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Simultaneous Localization and Mapping (SLAM) is concerned with the development of
filters to accurately and efficiently infer the state parameters (position, orientation, etc.) of
an agent and aspects of its environment, commonly referred to as the map. A mapping
system is necessary for the agent to achieve situatedness, which is a precondition
for planning and reasoning. In this work, we consider an agent who is given the task
of finding a set of objects. The agent has limited perception and can only sense the
presence of objects if a direct contact is made, as a result most of the sensing is negative
information. In the absence of recurrent sightings or direct measurements of objects,
there are no correlations from the measurement errors that can be exploited. This renders
SLAM estimators, for which this fact is their backbone such as EKF-SLAM, ineffective.
In addition for our setting, no assumptions are taken with respect to the marginals
(beliefs) of both the agent and objects (map). From the loose assumptions we stipulate
regarding the marginals and measurements, we adopt a histogram parametrization. We
introduce a Bayesian State Space Estimator (BSSE), which we name Measurement
Likelihood Memory Filter (MLMF), in which the values of the joint distribution are not
parametrized but instead we directly apply changes from the measurement integration
step to the marginals. This is achieved by keeping track of the history of likelihood
functions’ parameters. We demonstrate that the MLMF gives the same filtered marginals
as a histogram filter and show two implementations: MLMF and scalable-MLMF that both
have a linear space complexity. The original MLMF retains an exponential time complexity
(although an order of magnitude smaller than the histogram filter) while the scalable-MLMF
introduced independence assumption such to have a linear time complexity. We further
quantitatively demonstrate the scalability of our algorithm with 25 beliefs having up to
10,000,000 states each. In an Active-SLAM setting, we evaluate the impact that the size
of the memory’s history has on the decision-theoretic process in a search scenario for a
one-step look-ahead information gain planner. We report on both 1D and 2D experiments.

Keywords: negative information, SLAM, Bayesian state space estimator, histogram-SLAM, active-exploration

1. INTRODUCTION

Estimating the location of a mobile agent while simultaneously building a map of the environment
has been regarded as one of the most important problems to be solved for agents to achieve
autonomy. It is a necessary precondition for any agent to have an estimation of the world to
store acquired knowledge. There has been a vast amount of research surrounding the field of
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Simultaneous Localization And Mapping (SLAM) that branches
out into a wide variety of subfields dealing with problems from
building accurate noise models of the agent sensors (Plagemann
et al., 2007), to determining which environmental feature caused
a particular measurement, also known as the data association
problem (Montemerlo and Thrun, 2003) and much more.

Although the amount of research might seem overwhelming
at first, all current SLAM methodologies are founded on a single
principle: As the agent localizes itself by reducing its position
uncertainty, themap’s uncertainty also decreases as the landmarks
are correlated via the robot’s position (Durrant-Whyte and Bai-
ley, 2006). The predominant mathematical formulation of SLAM
problems is to parameterize the joint distribution of the agent’s
position and map’s features and to recursively integrate actions
and measurement information into those parameters. This for-
mulation is known as Probabilistic-SLAM (Durrant-Whyte and
Bailey, 2006; Cadena et al., 2016) and there are broadly three
paradigms to parameterizing.

The first paradigms assume the joint distribution to be a
Multivariate Gaussian distribution parameterized by a mean and
covariance. The mean is a state vector composed of the agent
and map feature positions while the elements of the covariance
encode the variance of the position uncertainties. If the motion
and measurement system models are linear the Kalman Filter
recursion is the best estimator of the joint’s parameters. In case,
the system models are non-linear they can be linearized via a
Taylor approximation and in the context of SLAM, this is known
as EKF-SLAM (Extended-Kalman Filter) (Durrant-Whyte and
Bailey, 2006). The two drawbacks of EKF-SLAM are the lin-
earization of the system models, which may falsely reduce uncer-
tainty resulting in the filter diverging (Li and Mourikis, 2013),
and the quadratic growth of the filter’s parameters with respect
to the number of landmarks (Paz et al., 2008). The lineariza-
tion problem has been addressed by non-parametric approaches,
such as Unscented Kalman Filter (Wan and Van Der Merwe,
2000; Huang et al., 2013), which avoid the linearization by using
a set of deterministic samples, known as sigma points or by
introducing constraints on the Jacobian of the system models
(Mourikis and Roumeliotis, 2007). The constraint approach has
been shown to be robust and scalable. In Hesch et al. (2014), the
authors introduce a constraint on the Jacobians of both motion
and measurement system models, which explicitly enforces that
no unwanted information is gained. The authors successively
mapped 1.5 kmof the outdoor terrain at theMinnesota campus. In
terms of the quadratic growth drawback parameter, efficient EKF
methods have been developed known as Extended information
Filters (Thrun et al., 2004). The methods use a canonical param-
eterization of the Gaussian function that includes the precision
matrix, which is sparse. The drawback of information filters is
that extracting the variance of the position uncertainty requires
inverting the precision matrix, which is computationally expen-
sive. Since then there aremethods that decompose the EKF-SLAM
problem and are able to solve it in linear time (Paz et al., 2008).
Although EKF-SLAM originally suffered from linearization and
computational cost the scientific advances mentioned above still
make it a method of choice (Cadena et al., 2016). Especially when
the linearization of the system models are accurate as it is the

case with vision-SLAMmethods such as visual-inertial odometry
VIO-SLAM (Li and Mourikis, 2013). EKF-SLAM methods also
remainwidely used in underwater navigation problems, the reader
is referred to Paull et al. (2014) andHidalgo and Brunl (2015) for a
review.

The second paradigm is Graph-SLAM (Grisetti et al., 2010).
Graph-SLAM methods find the Maximum A Posteriori (MAP)
of the full robot path in contrast to EKF-SLAM methods that
are filters. As the name suggests a directed graph is gradually
constructed with nodes being robot positions and edges geomet-
ric transformation between them. The transformations are non-
linear constraints, which are measurement likelihoods with an
error assumed to be Gaussian noise. The MAP solution of the
robot’s path is equivalent to solving a non-linear least square
problem whose solution is attained by a Gauss–Newton optimiza-
tion (Kuemmerle et al., 2011). This process results in the reposi-
tioning of the nodes such that the measurement constraints are
minimized. Graph-based approaches are becoming increasingly
popular as MAP solutions are more robust when compared to
filtering approaches (Cadena et al., 2016). As a result, multiple
Graph-SLAM solvers have been released such as Large Scale-
Directed monocular SLAM (LSD-SLAM) (Engel et al., 2014),
which can handle environments with different scales and is able
to build large indoor and outdoor density maps, and ORB-SLAM
(Mur-Artal et al., 2015; Mur-Artal and Tardos, 2016), which uses
ORB (Rublee et al., 2011) features extracted from keyframes.
Recent developments in the context of vision-SLAM efforts have
focused on efficiency and extraction of the pose uncertainty (Ila
et al., 2017) as Graph-SLAM methods generally only find the
mean trajectory of the robot and not its variance. Graph-SLAM
approaches mostly differ in the type of feature extractionmethods
(known as the front-end) while retain the same non-linear solver
(bundle adjustment) such as g2o (Kuemmerle et al., 2011).

The third paradigm is FastSLAM (Montemerlo et al., 2003).
FastSLAM exploits the fact that if we know the agent’s position
with certainty all landmarks become independent. It models the
distribution of the agent’s position by a particle filter. Each par-
ticle has its own copy of the map and updates all landmarks
independently, which is the strength of this method. However, if
many particles are required each must have its own copy of the
map. FastSLAM methods have less traction in the literature as
difficulties include tuning the resampling strategy, which if not
dune properly can result in sample impoverishment.

It is beyond the scope of this chapter to provide a detailed
review of these three paradigms. The reader is referred to Thrun
et al. (2005), Thrun and Leonard (2008) for an introductory
material.

1.1. Problem Statement
We consider an agent searching for a set of objects in a partially
known environment in which exteroceptive feedback is extremely
limited. For instance, we can think of an agent equipped with
a range sensor that returns a positive response when in direct
contact with an object and no response otherwise. Consider agent
living in a Rectangle world, see Figure 1, in which is located
two objects. The agent’s uncertainty of its location and that of
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Agents position

Object(1) position

Object(2) position

range of Agents

perception

FIGURE 1 | Rectangle world. There are three different probability density functions present. The blue represents the believed location of the agent, the red and green
probability distributions are associated with objects 1 and 2. The white shapes in each figure represent the true location of each associated object or agent.

the objects is encoded by probability distributions P(·), which at
initialization are known as the agent’s prior beliefs.

