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In this article, we propose a new approach for mobile robot localization and hybrid map
building simultaneously without using any odometry hardware system. The proposed
method termed as Genetic Bayesian ARAM comprises twomain components: (1) steady-
state genetic algorithm (SSGA) for self-localization and occupancy grid map building and
(2) Bayesian Adaptive Resonance Associative Memory (ARAM) for online topological map
building. The model of the explored environment is formed as a hybrid representation,
both topological and grid based, and it is incrementally constructed during the exploration
process. During occupancy map building, the robot-estimated self-position is updated
by SSGA. At the same time, the robot-estimated self-position is transmitted to Bayesian
ARAM for topological map building and localization. The effectiveness of our proposed
approach is validated by a number of standardized benchmark datasets and real
experimental results carried on the mobile robot. Benchmark datasets are used to verify
the proposed method capable of generating topological map in different environment
conditions. Real robot experiment to verify the proposed method can be implemented in
real world.

Keywords: Bayesian, genetic algorithm, SLAM, topological map, hybrid map, mobile robot, navigation

1. INTRODUCTION

An autonomous mobile robot is defined as a robot that has the ability to navigate in an environment
and execute desired works with little or no human guidance. Previous work in intelligent robotics
has proposed multistrategy learning that integrated several inference types and/or computational
mechanisms into one learning system (Michalski and Tecuci, 1994). Examples consist of the
integration of symbolic and numerical learning, hybrid computation of discrete and continuous
spaces, integration of stochastic and deterministic heuristic searches, path planning and behavioral
learning (Bianco andCassinis, 1996), and reinforcement learning that uses value andpolicy iteration.

An efficient autonomous robot should be able to estimate its location during navigation and travel
from one place to another in order to complete certain tasks. Also, the robot should be able to
generate the map of the traversed environment corresponding to its position and posture (mapping)
and calculate its position and posture based on the generatedmap (localization). These two processes
are interdependent and usually termed as simultaneous localization andmapping (SLAM) (Tomono
and Yuta, 2003; Thrun et al., 2005), which is considered to be an example of a multistrategy learning
method.

Various conventional approaches for SLAM were developed, for instance, extended Kalman
filter (EKF) SLAM, visual SLAM, and graph SLAM. These methods can handle uncertainty, high
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convergence, and do not require odometry hardware system.
On the one hand, the EKF SLAM approach using maximum
likelihood data associations for online SLAM and the resulted
feature-based maps are used with point landmarks. On the other
hand, graph SLAM overcomes the full SLAM problem in offline
by obtaining all data gathered such as the current time, e.g., all
poses and all features in the map during map building (Folkesson
and Christensen, 2007; Kaess et al., 2008). However, all these
conventional methods are computationally expensive.

Topological approaches map the environment as a set of nodes
and edges (Benjamin and Yung-Tai, 1991). Nodes store infor-
mation about the environment, while edges of the map contain
robot’s odometry information gathered during navigation. Thus, a
topological map represents the environment by only storing infor-
mation of crucial places and connections between these places that
will be used for navigation.

Hybrid approaches combine the topological and metric map-
ping methods in order to retain the advantages of both methods
and compensate for the negative ones. Thrun (1998) proposed
a method that uses the Occupancy Grid method in building a
metric map of the environments, and a topological map is a
posterior calculated from the metric map. However, the accuracy
and consistency of themap generated by this approach are affected
by accumulated odometric error present in the metric map. In
Taylor and Kriegman (1998), the environment is represented as a
collection of local metric maps, all of which are stored as nodes in
a global topological map. The node in the topological map of this
approach stores a set of landmarks observed from the boundary
of each obstacle detected by the robot and uses this information
for navigation between nodes in the map in the later stage. This
method neglects robot pose estimation entirely.

Recently, vision-based navigation system was introduced for
hybrid map building (Cristforis et al., 2015). However, this
approach is based on teach-and-replay technique and requires
odometry system for robot localization. Previous works such as
Battesti et al. (2011) and Bazeille and Filliat (2011) used vision-
based hybrid map building to create consistent topometric map
and compensate odometry drift. However, these methods require
robot odometry system for topometric map building.

