to the TM group, only 
the AS group was able to further lower amyg-EFP amplitude dur-
ing NF relative to rest (Figure 5B).

One might argue that without a sham control group we cannot 
infer that the observed modulation in amyg-EFP signal amplitude 
is due to the feedback and not a result of other intervening factors 
in the experimental setup (Thibault et al., 2016). It is, therefore, 
important to note that our previous studies (Keynan et al., 2016; 
Meir-Hasson et al., 2016) clearly showed that volitional regulation 
of the amyg-EFP could be learned only when veritable feedback 
and not sham-feedback is provided. Another possible limita-
tion regards the interface chosen for the transferability testing 

(skateboard visualization; Figure 1C). As both groups originally 
trained via visual feedback, testing transfer using another visual 
feedback may not be strong enough in order to fully reflect the 
differences between the groups. Using a different sensory modal-
ity (auditory), as done in Keynan et al. (2016), could provide a 
more robust comparison for testing differences in transferability. 
However, showing that participants of the AS group started the 
NF transfer trial with a lower amyg-EFP activity at rest baseline 
and were still able to further downregulate this activity during NF 
(Figure 5A) is nonetheless intriguing. Future studies should also 
test differences in behavioral transfer effects following multiple 
training sessions. It should also be noted that the aim of the 
present study was to compare the efficiency of an animated NF 
interface, which is currently successfully used by our lab (Cavazza 
et al., 2014), with a standard and commonly used feedback format. 
In light of the evidence that the animated format is preferable to 
the standard bar feedback, a follow-up research should look into 
the specific parameters that contribute to this effect. In specific, the 
multi-modality of the animated interface, its anthropomorphism, 
and realism (including 3D illusion) could be controlled for and 
tested for independent effects on the NF efficiency.

To examine the impact of the interface on the training 
experience, we used the IMI developed by Ryan (1982). This 
allowed us to reveal several important aspects facilitated by the 
enhancement of the NF experience (Figure 6). As expected, the 
AS interface was rated as more interesting and more enjoyable, 
indicating higher engagement and possibly explaining some of 
the learning differences discussed earlier. Having a feedback to 
which participants could relate to, as also indicated by the IMI, 
probably made the feedback more rewarding, thus, further con-
tributing to the learning process. The most prominent difference 
was observed in the perceived competence subscale, showing that 
participants felt more competent in volitional regulation follow-
ing training via the AS. This stronger relatedness and a feeling of 
better competence provide empirical support to the notion that a 
sensory-motor human-like stimulus may allow for better learning 
in comparison with a more abstract interface, such as a dynamic 
TM (Gallese and Lakoff, 2005). Considering that the same skill 
is learned in both interfaces, it was somewhat surprising to find 
that participants rated learning via the AS as more valuable to 
daily life. Once again, this could be a result of the AS’s realistic 
and anthropomorphic nature making it easier for participants to 
consider how to transfer the learning to real-life situations. Taken 
together, the results of the IMI questionnaire robustly show that 
the AS interface facilitated a favorable learning experience that is 
qualitatively different relative to the TM interface. This enhanced 
learning experience might induce higher engagement and a 
stronger feeling of self-competence; both critical for adherence 
in neuropsychiatric treatment.

CONCLUSION

Taking advantage of the interactive and engaging qualities of 
virtual reality media may greatly assist in keeping individuals 
engaged in the learning effort over a prolonged time period. 
As the current work indicates, this enhanced NF experience 
may also yield stronger and more sustainable learning. When 
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applying multiple NF sessions with clinical populations, these 
factors may critically contribute to the desirable behavioral 
changes.
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