As the agent explores the world, it integrates all sensing infor-
mation at each time step and updates its prior beliefs to posteriors
(the result of the prior belief after integrating motion and sensory
information). To the author’s knowledge, current SLAMmethods
are limited in that they consider only uncertainty induced by sens-
ing inaccuracies inherent in the sensor and motion models. The
reason for this widespread limitation is that during the theoretical
foundation of SLAM, a period that is referred to as the classic
age (1986–2004) (Cadena et al., 2016) (this period gave the three
paradigms discussed above), the application domains considered
the signal noise in range sensor, cameras, and odometry mea-
surements. The features were always considered to be measurable
except when occluded. In our setting as the sensory information is
strictly haptic, we can confidently assume no measurement noise.

In the search task illustrated in Figure 1, the prior beliefs and
sparse measurements are the two sources of the agent’s uncer-
tainty. The absence of a positive measurement (detection of an
object of instance) is known as negative information (Thrun,
2002;Hoffman et al., 2005; Thrun et al., 2005, p. 313). Thus, SLAM
methodologies that use theGaussian error between the predicted
and estimated position of features, such as in the case of EKF-
SLAM and Graph-SLAM, will not perform well in this setting as
no measurements of the features positions are available until our
agent “bumps” into a feature.

In addition to the negative sensing information, the original
beliefs depicted in Figure 1 are non-Gaussian and multimodal.
We make no assumption regarding the form of the beliefs. This
implies that the joint distribution can no longer be parameter-
ized by a Multivariate Gaussian. This is an assumption made in
many SLAM algorithms, notably EKF-SLAM, and allows for a
closed form solution to the state estimation problem. Without

the Gaussian assumption, no closed form solution to the filter-
ing problem is feasible. Using standard non-parametric methods
(Kernel Density, Gaussian Process, Histogram, etc.) to represent
or estimate the joint distribution becomes unrealistic after a few
dimensions or additional map features. FastSLAM could be a
potential candidate, however, as it parameterizes the position
uncertainty of the agent by a particle filter and each particle has
its own copy of the map the memory demands become quickly
significant and in addition has been shown that FastSLAM can
degenerate with time regardless of the number of particles used
(Bailey et al., 2006). For planning purposes, we would also want
to have a single representation of the marginals. The box below
summarizes the desirable attributes and assumptions for our filter.

Attributes and Assumptions

• Non-Gaussian joint distribution, no assumptions are made with respect to
its form.

• Mostly negative information available (absence of positive sightings of the
landmarks).

• Joint distribution volume grows exponentially with respect to the number of
objects and states.

• Joint distribution volume is dense, there is high uncertainty.

1.2. The Contribution to the Field of
Artificial Intelligence
In a wide range of Artificial Intelligence (AI) applications the
agent’s beliefs are discrete. This non-parametric representation is
the most unconstraining but comes at a cost. The parameteriza-
tion of the belief ’s joint distribution grows at the rate of a double
exponential. We propose a Bayesian State Space Estimator (BSSE)
which delivers the same filtered beliefs as a traditional filter but
without explicitly parametrizing the joint distribution. We refer
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to our novel filter as the Measurement Likelihood Memory Filter
(MLMF). It keeps track of the history of measurement likelihood
functions, referred to as the memory, which have been applied to
the joint distribution. The MLMF filter efficiently processes neg-
ative information. To the author’s knowledge, there has been little
research on the integration of negative information in an SLAM
setting. Previous work considered the case of active localization
(Hoffmann et al., 2006). The incorporation of negative infor-
mation is useful in many contexts and in particular in Bayesian
Theory of Mind (Bake et al., 2011), where the reasoning process
of a human is inferred from a Bayesian Network and in our own
work (de Chambrier and Billard, 2013) where wemodel the search
behavior of an intentionally blinded human. In such a setting,
much negative information is present and an efficient belief filter
is required. Our MLMF is thus applicable to the SLAM and AI
community in general and to the Cognitive Science community,
which models human or agent behaviors through the usage of
Bayesian state estimators.

By using this new representation, we implement a set of passive
search trajectories through the state space and demonstrate, for a
discretized state space, that our novel filter is optimal with respect
to the Bayesian criteria (the successive filtered posteriors are exact
and not an approximation with respect to Bayes rule). We provide
an analysis of the space and time complexity of our algorithm and
prove that it is alwaysmore efficient evenwhen consideringworst-
case scenarios. Finally, we consider an Active-SLAM setting and
evaluate how constraining the size of the number of memorized
likelihood functions impact the decision-making process of a
greedy one-step look-ahead planner.

The rest of the document is structured as follows: in section 2,
we overview the Bayes filter recursion and apply it to a simple 1D
search scenario for both a discrete and Gaussian parametrization
of the beliefs. We demonstrate that discrete parametrization gives
the correct filtered beliefs but at a very high cost and that the EKF-
SLAMfails to provide the adequate solution. In section 3,we intro-
duce theMeasurement LikelihoodMemory Filter and overview its
parametrization. In section 4, we derive the computational time
and space complexity of theMLMF. Section 5 describes additional
assumptions made with respect to the MLMF to make it scalable
(scalable-MLMF). In section 6, we numerically evaluate the time
complexity of the scalable-MLMF and check the assumption we
made for it to be scalable.We investigate the filter’s sensitivity with
respect to its parameters in an Active-SLAM setting.

2. BAYESIAN STATE SPACE ESTIMATION
WITH NEGATIVE INFORMATION

Bayesian State Space Estimators (BSSE) recursively incorporate
actions ut and observations yt into a prior joint distribution
P(At, O|Y0:t−1, u1:t−1) to obtain a posterior joint distribution
P(At, O|Y0:t, u1:t) through the application of Bayes rules. The
agent’s random variable, A, is associated with the uncertainty of
its location in the world, the same holds for the object(s’) random
variable(s), O. This is also known as the SLAM filtering problem.
In Figure 2, we depict the general Bayesian Network (BN) of
a BSSE, which conveys the dependence and independence rela-
tion between the random variables. The conditional dependence

FIGURE 2 | Directed graphical model of dependencies between the agent (A)
and object (O)’s estimated location. Each object, O( i ) is associated with one
sensing random variable Y ( i ). The overall sensing random variable is
Y = [Y (1),. . .,Y (M−1)]T, where M is the total number of agent and object
random variables in the filter. For readability, we have left out the time index t
from A and Y. Since the objects are static, they have no temporal process
associated with them thus they will never have a time subscript. The two
models necessary for filtering are the motion model P(At |At−1, ut) (red) and
measurement model P(Yt |At, O) (blue).

A

⊥⊥

O|Y is necessary for incorporating information into the joint
distribution and decreasing the uncertainty. The strength of the
conditional dependence is governed by the size of the change
the measurement likelihood P(Yt|At, O) function has on the joint
distribution. If the measurement likelihood does not affect the
joint distribution, then the agent and object random variables
will be independent, A ⊥⊥ O. If they are independent, then no
information acquired by the agent can be used to infer changes
in the object estimates.

We next demonstrate the effect negative information has on
the update of the joint distribution for two different parameter-
izations, namely, for EKF and Histogram.

2.1. EKF-SLAM
In EKF-SLAM, the joint density p(At, O|Y0:t, u1:t; µt, Σt) is a
multivariate Gaussian function parametrized by a mean µt and
covariance Σt. For simplicity, we considering a 1D search of one
object. In this setting, the mean of the agent µat ∈ R and object
are µo ∈ R are 1D Cartesian positions

µt = [µat , µo]T ∈ R(2×1) Σt =

[
Σa Σao

Σoa Σo

]
∈ R(2×2).

(1)
The measurement Yt ∈ [0, 1] of the object by the agent is sim-

ulated by a radial basis function as is the measurement function
(equation (2))

Ŷt = exp
(

− 1
2σ2 ||At − O||2

)
. (2)

By setting the variance σ2 to be small, we can approximate a
smooth binary sensor. EKF-SLAM assumes that themeasurement
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is corrupted by Gaussian noise, ϵ ∼ N (0, R), giving the likelihood
function:

p(Yt|At,Ot) =
1

|2πR| 1
2

exp
(

−1
2
(
Yt − Ŷt

)TR−1(Yt − Ŷt
))

(3)
where the covariance, R, encompasses the uncertainty in the mea-
surement. The elements of the covariancematrix capture themea-
surement error between the true Y and expected measurement Ŷ.
As the joint distribution is parameterized by a single Multivariate
Gaussian, a closed form solution to the filtering equations exists,
called the Kalman Filter (Durrant-Whyte and Bailey, 2006).

In the search task, the agent can only perceive the object when
in direct contact. This results in the observation Yt being mostly
always equal to Ŷ. As a result, the agent’s uncertainty of his
location and of the object only changes once the object is found,
which is unhelpful during a search. This is because the magni-
tude of the error between the true and expected measurement
e =

(
Yt − Ŷt

)
directly affects the joint distribution and is zero

during most of the search. Figure 3 illustrates this for the 1D
search. The multivariate Gaussian parameterization of the joint
and likelihood function only guarantees a dependency between
the agent and object random variables when there is a positive
sighting of the landmarks. This can be seen in Figure 3B, where
the component Σao is 0 most of the time implying At ⊥⊥ O|Y,
which is undesirable. The EKF parameterization in this form

is ill suited for search tasks in which negative information is
predominant.