In this article, we proposed a new approach that integrated
our previous work SSGA (Toda et al., 2012) and Bayesian ARAM
with map maintenance for hybrid map building. The Bayesian
ARAM with map maintenance is the extension of our previous
work (Chin et al., 2015) that is crucial for dealing with pro-
liferation problem of nodes. The proposed method termed as
Genetic Bayesian ARAM, which constructs map, contains both
a metric and a topological representation. First, SSGA allows the
robot to perform self-localization andmetric mapping simultane-
ously based on occupancy grid mapping. Then, Bayesian ARAM
utilizes the localization information from the metric map and
sensory information from the explored environment to construct
the topological map. Topological nodes represent distinct places,
while edges connect nodes and store robot’s bearing information
such as orientation and direction. The metric grid map describes
the explored environment outline for understanding of human
operators and further operations. In addition, it also provides

TABLE 1 | Comparison between previous works and Genetic Bayesian
ARAM.

Method and
Feature

Map Localization Path
planning

Implementation

Wu et al. (2013) No Yes No Simulation
Duan et al.
(2015)

No Yes No Simulation

Genetic
Bayesian ARAM

Hybrid
map

Yes Yes (not
cover in this
paper)

Simulation and
robot
implementation

global position of robot for Bayesian ARAM to generate the topo-
logical map and overcome the online detection and recognition
problem. With the topological map, the robot could perform
localization and path planning without recalculating the entire
metric grid map. In addition, previous works such as Duan et al.
(2015) andWu et al. (2013) have used genetic algorithm for SLAM
purpose. Table 1 shows the difference between the previous two
works and our proposed method.

Contributions of this paper are: (i) it does not require odometry
system such as encoder and GPS for robot position estimation;
(ii) the unsupervised online learning feature enables the robot
to build the topological metric map from scratch and maintain
it naturally without any human interference; and (iii) it does
not require any artificial marker or adjustment and complicated
cognitive intelligence for operating in a natural environment.
Section 2 introduces the theoretical framework of the proposed
simultaneous localization and hybridmap building approach. The
experimental setup is explained in Section 3, and experimental
results are discussed in Sections 4 and 5. Finally, conclusions are
presented in Section 6.

2. GENETIC BAYESIAN ARAM

Our proposed method termed as Genetic Bayesian ARAM is the
integration of our previous works (Toda et al., 2012; Chin et al.,
2015). In this paper, we have further improved our proposed
method with map maintenance feature, which overcomes the
proliferation problem of nodes. In our proposed hybrid mapping
method, the notion of map is described by both a metric and
a topological feature. On the metric side, the environment
is represented by a global occupancy grid map. Steady-state
genetic algorithm (SSGA) simultaneously performs self-
localization and metric map building based on occupancy grid
mapping.

On the other hand, Bayesian ARAM obtains robot’s location
from the metric mapping and sensory information to build the
topological map. Bayesian ARAM continuously clusters sensory
sources as nodes and creates edges to connect one another if the
robot traverses between these nodes. Each of these connections
contains robot’s movement information, while nodes represent
important places of the explored surroundings. The proposed
method continuously updates the hybrid map representations
with little or no human intervention. The overall process of our
proposed framework is shown in Figure 1.
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FIGURE 1 | Genetic Bayesian ARAM for hybrid map building process.

FIGURE 2 | Definition of occupancy grid map.

2.1. Metric Map Building
As stated in Section 1, we utilize the occupancy grid mapping
(Thrun, 2003; Lee and Chung, 2009) for constructing the metric
map. The theory of the occupancy grid map is shown in Figure 2.

The value of each individual cell is defined as follows:

map0(x, y) =


1 if occupied
0.5 if partially occupied
0 if unknown
−1 if empty

(1)

Initially, all cell values are set as 0. The measurement value is
represented as (di, θi), where i= 1, 2, . . .,M; i= 1, 2, . . ., L; di is
the measurement of laser rangefinder; θi is the intersection of the
measured directions;M is the sum of all measured directions; and
Li = [αRes·di] is the value of the generated map resolution.

