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Point-to-point exercising of the upper-limb, as elicited through the presentation of 
visual targets on a computer screen, is a ubiquitous paradigm in the robot-assisted 
rehabilitation of motor-impaired individuals. Kinematic data collected from the robot’s 
sensors can be used to assess motor function; these data allow objective quanti-
fication of motor performance, an approach that shows promise both for guiding 
therapy and documenting patient progress. It is imperative that these datasets be fully 
understood and that tools be continually developed to support analysis and proper 
interpretation of robot-generated data. It is our experience that data collected from 
kinematic robots and partitioned according to target achievement may be prone to 
errors in analysis and interpretation because the movements of highly spastic individu-
als rarely stop within the target. Here, we propose that it is preferable to partition serial 
movement data based on local minima in velocity rather than target achievement; this 
design reflects the convention that movement epochs start and end at low or zero 
velocity, an assumption that is prevalent even in severely impaired individuals. Using 
a commercially available robot (MIT-Manus, Interactive Motion Technologies), we 
recorded movements from 16 moderate to severely impaired chronic stroke patients. 
Data partitioned according to target presentation typically interrupted movements 
in mid-motion: velocity at file start was 32.6 ± 26.4% of the overall velocity range.  
By re-apportioning, we obtained velocity at file start of 7.4  ±  9.5% of total range. 
Across 3,200 movements, 12.4 ± 10.4% of data points were re-allocated on average. 
Thus, our routine is capable of re-partitioning to more accurately reflect observed 
behavior. Our study is thus the first to identify and propose a solution to the problem 
of high relevance to the community of robot-aided rehabilitation specialists, i.e., sub- 
optimal partitioning according to target achievement. Through the algorithm described 
in this paper, we were able to re-partition the data so that movement epochs were 
properly demarcated at velocity minima, thus adhering to the fundamental assump-
tions of human motor behavior and facilitating analysis of patient performance on a 
per-movement basis.
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FiguRe 1 | Schematic of subject performing a robot-driven multi-target task (A); and kinematic record (velocity versus time) of data collected through serial targets 
(B,C). Raw data obtained from the robot may not coincide with the subject’s transition between targets (B); the time-series may require conditioning so that each 
movement is bounded by a local minimum of velocity (C). Direction annotations in figure legends are Nt = North toward (from center target toward North target), 
Nb = North back (from North target back to center target), NEt = Northeast toward (toward the NE target), NEb = Northeast back, and Et = East toward; see 
Section “Patient Population and Protocol.”
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iNtRoduCtioN

description of the Problem
For healthy individuals, directional sensitivity is seen in small, 
but measurable differences in speed, accuracy, and precision of 
movements made across a range of targets (Schmidt et al., 1979; 
Georgopoulos et al., 1982, 1986; Bullock and Grossberg, 1988; 
Zelaznik et al., 1988; Mushiake et al., 1991; Schwartz, 1992, 1993; 
Bootsma et al., 1994; Scott et al., 1997; Shadmehr et al., 1998; 
Patton and Mussa-Ivaldi, 2004; Yarosh et al., 2004; Yamamoto 
et al., 2006; Richardson et al., 2008; Brown et al., 2010; Coderre 
et  al., 2010; Hewitt et  al., 2011; Scott and Dukelow, 2011; 
Turnham et al., 2012; Berniker et al., 2014; Muceli et al., 2014). 
For people with impaired neuromotor systems, performance 
discrepancies between targets can be profound and also highly 
variable (Mattingley et  al., 1994; Ghika et  al., 1998; Wu et  al., 
2001; Azouvi et  al., 2002; Gauthier et  al., 2008; Swayne et  al., 
2008; Dipietro et  al., 2009; Thies et  al., 2009). Thus, the abil-
ity to stop on-target depends on (1) the specific task demands,  
(2) their level of motor impairment, and (3) the position of the 
target in space. Given the propensity for highly impaired indi-
viduals to overshoot a target (Acosta et al., 2011; Hu et al., 2011; 
Merlo et al., 2013; Mani et al., 2013), it is problematic that data 
extracted from rehabilitation robots is commonly partitioned 
based on target presentation.

Typically, once the robot’s cursor is held within the target 
for a pre-defined window, the movement is presumed com-
plete, and the next target is presented; this window is often a 
small fraction of a second and constant across all targets. For 
highly impaired individuals, who move slowly, erratically, 

or overshoot their target, mere target achievement may be 
an inappropriate criterion for partitioning movement units. 
Consider the example of a multi-point movement task, where 
patients are instructed to move around a wheel of targets 
(Figure 1A). Suppose the patient moves through one target but 
is unable to stop on-target and instead continues beyond the 
target before transitioning to the next targeted movement. The 
movement record will reset upon target achievement, with the 
last portions of the movement being truncated and inappro-
priately pre-pended to the file containing the next movement 
(Figure 1B). Thus, our goal is to re-organize data into epochs 
that reflect the complete movement unit and not necessarily 
what is windowed according to the robot’s programmed target 
presentation (Figure 1C).