2.2. Histogram-SLAM
In histogram-SLAM, the joint distribution is discretized, and each
bin has a parameter, P(At = i, O= j|Y0:t, u1:t; θ)=θ(ij) and all
sum to one Σijθ

(ij) = 1. For shorthand notation, we will write
P(At,O|Y0:t, u1:t) instead ofP(At = i,O= j|Y0:t, u1:t;θ). The prob-
ability distribution of the agent’s position is given bymarginalizing
the object random variable:

P(At|Y0:t, u1:t; θa) =
|O|∑
j=1

P(At,O = j|Y0:t, u1:t; θ). (4)

The converse holds true for the object’s marginal, that is the
summation would be over the agent’s variable. We consider a
similar 1D search task as the one used for EKF-SLAM. The world
of the agent and object is discretized to 10 states, producing a
joint distribution with 100 parameters, see Figure 4 (Top) for an
illustration of the joint distribution. An observation occurs, as
before, only if the agent enters in contact with the object, making
the measurement and expected measurement binary Yt ∈ {0, 1}.
Equation (5) is the formof the likelihood functionwhen the object
is sensed by the agent

P(Yt = 1|At,O) =

{
1 if At = O
0 if At ̸= O.

(5)

A B

FIGURE 3 | (A) EKF-SLAM time slice evolutions of the agent and object location belief for a 1D search. The temporal ordering is given by the numbers in the top right
corner of each plot. The blue pdf represents the agent’s believed location, and the circle is the agent’s true location. The same holds for the red distribution that
represents the agent’s belief of the location of an object. (B) Evolution of the covariance components of Σ over time and true Yt and expected measurements, Ŷt.
Σa and Σo are the variances of the agent and object positions, and Σao is the cross-covariance term.
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FIGURE 4 | Top: Left: Initialization of the agent and object joint distribution. Right: Marginals of the agent and object parameterized by θa and θo, giving the
probability of their location. The marginal of each random variable is obtained from equation (4). The probability of the agent and object being in state s= 6 is given
by summing the blue and red highlighted parameters in the joint distribution. Bottom: 1D world Likelihood P(Yt |At, O), the white regions A∩O will leave the joint
distribution unchanged while the black regions will evaluate the joint distribution to zero. Left: No contact detected with the object, the current measurement is Yt = 0,
both the agent and object cannot be in the same state. Right: The agent entered into contact with the object and received a haptic feedback Yt = 1. The agent
receives only two measurement possibilities, contact or no contact.

Figure 4 (Bottom left) illustrates the likelihood function in
the case of no contact Yt = 0. When there is no contact with
the object all the parameters of the joint distribution in the
black regions become zero, which we refer to as the dependent
states A∩O of the joint distribution. The white states are the
independent states A⊖O, they are not changed by the likeli-
hood function. The values of the joint distribution in the inde-
pendent states will be unchanged by the likelihood function:
P⊖(At, O|Y0:t, u1:t)∝ P⊖(At, O|Y0 :t−1, u1:t).

When the object is detected (Bottom right) the likelihood con-
strains all non-zero values of the joint distribution to be in states
i= j, which in the case of a 2-dimensional joint distribution is
a line. The sparsity of the likelihood function will be key to the
development of the MLMF filter.

Histogram Bayesian recursion

Intialization

P(A0,O; θ) = P(A0; θa) P(O; θo) = θa × θo (6)

Motion

P(At,O|Y0:t−1, u1:t) =
∑
At−1

P(At|At−1, ut) P(At−1,Ot|Y0:t−1, u1:t−1) (7)

Measurement

P(At,O|Y0:t, u1:t) =
P(Yt|At,O) P(At,O|Y0:t−1, u1:t)

P(Yt|Y0:t−1, u1:t)
(8)

Figure 5 illustrates the evolution of the joint distribution in a
1D example by applying the filtering Bayesian recursion equations

(7) and (8). The agent and object’s true positions (unobservable)
are in state 6 and 1. The agent moves three steps toward state
10. At each time step, as the agent fails to sense the object,
the likelihood function P(Yt = 0|At, O) (Figure 4, Bottom left)
is applied. As the agent moves toward the right, the motion
model shifts the joint distribution toward state 10 along the
agent’s dimension, i (note that state 1 and 10 are wrapped). As
the agent moves to the right more, joint distribution parameters
become zero. The re-normalization by the evidence (denomina-
tor of equation (8)), which increases the value of the remaining
parameters, is equal to the sum of the probability mass, which
was set to zero by the likelihood function. Thus, the values of
the parameters of the joint distribution that fall on the pink line
in Figure 5 (green line also, but only for first time slice) become
zero, and their values are redistributed to the remaining non-zero
parameters.

The inconvenience with histogram-SLAM is that its time and
space complexity is exponential as the joint distribution is dis-
cretized and parametrized by θ(ij). Instead, we propose a new
filter, MLMF, which we formally introduce in the next section.
This filter achieves the same result as the Histogram filter but
without having to parameterize the values of the joint distribution,
thus avoiding the exponential growth cost.

3. MEASUREMENT LIKELIHOOD MEMORY
FILTER

MLMF keeps a function parameterization of the joint distri-
bution instead of a value parameterization as it is the case for
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histogram-SLAM. At initialization the joint distribution is rep-
resented by the product of marginals, equation (9), which would
result in the joint distribution illustrated in Figure 4, if it were to
be evaluated at all states (i, j) as it is done for histogram-SLAM.
MLMF will only evaluate this product, when necessary, at specific
states. At each time step, the motion and measurement update are
applied (equations (10) and (11)). An important distinction is that
these updates are performed on the un-normalized joint distribu-
tion P(At, O, Y0:t|u1:t), which is not the case in histogram-SLAM
where the updates are done on the conditional P(At, O|Y0:tu1:t).
After applying multiple motion and measurement updates the
resulting joint distribution is given by equation (12), see Appendix
C for a step-by-step derivation.

MLMF Bayesian filter

Joint marginals (initial)

P(A0,O) = P
(
A0; θ

∗
a

)
P
(
O; θ

∗
o

)
(9)

Motion

P(At,O, Y0:t−1|u1:t) =
∑
At−1

P(At|At−1, ut) P(At−1,O, Y0:t−1|u1:t−1) (10)

Measurement

P
(
At,O, Y0:t|u1:t; θ

∗
o , θ

∗
a , Ψ0:t

)
=

P(Yt|At,O) P
(
O; θ

∗
o

)
P
(
At|u1:t; θ

∗
a

)
P
(
Y0:t|At,O, u1:t; Ψ̄0:t

)
(11)

Joint

P
(
At,O|Y0:t, u1:t; θ

∗
o , θ

∗
a , Ψ0:t, α0:t

)
=

P(At,O, Y0:t|u1:t; θ∗
o , θ∗

a , Ψ0:t)
P(Y0:t|u1:t; α0:t)

(12)
Filtered marginal

P(At|Y0:t; θa) = P(At|Y0:t−1; θa)− (P∩(At|Y0:t−1)− P∩(At|Y0:t)) (13)

P(O|Y0:t; θo) = P(O|Y0:t−1; θo)− (P∩(At|Y0:t−1)− P∩(At|Y0:t)) (14)

The MLFM filter is parameterized by the agent and
object joint marginals P(At|u1:t; θ∗

a ), P(O; θ∗
o ), the filtered

marginals P(At|Y0:t, u1:t; θa) (u1:t not shown in the above box),
P(O|Y0:t; θo), the evidence P(Y0:t|u1:t; α0:t) and the history
of likelihood functions, P(Y0:t|At,O, u1:t;Ψ0:t), equation (15),
which is the product of all the likelihood functions since initial-
ization and we will refer to it as thememory likelihood function:

P(Y0:t|At,O, u1:t;Ψ0:t) :=
t∏

i=0
P(Yi|At,O, ui+1:t; li) (15)

P(Yi = 0|At,O, ui+1:t; li) :=

{
0 if At + li = O
1 else

(16)

li :=
t∑

j=i+1
uj. (17)

The memory likelihood function’s parameters
Ψ0:t = {(Yi,li)}i=0:t consist of a set of measurements Y0:t and
offsets l0:t depicted in greed. The measurements Yi ∈ {0, 1} are

always binary, while the offsets li, actions ut, agent At and object
O variables’ size are equal to the dimension of the state space.
The subscript i of an offset li indicates which likelihood function
it belongs to. The offset of a likelihood function is given by the
summation of all the applied actions from the time the likelihood
was added until the current time t, equation (17), which can be
computed recursively. The motion update, equation (10), when
applied to the joint distribution results in the initial marginal
P(A0; θ∗

a ) and the likelihood functions being moved along the
agent’s axis. In Algorithm 1, we detail how an action ut and
measurement Yt, result in the update of the memory likelihood’s
parameters from Ψ0:t−t to Ψ0:t; this is an implementation of
equations (10) and (11).