The updating process is shown inAlgorithm 1where (xp, yp) is
the robot’s position; rp is the posture; di is the measured distance
value obtained from the laser rangefinder in the ith direction; θi is
the angle of themeasured direction;αMAP is the scale factor for the
grid mapping with respect to the real world; and f (·) in equation
(4) is a function corresponding to IF–THEN hypothesis as stated
in Table 2.

We employ SSGA for the adjustment of the position and angle.
In the evolution of robotics computing, genetic algorithms (GAs)
have been adequately implemented to optimize the problem-
solving ability. GAs, which are capable of generating an appropri-
ate solution, not certainly an ideal one, require less computational
effort. SSGA replicates the continuous model of the generation
that excludes and produces some individuals for every generation.

ALGORITHM 1 | Occupancy grid map update process.

Update process of occupancy grid map for i= 1 to M do
for j=1 to Li do

ui,j =
j
Li

(di cos(θi + rp)) + xp

vi,j =
j
Li

(di sin(θi + rp)) + yp (2)

xi,j = [αMap · ui,j]

yi,j = [αMap · vi,j] (3)

map0(xi,j, yi,j) = f(map0(xi,j, yi,j), j) (4)
end

end

TABLE 2 | State transitions of map update.

Condition Output

j map0(x, y)

j< L 0 −1
j< L 1 0.5
j= L 0 1
j= L −1 0.5

A successor solution consists of numerical parameters or updated
value of the current position (gk,x, gk,y) and rotation (gk,r).

In the learning process, only a few of current solutions are
substituted by the successor candidates that are produced by the
crossover and mutation processes. In this experiment, we uti-
lize the elitist crossover and adaptive mutation. Elitist crossover
irregularly chooses one candidate and produces a candidate by
integrating genetic information from the chosen candidate and
the best candidate to achieve suitable solutions promptly.

Then, the generated individual is updated through the follow-
ing adaptive mutation as follows:

gk,(x,y,r) → gk,(x,y,r) +
(

αSSGA · fmax − fk
fmax − fmin

+ βSSGA
)

· N(0, 1)

(5)
where fk is the fitness value of the kth individual; fmax and fmin
are the maximum and minimum fitness values in the population;
N(0, 1) shows a normal random value; and αSSGA and βSSGA are
the coefficient and offset accordingly. Equation (6) is used to
determine the fitness value of the kth candidate’s result.

The localization process is shown in Algorithm 2.

fitLock =
M∑
i=1

map0(xi,L, yi,L) (6)

2.2. Topological Map Building
TheMBARAM builds the topological map starting with one node
(category) at the first step. Next, the map updates continuously
based on the robot location generated by SSGA and sensory
information gathered from robot’s sensors. The map update is
shown in Algorithm 3.
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ALGORITHM 2 | SSGA for localization.

Data: Distance measurement z(t)
Result:Motion output y(t)
Initialization of samples and importance factors;
t= 1
for i= 1 to K do

Adaptive Mutation;
Evaluation;

end
for i= 1 to M do

Least Fitness Selection;
Elitist Crossover;
Adaptive Mutation;

end
Update the self-position according to the best individual;
t++;

ALGORITHM 3 | Topological map building.

Data: Sensor data x and robot location from SSGA
Result: Topological map
if map < one node then

add new node to map;
return true

else
examine all nodes in map and select best candidate node;
if best candidate node > vigilance then
update the best candidate node;
if best candidate node and previous best candidate node no
edge then
add edge;

else
update edge;

end
else
reset the best candidate node;
add new node to map;
add new edge;
delete nodes within radius emax;

end
end

2.2.1. Node Definition
Places we mentioned previously are defined as Bayesian ART cat-
egories that represent the environment where the robot is placed.
Bayesian ART category is determined through categorization of
sensors data. Each node contains a robot location V⃗ encoded from
SSGA. It has a multidimensional Gaussian component such as
mean vector µ̂j, covariancematrix Σ̂j, and prior probability P̂(wj).
The node definition is entirely dependent on the robot’s sensing
abilities and does not require human being to define the place
meaning. This helps the robot to recognize places easily from
sensory information.