Figure 6 illustrates the evolution of the un-normalizedMLMF
joint distribution P(At, O, Y0:t|u1:t), equation (12). For ease of
notation, we will omit at times the parameters of the probability
functions. Both P(A0; θ∗

a ) and P(O; θ∗
o ) were initialized as for

the histogram-SLAM example in Figure 5. Two actions u1:2 = 1
are applied and three measurements Y0:2 = 0 received which are
then integrated into the filter. Since initialization of the joint
distribution at t= 0 until t= 2 the object’s marginal P(O; θ∗

o )
remains unchanged and the agent’s marginal P(A2|u1:2; θ∗

a ) is
updated by the two actions according to the motion update, see
Figure 6 (Top right). The product of these two marginals (terms
of equation (12) before the memory likelihood product) results in
the joint probability distribution P(A2,O|u1:2; θ∗

a , θ∗
o ) illustrated

in Figure 6 (Middle-right).
In the left column of Figure 6, we illustrate how the mem-

ory likelihood term, equation (15), is updated according to
Algorithm 1. In the Top left, the first likelihood function
P(Y0|A2,O, u1:2; l0) is illustrated. As two actions have been
applied, Algorithm 1 is applied twice, which results in an l0 = 2
parameter for the first likelihood function. In this figure, we high-
lighted the likelihood in light-green to indicate that it was the first
added to the memory term making it convenient to compare to
Figure 5. As for the second likelihood functionP(Y1|A2,O, u2; l1),
only one action has been applied and the third likelihood function
P(Y2|A2,O; l2 = 0) has not yet been updated by the next action.
The parameters of thememory likelihood function, equation (15),
are: Ψ0.2 = {(0, 2)i=0, (0, 1)i=1, (0, 0)i=2} and its evaluation is
illustrated in the Bottom left of Figure 6.

The reader may have noticed that the amplitude of the val-
ues of the filtered joint distribution illustrated in Figure 6 have
changed when compared with Figure 5, but not the structure.
This is because we have not re-normalized the joint distribu-
tion by the evidence P(Y0:t|u1:t; α0:t). We will show in the next
section how we can recursively compute the evidence without
having to integrate the whole joint distribution, which would be
expensive.

Our goal is to be able to compute the marginals P(At|Y0:t, u1:t;
θa), P(O|Y0:t; θo) of the agent and object random variables and
evidenceP(Y0:t|u1:t;α0:t)withouthaving to perform an expensive
marginalization over the entire space of the joint distribution as
was the case for histogram-SLAM. The next section describes how
to efficiently compute the evidence and the marginals. For ease of
notation, we will not always show the conditioned actions u1:t, so
P(At, O|Y0:t, u1:t) will be P(At, O|Y0:t).
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FIGURE 5 | Histogram-SLAM, 4 time steps. (1) Application of likelihood P(Y0 =0|A0, O) and the agent remains stationary, all states along the green line become
zero. (2) The agent moves to the right u1 = 1, the motion P(A1 |A0, u1), and likelihood models are applied consecutively. The right motion results in a shift (black arrow
on the left) in the joint probability distribution toward the state i= 10. All parameters on the pink line are zero. (3) Same as two. At each time step, a new likelihood
function (pink line) is applied to the joint distribution.

ALGORITHM 1 | Memory likelihood update

Input: Ψ0: t−1, Yt, ut
Output: Ψ0: t

Motion update Ψ̄0:t ← Ψ0:t−1

1 For li ∈Ψ0: t−1 do

2 li = li + ut

Measurement update
3 Ψ0:t ← {Ψ̄0:t, (Yt, lt := 0)}

3.1. Evidence and Marginals
3.1.1. Evidence
The evidence of themeasurementP(Y0:t|u1:t; α0:t), equation (12),
is the amount of probability mass re-normalized to the other
parameters of the joint distribution as a result of the consecu-
tive application of the likelihood function. At time step t, the
normalizing factor to be added to the evidence is the difference
between the probability mass located inside A∩O before and

after the application of the measurement function P(Yt|At,O), see
equations (18) and (19) (see Appendix D for the full derivation)

αt =
∑
At

∑
O

(
P(Yt|At,O) − 1

)
P∩(At,O,Y0:t−1|u1:t) (18)

P(Y0:t|u1:t; α0:t) = 1 + α0:t−1 + αt︸ ︷︷ ︸
α0:t

. (19)

The advantage of equation (18) is that the summation is only
over the states that are in the dependent area ∩ of the joint
distribution. Until an object is sensed, the likelihood will always
be zero P(Yt|At, O)= 0 and αt will correspond to the probability
mass, which falls within the region of the joint distribution in
which the likelihood function is zero. As we perform the filtering
process, we will never re-normalize the whole joint distribution,
but only keep track of how much it should have been normalized.
The normalization factor in question will never be negative, as the
joint distribution sums to one and each αt represents some of the
mass removed from the joint distribution. Since we keep track of
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FIGURE 6 | Un-normalized MLMF joint distribution, numerator of equation (12), at time t= 3. Three measurements (all Y = 0) and two actions (both u=1) have been
integrated into the joint distribution, for simplicity we do not consider any motion noise. Left column: the first plot illustrates the likelihood of the first measurement Y0.
We highlight the contour in light-green to indicate that it was the first applied likelihood function (see the correspondence with Figure 5). The first likelihood function
has been moved by the 2 actions, the second likelihood function has been moved by one action (the last one, u2 =1), and the third likelihood has had no action
applied to it yet. The last applied likelihood function is highlighted in pink, and the product of all the likelihoods since t= 0 until t= 3 is depicted at the bottom of the
figure, which is P(Y0:2 |A2, O, u1:2). Right column: the top figure illustrates the original marginal of the object P(O; θ∗

o ), which remains unchanged, and the agent’s
marginal P(A2|u1:2; θ∗

a ), which has moved in accordance to the motion-update function. Their product would result in the joint distribution P(A2,O|u1:2; θ∗
a , θ∗

o )
illustrated in the middle figure if evaluated at each state (i, j). The bottom figure is the result of multiplying P(A2,O|u1:2; θ∗

a , θ∗
o ) with P(Y0:2 |A2, O, u1:2; Ψ0:2) giving the

filtered joint distribution (equation (12)).

the history of applied measurement likelihood functions the same
amount of probability mass is never removed twice from the joint
distribution.

3.1.2. Marginals
There are two different sets of marginals used in the MLMF
filter. The first set are the joint marginals of the joint distri-
bution, equation (12) parameterized by θ∗

a and θ∗
o . The second

set of marginals are the filtered marginals, which are updated
by evaluating the joint distribution in dependent states and are

parameterized byθa andθo. At initialization before the first action
or observation is made the parameters of the filtered marginal are
set equal to those of the joint distribution. MLMF takes advantage
of the sparsity of the likelihood function, which results in only the
dependent elements of the marginal being affected, equation (20)
(see Appendix E for the full derivation of equation (20))

P(O|Y0:t; θo) = P(O|Y0:t−1; θo)

−
(
P∩(O|Y0:t−1) − P∩(O|Y0:t)

)
(20)
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FIGURE 7 | Filtered marginals. Illustration of the agent and object marginal update (equation (20)). The joint distribution parameters that are independent A⊖O are
pale, and the dependent areas A∩O, where P(Yt <1|At, O), are bright. MLMF only evaluates the joint distribution in dependent states. For each state s of the
marginals 1,. . ., 10, the difference of the marginals inside the dependent area, before and after the measurement likelihood is applied, is evaluated and removed from
the marginals P(At |Y0: t−1, u1: t; θa), P(O|Y0: t−1; θo) leading to P(At |Y0: t, u1: t; θa ), P(O|Y0: t; θo) (we did not show u1: t in the figure for ease of notation). Bottom left:
joint marginals P(At|u1:t; θ∗

a ) and P(O; θ∗
o ) remain unchanged by measurements.

P∩(O|Y0:t; θ∗
a , θ∗

o ,Ψ0:t, α0:t)

=
∑
At

P∩(At,O|Y0:t, u1:t; θ∗
a , θ∗

o ,Ψ0:t, α0:t)

=

∑
At

P∩(O; θ∗
o )P∩(At|u1:t; θ∗

a )P(Y0:t|At,O, u1:t;Ψ0:t)

P(Y0:t|u1:t; α0:t)
.