2.2.2. Topological Map Learning and Update
The algorithm consists of three core process (Chin et al., 2016),
namely, “node competition,” “node matching (vigilance test),” and
“node learning.”

(1) “Node Competition”: all current nodes are competing to each
other for representing a sensor reading pattern. Equation (7)
shows the computation of the a posteriori probability of the
jth node for describing theM-dimensional input pattern x.

Mj = P̂(wj|x) =
p̂(x|wj)P̂(wj)

Ncat∑
l=1

p̂(x|wl)P̂(wl)
(7)

where Ncat is the node quantity in the map and P̂(wj) is the
predicted prior probability of the jth node. The likelihood
of wj with respect to x is predicted using all patterns that
have already been correlated with the multivariate Gaussian
node wj:

p̂(x|wj)=
1

(2π)M/2|Σ̂j|1/2
×exp{−0.5(x − µ̂j)TΣ̂−1

j (x−µ̂j)}

(8)
where µ̂j and Σ̂j are the predictedmean and covariancematrix
of the jth node.

If the algorithm receives K sensory sources for training,
then theMj for every node is:

Mj =
K∑

k=1

αk[P̂(w(j,k)|xk)] (9)

=
K∑

k=1

αk

 p̂(xk|wj,k)P̂(wj,k)
Ncat∑
l=1

p̂(xk|wl,k)P̂(wl,k)

 (10)

where

p̂(xk|wj,k) =
1

(2π)M/2|Σ̂j,k|1/2

× exp{− 0.5(xk − µ̂j,k)
TΣ̂−1

j,k (xk − µ̂j,k)}
(11)

andαk is the impact factor for every sensory channel; the sum
of αk is always equal to 1.

The winning node J is the node that has the maximum a
posteriori probability (MAP):

J = arg max(Mj) (12)

(2) “Node Matching (Vigilance Test)”: this process is to assure
that the winner node has enough confidence for representing
the particular place that the robot is currently situated. The
vigilance test restrains the Jth node hypervolume SJ to the
maximal hypervolume allowed for a node SMAX:

SJ,k ≤ SMAX,k (13)
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where the determinant of the Gaussian covariance matrix is
the hypervolume. This hypervolume will be decreased to the
product of the variances each for a dimension if it is a diagonal
covariance matrix:

SJ,k , det(ΣJ,k) =
M∏

d=1

σ2
Jd,k (14)

The learning process is started if the winner node satisfies
equation (13). If the winner node failed the test, then it will be
eliminated from the competition for this sensory input. Then,
the algorithm continues searching for another node until one
complies with equation (13). If all existing nodes failed the
vigilance test, then it means that the robot is situated at a
new location. Next, a new node will be added to the network,
which stores the sensory pattern, an initial covariance matrix∑

init, and robot location for describing this new location. An
edge will be added to link it with the previous winner node.

(3) “Node Learning”: If the chosen node satisfies equation (13),
the node components will be updated as below:

µ̂J,k(new) =
NJ

NJ + 1
µ̂J,k(old) +

1
NJ + 1

xk (15)

Σ̂J,k(new) =
NJ

NJ + 1
Σ̂J,k(old) +

1
NJ + 1

(
xk − µ̂J,k(new)

)
× (xk − µ̂J,k(new))

T ∗ I (16)

P̂(wJ) =
NJ

Nnode∑
l=1

Nl

(17)

Nnew
J = Nold

J + 1 (18)

where NJ is the frequency of the Jth node that chose to
be winner for learning during node competition before the
present input data are transmitted to the network. I is the
identity matrix.

2.2.3. Topological Map Preservation
During the robot navigation, the topological map algorithm will
be adding nodes continuously according to the changes in envi-
ronment. This shows that the robot constantly maintains and
updates the map representation for the traversed environment.
This characteristic is the nature of the algorithm.