(21)

Equation (20) is recursive, P(O|Y0:t; θo) is computed in terms
of P(O|Y0:t−1; θo). Figure 7 illustrates a measurement update of
the MLMF. The illustrated marginals (Bottom row) are (on the
left) the joint marginals P(At|u1:t; θ∗

a ), P(O; θ∗
o ) and (on the

right) the filtered marginals P(At|Y0:t, u1:t; θa), P(O|Y0:t; θo).
The shape of the joint marginals remain unchanged by mea-

surements during the filtering process, they are the parameters of
the joint distribution used to update the filteredmarginals.Table 1

TABLE 1 | MLMF functions with associated parameters.

Functions Parameters Description

P(At |Y0: t, u1: t) : θa Filtered marginals
P(O|Y0: t) : θo

P(At |u1: t) : θ∗
a Joint marginals

P(O) : θ∗
o

P(Y0: t |u1: t) : α0:t ∈ R Evidence
P(Y0: t |At, O, u1: t) : Ψ0: t = {(Yi,li)}i=0: t Likelihood history

The marginal parameters are the discretization of the state space θ ∈ RN, θ(s )

correspond to the probability being in state s.

summarizes the functions and parameters of the MLMF for two
random variables, an agent and object.

We evaluated the MLMF with histogram-SLAM in the case
of the 1D filtering scenario illustrated in Figure 5, and we
found them to be identical. Having respected the formulation of

Frontiers in Robotics and AI | www.frontiersin.org September 2017 | Volume 4 | Article 4010

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


de Chambrier and Billard Non-Parametric BSSE for NF

Bayes rule, we assert that the MLMF filtering steps (see Algo-
rithmA1, Appendix A for a more detailed application of motion-
measurement update steps) are Bayesian Optimal Filter1. Next we
evaluate both space and time complexity of the MLMF filter.

4. SPACE AND TIME COMPLEXITY

For discussion purposes, we consider the case of three beliefs,
namely, that of the agent and two other objects O(1) and O(2), we
subsequently generalize. As stated previously, M stands for the
number of filtered random variables including the agent, andN is
the number of discrete states in theworld. In the following section,
we compare the space and time complexity of MLMF-SLAMwith
histogram-SLAM.

4.1. Space Complexity
Figure 8 (Left) illustrates the volume occupied by the joint distri-
bution for a space with N states. Histogram-SLAM would require
N3 parameters for the joint distribution P(A,O(1),O(2);θ) and 3N
parameters to store the marginals. In general, forM random vari-
ables NM +M N parameters are necessary, giving an exponential
space complexity O(NM).

For MLMF-SLAM, each random variable requires two sets of
parameters, θ and θ∗ (see Table 1). Given M random variables,
the initial number of parameters is M(2N). At every time step
the likelihood memory function increments by one measurement
and offset, (Yt, l= 0) (Algorithm 1). Given a state space of size
N, there can be no more than N different measurement functions
(one for each state). In the worst-case scenario, the number of

1An optimal Bayesian solution is an exact solution to the recursive problem of
calculating the exact posterior density (Arulampalam et al., 2002).

memory likelihood function parameters Ψ0:t, equation (15), will
beN. The total number of parameters isM(2N)+N, which gives a
final worst-case space complexity linear in the number of random
variables, O(MN).

4.2. Time Complexity
For histogram-SLAM, the computational cost is equivalent to that
of the space complexity, O(NM), since every state in the joint
distribution has to be summed to obtain all the marginals.

For MLMF-SLAM, every state in the joint distribution’s state
space that has been changed by the likelihood function has to be
summed, see Figure 7. As a result, the computational complexity
is directly related to the number of dependent states |A∩O|. In
Figure 7, this corresponds to states where i= j and there are N
out of a total N2 states for that joint distribution. Figure 8 (Left)
illustrates a joint distribution withN3 states. The dependent states
|A∩O(1) ∩O(2)| are thosewhich arewithin the blue and red planes
(where the likelihood evaluates to zero) and comprise N2 states
each, giving a total of 2N2 −N dependent states (negative is to
remove the states we count twice at the intersection of the blue
and red plane).

The likelihood term P(Yt|At, O(1)) evaluates states to zero,
which satisfies (i= j, ∀k), as the measurement of object O(1) is
independent of object O(2). With 3 objects, the joint distribution
would be P(At = i, O(1) = j, O(2) = k, O( l) = l) then the likelihood
P(Yt|At, O(1)) evaluated to zero for (i= j, ∀k, ∀l) which would
mean N3 dependent states. In general, for M random variables
the computational cost is (M− 1) NM−1 which gives O(NM−1)
as opposed to the histogram-SLAM’s O(NM). The computation
complexity in this setup is still exponential but to the orderM− 1
as opposed toM, which nevertheless quickly limits the scalability
as more objects are added.

FIGURE 8 | Left: Joint distribution. P(A, O(1), O(2)) of the agent and two objects (Y0: t and u1: t omitted). Each likelihood function, P(Y|A, O(1)), P(Y|A, O(2)) corresponds
to a hyperplane in the joint distribution The state space is discretized to N bins giving a potential total of N3 parameters for the joint distribution (Histogram case).
Right: Scalable-MLMF. Each agent–object joint distribution pair is modeled independently. For clarity, we have left out the action random variable u that is linked to
every agent node. Two joint distributions P(A(1),O(1)|Y(1)

0:t ) and P(A(2),O(2)|Y(2)
0:t ) parametrize the graphical model. The dashed undirected lines represent a

wanted dependency, if present O(1) and O(2) are to be dependent through A. In the standard setting, there will be no exchange of information between the individual
joint distributions. However, we demonstrate later on how we perform a one-time transfer of information when one of the objects is sensed.
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Computing the value of a dependent state (i, j, k) in the joint
distribution required evaluating equation (12), which contains
a product of N likelihood functions, in the worst-case scenario.
However, the likelihood functions are not overlapping and binary.
As a result, the complete product does not have to be evaluated
since only one likelihood functionwill affect the state (i, j, k). Thus,
evaluating equation (12) yields a cost of O(1).

5. SCALABLE EXTENSION TO MULTIPLE
OBJECTS

Tomake theMLMF filter scalable, we introduce an independence
assumption between the objects and model the joint distribution
(equation (22)) as a product of agent–object joint distributions:

P
(
At,O(1), · · · ,O(M−1)|Y0:t, u1:t

)
=

M−1∏
i=1

P
(
A(i)
t ,O(i)|Y(i)

0:t , u1:t
)
.

(22)
The measurement variable Yt, is the vector of all agent–object

measurements, Yt =
[
Y(1)
t , . . . ,Y(M−1)

t

]T
. Each agent–object

joint distribution has its own parametrization of the agent’s
marginal, A(1)

t , . . . ,A(M−1)
t which combine to give the overall

marginal of the agentAt. The computation of each objectmarginal
P(O(i)|Y(i)

0:t ) is independent of the other objects. This is evident
from the marginalization, see equations (23) and (24)

P
(
O(i)|Y(i)

0:t , u1:t
)

=
∑
A(i)
t

P
(
A(i)
t ,O(i)|Y(i)

0:t , u1:t
)

(23)

P(At|Y0:t, u1:t) =
M−1∏
i=1

P
(
A(i)
t |Y(i)

0:t , u1:t
)
. (24)

The independence assumption will create an unwanted effect
with respect to agent’s marginal P(At|Y0:t, u1:t). At initialization
the agent marginals should be equal, P(A0|Y0) = P(A(i)

0 |Y(i)
0 )∀i;

however, this is not the case because of equation (24). To overcome
this, we define the marginal, P(At|Y0:t, u1:t), of the agent as being
the average of all the individual pairs P(A(i)|Y(i)

0:t , u1:t)

P(At|Y0:t, u1:t) :=
1

M − 1

M−1∑
i=1

P
(
A(i)
t |Y(i)

0:t , u1:t
)
. (25)

FIGURE 9 | Transfer of information (joint distributions). Top: joint distributions of P(A(1)
t ,O(1)|Y(1)) and P(A(2)

t ,O(2)|Y(2)) prior sensing, Y(2)
t = 1, see Figure 10

(Top right) for the corresponding marginals. The red and green lines across the joint distributions correspond to the region in which the likelihood functions
P(Y(1)

t |A
(1)
t ,O(1)) and P(Y(2)

t |A
(2)
t ,O(2)) will change the joint distributions. The dotted blue lines are to ease the comparison of the joint distributions prior and post

sensing. Bottom right: After the agent has sensed O(2), all the probability mass that was not overlapping the green line becomes an infeasible solution to the agent
and object locations. At this point the marginals P(A(1)

t |u1:t) ̸= P(A(2)
t |u1:t) are no longer equal (see the blue marginals Top). Bottom left: The constraint imposed by

the likelihood function of the second object (green line) is transferred to the joint distribution of the first object according to Algorithm A2. This results in a change in
the joint distribution P(A(1)

t ,O(1)|Y(1)), which satisfies the constraints imposed by the agent’s marginal from the joint distribution P(A(2)
t ,O(2)|Y(2)).

Frontiers in Robotics and AI | www.frontiersin.org September 2017 | Volume 4 | Article 4012

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


de Chambrier and Billard Non-Parametric BSSE for NF

Figure 8 (Right) depicts the graphical model of the scalable for-
mulation. As each joint distribution pair has its own parametriza-
tion of the agent’s marginal and these do not subsequently get
updated by one another, the information gained by one joint
distribution pair is not transferred. A solution is to transfer infor-
mation between the marginals A(i) at specific intervals namely
when one of the objects is sensed by the agent.

The exchange of information of one joint distribution to
another is achieved through the agent’s marginals A(i) according
to Algorithm A2, Appendix B. The measurement update is the
same as previously described in Algorithm A1 in the case of no
positivemeasurements of the objects. If the agent senses an object,
all of the agent marginals of the remaining joint distributions are
set to the marginal of the joint distribution pair belonging to the
positive measurement Y(i)

t .
Figure 9 depicts the process of information exchange between

object O(1) and O(2) in the event that the agent senses O(2). Prior
to the positive detection, both marginals P(A(1)

t |Y(1)
0:t−1, u1:t) and

P(A(2)
t |Y(2)

0:t−1, u1:t) occupy the same region and are identical.
When the agent senses O(2) the line defined by the measurement
likelihood function P(Y(2)

t |A(2)
t ,O(2)) becomes a hard constraint

implying that both the agent and O(2) have to satisfy this con-
straint. Figure 10 shows marginals at initialization, prior contact
between the agent and object and the after the measurement (post
contact) has been integrated into themarginals (resulting from the
joint distributions in Figure 9).

The result of introducing a dependency between the objects
through the agent’smarginals in the event of a sensing and treating
them independently gives the same solution as the histogram
filter in this particular case. However, as each individual marginal
A(i)
t diverges from the other marginals, the filtered solution will

diverge from the histogram’s solution. We assume, however, that
the objects are weakly dependent and sharing information during
positive sensing events is sufficient. In section 6.2, we will evaluate
the independence assumption with respect to the histogram filter.
Table 2 summarizes the time and space complexity for the three
filters.

6. EVALUATION

We conduct three different types of evaluation to quantify the
scalability and correctness of the scalable-MLMF filter. The first
experiment tests the scalability of our filter in terms of processing

TABLE 2 | Time and space complexity summary.

Space Time

Histogram O(NM) O(NM)
MLMF O(M N) O(N(M − 1))
Scalable-MLMF O(M N) O(M N)

For both MLMF and scalable-MLMF, the worst-case scenario is reported for the space
complexity.

FIGURE 10 | Transfer of information (marginals). Top left: Initial beliefs of the agent and object’s location. The agent moves to the left until it senses object O(2). Top
right: Marginals prior the agent entering in contact with the green object, see Figure 9 (Top) for an illustrate of the joint distributions. Bottom left: resulting marginals
after setting the agent marginals of each joint distribution equal A(1)

t = A(2)
t according to Algorithm A2. The object marginal P(O(2)|Y0:t) is recomputed. Bottom

Right: resulting marginals in which the objects have no influence on one another. Note that a transfer of information has caused a change in the marginal O(1).
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FIGURE 11 | Time complexity: Left: mean time taken for a loop update (motion and measurement) as a function of the number of states in a marginal and the
number of objects present. Right: Log–log plot of time taken for a loop update with respect to the number of states in the marginal. The color coded lines are
associated with the number of objects present. As the number of states increases exponentially the computational cost matches it.

FIGURE 12 | Comparison of scalable-MLMF and the histogram filter. A deterministic sweep policy was carried out for 100 different initializations of the agent and
object beliefs. Top left: one particular Initialization of the agent and object random variables. The true position of the agent and objects was sampled at random. The
black arrow indicates the general policy, which was followed for each of the 100 sweeps. These were performed for (1) scalable-MLMF with objects considered to be
independent at all times (Algorithm A2). (2) Agent marginal P(At |Y0: t, u1: t ) is the product of marginals P(A(i)

t |Y
(i)
0:t , u1:t), equation (24). (3) Marginal P(At |Y0: t, u1: t) is

taken to be the average of all marginals P(A(i)
t |Y

(i)
0:t , u1:t), equation (25). For each of these three experiments, we report the kernel density estimation over the

Hellinger distances taken at every time step between ground truth (from histogram filter) and scalable-MLMF.
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time taken per motion-measurement update cycle. The second
experiment evaluates the independence assumption made in the
scalable-MLMF filter between the objects. The third and final
experiment determines the effect of the memory size on a search
policy to locate all the objects in the Table world.

6.1. Evaluation of Time Complexity
Wemeasured the time taken by the motion-measurement update
loop, as a function of the number beliefs and number of states per
belief. We started with 100 states per belief and gradually increase
it to 10,000,000 over 50 steps. Each of the 50 steps treated 2–25
objects. Figure 11 (Left) illustrates the computational cost as a
function of number of states and objects. For each state-object
pair 100, motion-measurement updates were performed. Most of
the trials returned time updates below 1Hz. Figure 11 (Right)
shows the computational cost as a function of the number of
states plotted for 6 different filter runs with a different number of
objects. As the number of states increases exponentially so does
the computational cost. Note the cost increases at the same rate
as the number of states, which increase at a rate exponential in
the number of random variables, meaning that the computational
complexity is linear with respect to the number of states. This
result is in agreement with the asymptotic time complexity.

6.2. Evaluation of the Independence
Assumption
In section 5, we made the assumption (for scalability reasons)
that the objects’ beliefs are independent of one another. This
assumption is validated by comparing the MLMF filter on three
random variables, an agent and two objects, with the ground
truth, which we obtain from the standard histogram filter. For
each of the three beliefs (the agent and two objects), 100 different
marginals were generated and the true locations (actual position
of the agent and objects) were sampled. Figure 12 (Top left)
illustrates one instance of the initialization of the agent and object
marginals with their associated sampled true position. The agent
carries out a sweep of the state space for each of the marginals
and the policy is saved and run with the scalable-MLMF filter.
In the first experiment, we assumed that the objects are com-
pletely independent and that there was no transfer of information
between the pair-wise joint distributions. In the second and third
experiments, there is an exchange of information as described in
Algorithm A2. Here, we compare the effect of using the product
of the agent’s marginals, equation (24), with the average of the
marginals, equation (25). We expect the average of the agent’s
marginal to yield a result closer to the ground truth as themarginal
of the agent P(At|Y0:t, u1:t) at initialization is the same as the

A B C

D E F

FIGURE 13 | Agent’s prior beliefs. Two types of environment, the first is a 2D world where the agent lives in a square surrounded by a wall while the second is a 1D
world. In the 2D figures, the agent is illustrated by a circle with a bar to indicate its heading. The true location of the objects is represented by color coded squares.
Top row, (A–C) three different initializations of the agent’s location. Bottom row, (D) the agent’s prior beliefs with respect to the location of the first object and (E)
belief of the second object’s location. Bottom row, (F) 1D world with one object.
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ground truth (the histogram-SLAM’s). As for the marginal of the
objects P(O(i)|Y0:t), we expect the difference between them to
be independent of whether the product or average of the agent’s
marginal is used. This results from Algorithm A2. When an
object i is sensed all the corresponding agentmarginalsP(A(j)|u1:t)
are set equal to P(A(i)|u1:t) and not to P(At|Y0:t, u1:t). This is
a design decision of our information transfer heuristic. There
are many other possibilities but this is one of the simplest. For
each of the 100 sweeps, the ground truth is compared with the
scalable-MLMF using the Hellinger distance (equation (26))

H(P,Q) =
1√
2

∥∥∥√
P −

√
Q

∥∥∥
2

(26)

which is a metric that measures the distance between two proba-
bility distributions. Its value lies strictly between 0 (the two distri-
butions are identical) and 1 (no overlap between them). Figure 12
shows the kernel density distribution of the Hellinger distances
taken at each time step for all 100 sweeps. In the Top left of the
figure, for the case when no transfer of information is a applied, all
the marginals are far from the ground truth. This results from the
introduction of the independence assumption, necessary to scale
the MLMF. Figure 12 (Bottom) shows the results for difference
between the product and average of the agents marginals. As
expected, there is no difference between the objects’ marginals
when considering both methods (product and average) with
respect to the ground truth. The predominant difference occurs
in the agent’s marginal P(At|Y0:t, u1:t). This is also expected and
prompted the introduction of the average method instead of the
product.

The scalable-MLMF information exchange heuristic will not
lead to any of the objects marginals probability mass being falsely
removed during the information transfer, which is close to a
winner-take-all approach in terms of beliefs. When object i is
sensed its associated agentmarginal is set to all other agent–object
joint pairs, which results in the information accumulated in the jth
agent marginals being replaced by the ith.