The drawback for this map preservation is that the robot will
recognize all environmental changes during navigation and gen-
erate uncontrollable nodes for searching and updating. Therefore,
the list of nodes must be managed for navigation and mapping
in a natural environment for a long period of time. In this paper,
we have implemented the Instantaneous Topological Map (ITM)
technique (Jockusch and Ritter, 1999) for map maintenance. This
is also an extension of our previous work in Chin et al. (2015).

Figure 3 shows the node elimination mechanism. First, the
algorithm scans and deletes nodes whenever a new node is added
to the topological map. If nodes are situated within the Thales
sphere of the new node, then these nodes will be deleted from the
map. Thales sphere is defined as radius emax, and themathematical
equation is shown in equation (19). In addition, edges that are

FIGURE 3 | Topological map preservation. (A) Unwanted nodes within the
given radius emax are eliminated. (B) Transitions in or out from removed nodes
are relinked to maintain the connectivity of the map.

connected to deleted nodes are either updated or removed. For
instance, traverse information for the new edge can be determined
from the new connection.

Distnode,new =
√

(xnode,x − µnew,x)2 + (xnode,y − µnew,y)2 (19)

2.2.4. Self-Localization
After building the topological map, node matching and localiza-
tion are accomplished by measuring sensor information at robot’s
current location with destination nodes in the map. If the match
value Gj is higher than vigilance parameter, the robot is localized
and vice versa. However, the Genetic Bayesian ARAM has to deal
with perceptual uncertainty; this method is useful when two or
more nodes have similar sensory information. To differentiate
these nodes, ideothetic information (robot location) has to be
included. For example, assume that there are two nodes that have
identical sensor data (Glaser

A = Glaser
B ); the equations are given as

follows:

GA = α1(Glaser front
A ) + α2(Glaser back

A ) + α3(Grobot location
A ) (20)

GB = α1(Glaser front
B ) + α2(Glaser back

B ) + α3(Grobot location
B ) (21)

However, the ideothetic information (odometry) will not be the
same for each node. Therefore, Grobot location

A ̸= Grobot location
B and

lead to GA ̸=GB. Figure 4 illustrates the concept of the node
localization.

In our experiments, we always obtain sensory (from sensors)
information around the current robot location, ideothetic infor-
mation (fromSSGA), and destination nodes information.We then
use equation (8) to determineGdestination. IfGdestination is higher than
the vigilance parameter, the robot reaches the destination point.

3. EXPERIMENTAL SETUP

This section shows the setup of experiment, while Section 4 shows
the results collected from the simulation and real robot imple-
mentation. The hybrid map is formed by the occupancy grid map
and topological map. For the occupancy grid map, white color
represents empty space, gray color represents unknown space, and
black color represents obstacles or boundary detected, whereas the
topologicalmap represents set of nodes and links. Red color circles
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FIGURE 4 | In the topological map, each node contains a set of sensor data and a particular robot location. The robot’s metric position can be located by
recognizing the node with respect to the current sensory information.

at the (x, y) coordinates and black color lines represent nodes and
links in the map, respectively.

According to Vigdor and Lerner (2007) and Chin et al. (2016),
we have mentioned the optimized range of parameters’ setting.
Therefore, we follow the parameters’ setup mentioned in paper
(Vigdor and Lerner, 2007; Chin et al., 2016) because the authors
have determined the optimized value for the Bayesian ART
parameters; therefore, we will not cover in details in this paper.

First, we set the Thales sphere radius emax as 0.3 and the initial
covariance matrix to be spherical Σinit = σ2

initI, where I is the
identity matrix; hence, the parameter σ2

init ≪ (SMAX)1/M [equa-
tions (13) and (14)] to ensure that the σ2

init is always lower than the
SMAX. Then, we set the maximal category hypervolume parameter
value (SMAX) as 1. Next, the value of the initial parameter (σ2

init ≪
11/682) was set to 0.01. Note that 682 is the laser scanner scans.
Finally, we set the P̂(wj)init to 1 for generating the deterministic
region instead of probabilistic region map.

As mentioned in the previous section, we have configured
Genetic Bayesian ARAM to two channels for attaining laser
rangefinder data and robot location in the experiment. Thus, the
importance factor α for laser rangefinder channel was set to 0.8
because its data are the main dominant for map building. Last,
the importance factor α was set to 0.2 for robot location channel
to deal with perceptual ambiguities of sensory information but
not the environment condition. For SSGA variables’ setup, we set
parent candidates (µ)= 1000 and offspring candidates (λ)= 500.

4. RESULTS

In Section 4.1, the performance of Genetic Bayesian ARAM in
a hybrid map building was validated using several benchmark
datasets. The benchmark datasetswere produced by theUniversity
of Freiburg, Department of Computer Science, with the objective
for contributing benchmarking tools to robotics community.

For the physical robot implementation, the front laser
rangefinder data, rear laser rangefinder data, and robot odometry
system that was installed on the robot are transmitted to Genetic
Bayesian ARAM for map building and learning. Section 4.3
explains details of the setup.

4.1. Simulation Result
In simulation experiments, we input 3 benchmark datasets that
gathered in Intel research lab, MIT CSAIL building, and Freiburg
indoor building (Kümmerle et al., 2009). Figure 5 shows the exact
grid map and robot navigation path for each dataset.

Figure 5 illustrates Genetic Bayesian ARAMhybrid map learn-
ing result. All the generated hybridmaps consist of grid occupancy
map and topological map. As shown in Figure 6, all metric maps
are almost identical to the benchmark datasets. In addition, all
topologicalmaps are almost similar to the robot traverse direction.
Each node in the topological map consists of a robot metric
location and a set of sensor data that represent the particular
region of the environment.

4.2. Node Localization
The efficiency of the hybrid maps generated by Genetic Bayesian
ARAM is validated by node localization process. For this, the laser
scanner datasets are transmitted to the corresponding built map
and then equation (7) is used to find out the best candidate for
localization. If the best candidate’s weight and the robot’s current
sensor data fulfill equation (13), it means that the best candidate
node is localized.

Next, equations (22) and (23) are required to measure the
Euclidean distance between the winning node and the robot cur-
rent location to ensure that the robot is localized. The results
of node localization are shown in Table 3; the average rate of
successful node localization is 92.7%.

Success localization =
√

(xnode − xtarget)2 +(ynode − ytarget)2 < 1
(22)

Fail localization =
√

(xnode − xtarget)2 +(ynode − ytarget)2 > 1
(23)

4.3. Physical Robot Implementation
For physical robot implementation, we used the robot with omni-
directional movement and attached with a Hokuyo UTM-30LX
laser rangefinder as shown in Figure 7A. Sensors signal were
sampled at 10Hz. All processing and recording were operated
on Intel Core i5 1.4-GHz processor. The mobile robot navigated
locally by means of a motion control algorithm, which played the
role of both wall following and obstacle avoidance. Table 4 shows
the robot’s specification.

The real robot experiments were conducted in the univer-
sity laboratory corridor as shown in Figure 7B. The width and
length of the place are 5m× 40m. The environment is dynamic
with pedestrian moving around, furniture and other equipment
relocation, door open or close, and different lighting condi-
tions. The experiment environment was set to be as natural as
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A B

C

FIGURE 5 | Simulation benchmark datasets. (A) MIT CSAIL Building. (B) Intel Research Lab. (C) Freiburg.

A B

C

FIGURE 6 | Simulation result. (A) MIT CSAIL Building. (B) Intel Research Lab. (C) Freiburg.

possible to verify that our proposed method is able to handle
environment condition changes without any presumptions or
alterations.

Then, we commanded the robot to traverse our laboratory
room and corridor for two times to verify the hybrid map

building. For the first exploration, the learning algorithm was
without map maintenance, whereas for the second exploration,
the learning algorithm was with map maintenance. Note that the
two exploration paths are identical. During the navigation, the
robot performed self-localization and built the grid map by using
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TABLE 3 | Node localization rate for benchmark datasets.