6.3. Evaluation of Memory
The memory measurement likelihood function
P(Y0:t|At, O, u1:t; Ψ0:t) is parameterized by the history of all
the measurement likelihood functions that have been applied
to the joint distribution since initialization. As detailed earlier,
there can be no more than |Ψ0:t|≤N different measurement
likelihood functions added to memory. In the case of a very
large state space, this might be cumbersome. We investigate how
restricting the memory size, the number of parameters |Ψ0:t|, can
impact on the decision process in an Active-SLAM setting. Given
our setup, a breadth-first search in the action space is chosen
with a one-time step horizon, making it a greedy algorithm. The
objective function utilized is the information gain of the beliefs
after applying an action (equation (27))

ut = arg max
ut

H{P(At−1,O|Y0:t−1, u1:t−1)}

− EYt [H{P(At,O|Y0:t, u1:t)}]. (27)

For each action the filter is run forward in time and all future
measurements since we cannot know ahead of time the actual

measurement. The information gain is the difference between the
current entropy (defined byH{·}) and the future entropy after the
simulated motion and measurement update. The action with the
highest information gain is subsequently selected. This is repeated
at each time step. Figure 13 illustrates the environment setup for
a 1D and 2D case. The agent’s task is to find the objects in the
environment.

For the 2D search, we consider three different initializations
(single-Gaussian, four-Gaussian, Uniform) for the agent’s belief
where there are two objects to be found. Ten searches are carried
out for each of the three initializations of the agent’s beliefs.
The agent’s true location, for each search, is sampled from its
initial belief, and the objects’ locations (red and green squares in
Figure 13) are kept fixed throughout all searches. Each search is
repeated for 18 different memory sizes ranging from 1 to N (the
number of states). For the 1D search case, one object is considered
since addingmore objects makes the search easier and the interest
lies in the memory effects of the search and not the search itself.
In Figures 14 and 15, we report on the time taken to find all
objects with respect to a given memory size, which is shown as
the percentage of the total number of states. In the 1D search
case, the time variability taken to find the object converges when
the memory size is at 60% of the original state space. As for the
2D search with 2 beliefs (agent and 1 object), the convergence
depends on the agent’s initial belief. For the 1-Gaussian (green
line), all searches take approximately the same amount of time
after amemory size of 9%.As for the remaining two initializations,
convergence is achieved at 48%. The same holds true for the case
of 3 beliefs (agent and 2 objects).

In the 2D searches, the memory size has a less impact on the
time taken to find the objects than in the 1D (which is a special

FIGURE 14 | Memory size vs time to find object in 1D. Results of the effect of
the memory size on the decision process for the 1D search illustrated in
Figure 13F. The memory size is reported as the percentage of total number
of states present in the marginal space. At 100%, the size of the memory is
equal to that of the state space, N= 100 in this case. A total sweep of the
entire state space would result in a total of 200 steps, the dotted gray line in
the figure. When no restrictions are placed on the memory size, the policy
following the greedy approach takes around 180 steps. This result converges
when the number of parameters |Ψ0: t | of the memory likelihood function is
greater than 50% of the original state space.
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FIGURE 15 | Memory size vs time to find objects in 2D. The initial beliefs correspond to those of Figure 13A for Gaussian (green line), Figure 13B for 4 Gaussians
(red line), and Figure 13C for uniform (blue line), both objects are initialized according to Figures 13D,E.

search case). Only when the memory size is less than 6% is there
a significant change. We conclude that at least in the case of the
greedy one-step look-ahead planner that is frequently used in the
literature, the size of the memory seems not to be a limiting factor
in terms of the time taken to accomplish the search.

7. CONCLUSION

This work addresses the Active-SLAM filtering problem for sce-
narios in which sensory information relating to the map is very
limited. Current SLAM algorithms filter the errors originating
from sensorymeasurements and not prior uncertainty. Bymaking
the assumption that the joint distribution of all the random vari-
ables is a multivariate Gaussian, inference is tractable. Since the
origin of the uncertainty does not originate from themeasurement
noise, no assumption can be made about the structure of the joint
distribution. In this case, a suitable filter would be the histogram,
which makes no assumption about the shape or form taken by
the joint distribution. However, the space and time complexity are
exponential with respect to the number randomvariables, and this
is a major limiting factor for scalability.

The main contribution of this work is a formulation of a
histogram Bayesian state space estimator in which the compu-
tational complexity is both linear in time and space. A different
approach to other SLAM formulations as been taken in the sense
that the joint distribution is not explicitly parameterized avoid-
ing the exponential increase in parameter space, which would
otherwise have been the case. The MLMF parameters consist of
the marginals and the history of measurement functions, which
have been applied. By solely evaluating the joint distribution at the
states that are affected by the current measurement function while
taking into account the memory, the MLMF filter obtains the
same filtered marginals as the histogram filter. Further, the worst-
case space complexity is linear rather than exponential, and the
time complexity remains exponential but increases at lower rate
than in the histogram filter. In striving to make the filter scalable,

we make the assumption that the objects are independent. An
individual MLMF is used for each agent–object pair. We evaluate
the difference between the scalable-MLMF with a ground truth
provided by the histogram filter for 100 different searches with
respect to the Hellinger distance.We conclude that the divergence
is relatively small and thus the scalable-MLMF filter provides a
good approximation to the true filtered marginals. We evaluate
the time taken to perform a motion-update loop for different dis-
cretizations of the state space (100–10,000,000 states) and number
of objects (2–25). In most of the cases, we achieve an update cycle
rate below 1Hz. We evaluate how the increase of the number of
states affects the computational cost and find the relationship to
be linear and thus in agreement with our analysis of the asymp-
totic growth rate. We analyze the effect of the memory size (the
remembered number of measurement likelihood functions) on
the decision-theoretic process of reducing the uncertainty of the
map and agent during a search task. We conclude that in the 2D
case the memory size has much less effect than in the 1D case
and that it is unnecessary to remember every single measurement
function.

This implies that the MLMF and scalable-MLMF that we have
are a computationally tractable means of performing SLAM in
a case scenario in which mostly negative information is present
and the joint distribution cannot be assumed to have any specific
structure. Furthermore, the filter can be used at a higher cognitive
level than the processing of raw sensory information as is often the
case in Active-SLAM. MLMF would be well suited for reasoning
tasks where the robot’s field of view is limited.

An interesting future extension could be to make the origi-
nal MLMF filter scalable without introducing assumptions. One
possibility could to be to consider Monte Carlo integration meth-
ods for inference. These can scale well to high dimensional spaces
while still providing reliable estimates. A second possibility could
be to investigate the use of Gaussian Mixtures as a form of
parameterization of the marginals to blend our filter with EKF-
SLAM. This would allow the parameters to grow quadratically
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with respect to the dimension of the marginal space as opposed to
exponentially as is the case with the histogram and MLMF filters.
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VIDEO S1 | Top left : initial marginals, the blue and red probability density functions
(solid red and blue) represent the belief the agent has of his position and that of the

object being searched. Bottom right: product of the original marginals (dashed blue
and red in top left figure) and the current likelihood function. Bottom left: the memory
likelihood functions (equation (15)) which is the product of all likelihood functions.
Top right: the joint distribution, which is result of the product of both functions in the
bottom figures. The marginalization of the joint distribution would result in solid blue
and red marginals, depicted in the top left figure. The marginalization is computed
at each step along the pink line illustrated in the bottom right figure. This avoids
performing an expensive margnisalization over the entire joint distribution.

VIDEO S2 | 2D search example of an experiment illustrated in Figure 13. The
agent has to locate the red square. As the agent reduces his uncertainty by using
the wall, this propegates to the entire object marginal (shown in red).

VIDEO S3 | 2D search example of an experiment illustrated in Figure 13. The
agent must locate two objects (red and green). When the agent locates the red
object, their marginals become the same, as both of them have to be located at the
same point.
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APPENDIX

A. MLMF Algorithm

ALGORITHM A1 | MLMF-SLAM

Input:
Measurements
Yt, ut

Joint distribution parameters:
P(At−1 |u1: t−1) P(O), Ψ0: t−1, α0: t−1

Filtered marginals:
P(At−1 |Y0: t−1,u1: t−1), P(O|Y0: t−1)

Output:
Joint parameters:
P(At |u1: t), Ψ0: t, α0: t

Filtered marginals:
P(At |Y0: t, u1: t), P(O|Y0: t)

Initialization

P(A0; θa) := P(A0; θ∗
a )

P(O; θo) := P(O; θ∗
a )

Ψ0 := {}
α0 := 0

Motion update

P(At|u1:t) =
∑
At−1

P(At|At−1, ut)P(At−1|u1:t−1)

P(At|Y0:t−1, u1:t) =
∑
At−1

P(At|At−1, ut)P(At−1|Y0:t−1, u1:t−1)

Ψ̄0:t ← Ψ0:t−1 : Algorithm 1 (motion update)

Measurement update

α0:t = α0:t−1 +
∑
At

∑
O

(P(Yt|At,O)− 1)P∩(At,O, Y0:t−1|u1:t)

P(Y0:t|u1:t) = 1 + α0:t

P(At|Y0:t) = P(At|Y0:t−1)− (P∩(At|Y0:t−1)− P∩(At|Y0:t))
P(O|Y0:t) = P(O|Y0:t−1)− (P∩(Ot|Y0:t−1)− P∩(Ot|Y0:t))
Ψ0:t ← Ψ̄0:t : Algorithm 1 (measurement update)

B. Scalable-MLMF Algorithm

ALGORITHM A2 | Scalable-MLMF: Measurement Update

input: P(A(i)
t |u1:t), P(A(i)

t |Y
(i)
0:t−1, u1:t)

P(O( i )), P(O(i)|Y(i)
0:t−1, u1:t)

Y(i)
t
i= 1, …, M

◃ If object i has been sensed by the agent
1 if Y(i)

t == 1 then

2 P(O(i)|Y(i)
0:t )← P(O(i)|Y(i)

0:t−1); ◃ measurement update Algorithm A1

3 P(A(i)
t |Y

(i)
0:t , u1:t)← P(A(i)

t |Y
(i)
0:t−1, u1:t)

4 for all j ∈ (1, . . .M− 1) \ i do
5 P(A(j)

t |Y0:t, u1:t) = P(A(i)
t |Y0:t, u1:t)

6 P(A(j)
t |u1:t) = P(A(i)

t |u1:t)

7 P(O(j)|Y(i)
0:t )←

∑
A(j)

P(A(j)
t ,O(j)|Y(i)

0:t )

8 else
9 for all i∈ (1,. . .M) do

10 measurement update Algorithm A1

C. Recursion Example
Derivation of the filtered joint distribution, P(At, O, Yt|Y0:t, u1:t),
for two updates. At initialization when no action has yet been
taken the filtered joint distribution is the product of the initial
marginals and first likelihood function:

P(A0,O,Y0) = P(O)P(A0)P(Y0|A0,O). (A1)

The first action, u1 is applied, which to get the filtered joint
distribution is marginalized:

P(A1,O,Y0|u1) = P(O)
∑
A0

P(A1|A0, u1)P(A0)P(Y0|A0,O)

(A2)

= P(O)
∑
A0

P(A1,A0,Y0|u1,O) (A3)

= P(O)P(A1,Y0|u1,O) (A4)

= P(O)P(Y0|A1,O, u1)P(A1|u1,�O) (A5)

= P(O)P(Y0|A1,O, u1)P(A1|u1). (A6)

From equations (A4) and (A5), we used the Chain rule and the
cancelation in equation (A5) arise from the factorization of the
joint distribution, see Figure 2, A’s marginal does not depend on
O. After the application of the first action, the filtered joint has the
following form:

P(A1,O,Y0|u1) = P(O)P(A1|u1)P(Y0|A1,O, u1). (A7)

A secondmeasurement Y1 and action u2 are integrated into the
filtered joint distribution:

P(A2,O,Y0:1|u1:2)

= P(O)
∑
A1

P(A2|A1, u2)P(A1|u1)P(Y0|A1,O, u1)P(Y1|A1,O)

= P(O)
∑
A1

P(A2,A1|u1:2)P(Y0:1|A1,O, u1)

= P(O)
∑
A1

P(A2,A1,Y0:1|O, u1:2)

= P(O)P(A2,Y0:1|O, u1:2) (A8)

= P(O)P(Y0:1|A2,O, u1:2)P(A2|�O, u1:2). (A9)

We expand the function P(Y0:1|A2, O, u1:2) to give a sense
of how the likelihood function’s positions get as illustrated in
Figure 5

P(Y0,Y1|A2,O, u1, u2)
= P(Y0|��Y1,A2,O, u1, u2)P(Y1|A2,O,��u1, u2) (A10)

= P(Y0|A2,O, u1:2)P(Y1|A2,O, u2). (A11)

The first likelihood of measurementY0 is dependent on the last
to applied actions while the likelihood of Y1 is dependent on the
last action.
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Repeating the above for Y2:t and u3:t results in:

P(At,O,Y0:t|u1:t) = P(O)P(At|u1:t)
t∏

i=0
P(Yi|At,O, ui+1:t).

(A12)
If t= 3, (Y0:3 and u1:3) according to the above equation, we

would get:

P(A3,O,Y0:3|u1:3) = P(O)P(A3|u1:3)P(Y0|A3,O, u1:3)
P(Y1|A3,O, u2:3)
P(Y2|A3,O, u3:3)
P(Y3|A3,O,��u4:3). (A13)

We introduce some notation rules, first if (i+ 1)> t for u(i+1):t
then it cancels out since the current measurement Yt cannot
depend on a future action u(i+1).

D. Derivation of the Evidence
The evidence, also known as the marginal likelihood, is the
marginalization of all non-measurement random variables from
the filtered joint distribution P(At, O, Y0:t|u1:t). We detail
below how we compute the evidence in a recursive man-
ner while only considering dependent regions of the joint
distribution.

We start with the standard definition of the evidence:

P(Y0:t|u1:t) =
∑
At

∑
O

P(At,O,Y0:t|u1:t) ∈ R. (A14)

If bothAt andO are randomvariables defined over a discretized
state space of N states, the above double integral will sum a
total of N2 states, which is the complete state space of the joint
distribution P(At, O, Y0:t|u1:t)∝ P(At, O|Y0:t, u1:t), see Figure 6
for an illustrate of such a joint distribution. As we are interested
in a recursive computation of the evidence, we consider the
gradient:

αt = ∇YtP(Y0:t|u1:t) = P(Y0:t|u1:t) − P(Y0:t−1|u1:t) (A15)

αt =
∑
At

∑
O

P(At,O,Y0:t|u1:t) − P(At,O,Y0:t−1|u1:t) (A16)

=
∑
At

∑
O

P(Yt|At,O)P(At,O,Y0:t−1|u1:t)

− P(At,O,Y0:t−1|u1:t) (A17)

=
∑
At

∑
O

(P(Yt|At,O) − 1)P(At,O,Y0:t−1|u1:t). (A18)

The gradient αt is the difference in mass before and after
the application the likelihood function, P(Yt|At, O). The above
summation, equation (A18), is over the entire joint distribution
state space. We can take advantage of the fact that the likelihood
function is sparse and will only affect a small region of the joint
distribution, which we called the dependent states, ∩. The states
that are not affected by the joint distribution will result in a

contribution of zero to equation (A18). We rewrite the gradient
update in terms of only the dependent regions:

αt =
∑
At

∑
O

(P(Yt|At,O) − 1)P∩(At,O,Y0:t−1|u1:t) (A19)

Consider the first update of the evidence at time t= 0:

α0 =
∑
At

∑
O

(P(Y0|A0,O) − 1)P(A0,O). (A20)

The one in equation (A21) is the original value of the normal-
ization denominator before any observation is made and as the
initial joint distribution P(A0, O) is normalized the value of the
denominator is one

P(Y0) = 1 + α0. (A21)

For the evidence P(Y0:t|u1:t), we consider the summation of all
the derivatives αt from time t= 0 until t:

P(Y0:t|u1:t) = 1 +
t∑

t=0
αt. (A22)

E. Derivation of the Marginal
The marginal of a random variable is the marginalization
or integration over all other random variables,
P(At, |Y0:t) =

∑
O

P(At,O|Y0:t). Below, we give a form of

this integration, which exploits the independent regions in the
joint distribution

P(At, |Y0:t) = P(At|Y0:t−1) −
(
P(At|Y0:t−1) − P(At|Y0:t)

)
.

(A23)
In equation (A23), we add and subtract P(At|Y0:t−1), and

we further split P(At|Y0:t−1) into independent and dependent
components:

P(At, |Y0:t) = P(At|Y0:t−1)−(
P∩(At|Y0:t−1)+((((((P⊖(At|Y0:t−1)︸ ︷︷ ︸

P(At|Y0:t−1)

− P∩(At|Y0:t)+�����P⊖(At|Y0:t)︸ ︷︷ ︸
P(At|Y0:t)

)
)
.

(A24)

Fromequations (A24) and (A25), we used the fact that indepen-
dent regions of the marginal distributions will remain unchanged
after an observation, P!(At|Y0:t−1)= P!(At|Y0:t), and before re-
normalization. This results in the final recursive update:

P(At, |Y0:t) = P(At|Y0:t−1) −
(
P∩(At|Y0:t−1) − P∩(At|Y0:t)

)
.

(A25)
Equation (A25) states that only elements of the marginals that

are dependent will change by the difference before and after a
measurement update.
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