Datasets Localization rate (%)

MIT CSAIL Building 93.6
Intel Research Lab 91.2
Freiburg 93.3

A B

FIGURE 7 | Real robot experimental setup. (A) Omnidirectional mobile. (B)
Experimental corridor.

TABLE 4 | Specifications of omnidirectional mobile robot.

Diameter 300mm
Height 177mm
Maximal speed 1.5 km/h
Operating time 1 h
Communication Wi-Fi (2.4GHz)

laser rangefinder measurement data. Then, robots’ position was
used by Bayesian ARAM for topological map building. Figure 8
shows the resulted hybrid map built by the proposed method
with map maintenance. The final hybrid map contained a grid
map representing the outline of explored corridor and our lab-
oratory room. At the same time, the topological map contained
164 nodes to represent the traversed place. For the proposed algo-
rithm without map maintenance, the topological map contained
461 nodes. The result shows that the map maintenance feature
reduces 65% of number of nodes to represent the same explored
environment.

4.4. Robot Localization
After the hybrid map is generated, we commanded the robot to
go to the starting point and then explore the corridor for five
times to further verify the localization capability. The robot kept
examining nodes in the hybrid map with respect to the current
sensor data for localization. If the best candidate’s weight and
robot’s current sensory information fulfilled equation (22), the
localization of robot was successful and vice versa.

Table 5 shows the result of localization rate for each loop. The
successful localization rate was generally 92.3%.

5. DISCUSSION

We have shown that the Genetic Bayesian ARAM frame-
work is capable of generating a metric–topological hybrid map
incrementally using nearly unprocessed sensory information and

FIGURE 8 | Final hybrid map that represents the explored environment.

TABLE 5 | Node localization rate for real robot implementation.

Traverse loop Localization rate (%)

1 92.8
2 91.7
3 92.4
4 92.4
5 92.1

without any feature extraction and predefined knowledge about
the environment. The algorithm updates both themetric map and
creates nodes incrementally to represent the explored environ-
ment as regions in real time.

In all the experiments, SSGA continuously performed local-
ization and metric mapping without using any odometry system.
Then, Bayesian ARAM uses these localization data and laser
scanner data for topological map building. The localization data
are important for distinguishing places that have similar sen-
sor data, which is important to overcome the online topolog-
ical nodes’ localization. After building the map, the robot can
perform path planning by just comparing its current location
with topological nodes without recalculating the grid map. These
features help to compensate the weakness of metric map and
topological map.

In addition, the experiment showed that the map maintenance
algorithm greatly reduces the number of nodes that represent the
explored environment. This method also reduces the amount of
memory required for storing the map, especially when the area is
very large.

According to the node matching and localization results,
the robot failed for localization occasionally during navigation
because it encountered sudden change in the environment, which
caused none of topological nodes match with these sensor data.
This problem can be overcome by measuring few time stamps of
sensor at the same position with the topological nodes in the map.
Another reason is that the robot was unable to differentiate similar
sensor data at particular places. As our proposed method can take
more than one sensory source, this issue can be solved by inte-
grating camera input with certain image processing techniques
to help on disambiguate similar sensory information at different
locations.
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6. CONCLUSION

In this article, we proposed a new framework for simultaneous
localization and hybridmap building without any odometry hard-
ware. The experiments presented show the feasibility of the pro-
posed approach. The proposed framework was verified through
simulation of standardized benchmark datasets and real robot
application. Both metric and topological maps were generated as
expected, correctly representing the environment according to our
proposedmethod. The algorithm does not require high-level cog-
nitive knowledge or any artificial landmark to construct the hybrid
map, which makes it ready to work in a natural environment.
In addition, the robot can perform self-localization automatically
without any odometry system.

Future work in this subject will include an analysis of effec-
tiveness of the value of framework parameters. Besides, we will
extend our method for reinforcement learning capability for

path planning. Last, we will conduct more experiments in dif-
ferent kinds of indoor and outdoor environment for further
verification.
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