importance of the Problem
There is obvious benefit to automated partitioning of the con-
tinuous data stream by the robot. While we make no assump-
tion about the intent of the robot manufacturer and it would 
be unusual for a technology to be described with the level of 
granularity that it’s process for file writing is full detailed, there 
are many products that suggest that they are, or could be, pro-
grammed to write out data based on target presentation (Hogan 
et  al., 1995; Lockery et  al., 2011; Csaba, 2013; Crainic et  al., 
2014) and note that this is so in our own device, for which four 
identical robots were purchased from the same entity, for use 
in a multi-site clinical trial. Furthermore, we assume that the 
end-user would prefer the data be partitioned into movement 
epochs, not strictly by target achievement; as seen in Figure 1, 
these two criteria may yield two different datasets. Obviously, 
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there is need to partition the movement data collected from 
patients in a way that is intuitive and commensurate with how 
the task both performed (by the patient) and observed (by 
the clinician); a substantial portion of the robot’s utility is in 
providing accurate quantitative support to guiding therapy in 
real-time and supporting offline analysis. Moreover, consider-
ing that in adaptive robotics, early-session data are used to train 
the robot’s force-impedance settings for optimized re-training 
(Patton and Mussa-Ivaldi, 2004; Xu et al., 2011; Song et al., 2015), 
the ongoing inquiry into movement decomposition (modeling 
the speed profile as a series of log-normal curves) (Rohrer 
et al., 2002; Dipietro et al., 2009; Balasubramanian et al., 2012, 
2015), or the robotic manipulandums prevalent in industrial 
applications (Gao and Zhang, 2015; Chen et al., 2016; He et al., 
2017). These arenas are just a few examples of where boundary 
conditions are critically important parameters. Whereas initial 
and final position and velocity are typically integral to modeling 
and intelligent robotics, it is imperative that the data from  
the robots provide robustly partitioned movements, with reli-
able estimates of position and velocity at the time of movement 
start and end.

Key Assumption
In substantiation of this enterprise, there is a single primary 
assumption, i.e., movements start and end at a period of low or 
zero velocity. This has been demonstrated repeatedly to be true 
for healthy individuals (Flash and Hogan, 1985; Plamondon, 
1991; Harris and Wolpert, 1998; Pattacini et  al., 2010). More 
relevant to rehabilitation robotics, this framework has been 
shown to apply even in severely impaired individuals: movement 
onset and cessation is from rest or at low speed if transitioning 
in a movement re-direction; velocity profiles are typically single 
or multiple peaked (Trombly, 1993; Cirstea and Levin, 2000; 
Rohrer et al., 2002; Wininger et al., 2009). To wit, this principle 
is embedded in robot-based assistive technology (Patton and 
Mussa-Ivaldi, 2004; Kahn et  al., 2006; Velliste et  al., 2008; 
Mazzoleni et al., 2014). And while not an explicit requirement 
for our algorithm, we note that a bell-shaped velocity profile 
is typical of a healthy actor, and conformity to a bell-shaped 
template is an indication of motoric recovery (Trombly, 1993; 
Rohrer et al., 2002).

Methods

Patient Population and Protocol
The data used in this study represent a sample from a larger 
pool of data collected during the VA-ROBOTICS rand-
omized clinical trial (Lo et  al., 2009, 2010; Wu et  al., 2016). 
Participants were seated in the study robot, the MIT-Manus 
system (InMotion Technologies, Cambridge, MA, USA), 
which utilized pre-programmed exercise regimens (Aisen et al., 
1997). Inclusion and exclusion criteria for the main trial are 
described fully elsewhere (Lo et al., 2009), but are summarized 
as follows: inclusion on the basis of index stroke >6  months 
prior, 18  years of age or older, moderate-to-severe impair-
ment (Fugl–Meyer score between 7 and 38 points, inclusive), 

cognitive and language acuity to understand the instructions, 
willingness to avoid new rehabilitation activities during the 
study, and provision of informed consent; exclusion included 
circumstances that prevented participation in or completion of 
the study, co-enrollment in a competing trial, and prior expo-
sure to robotic therapy. No additional criteria were imposed for 
the purposes of this sub-study. Not all participants provided a 
complete recorded sample across the full target wheel in the 
point-to-point movement task; the participants analyzed here 
are thus a convenience sample of those who performed the 
same task at least once in their time in the trial. We analyzed 
movements performed in a cyclic point-to-point movement 
task where participants moved their affected arm within the 
transverse plane, in order to place a cursor within a target 
on a computer screen above the robot. The target moved in a 
predictable fashion around eight directions (N, NE, E, SE, S, 
SW, W, and NW); for each direction, there was a “toward” target 
(e.g., North toward) and “back” to center (North back) move-
ment, yielding 16 movements per cycle. Participants recorded 
five cycles (80 total movements) per visit. The robot’s operating 
system was programmed to provide kinematic data in separate 
files on a per-movement basis, with the movement direction 
indicated in the file name. Data were sampled at 200 Hz and 
were not processed prior to file writing.

data Acquisition and Processing
Raw planar position data (x- and y-position versus time) were 
conditioned via Tukey’s 3R smoother (Bryc and Peligrad, 1992),  
differentiated to instantaneous velocity, converted into a one-
dimensional instantaneous velocity via Euclidean distance 
calculation, and smoothed again. The smoother used here is “3R” 
meaning that it computes a replacement value based on running 
medians of length 3; the process is repeated until convergence 
(Tukey, 2000). Data conversion into tab-delimited files was per-
formed using a custom routine in Octave numerical computing 
environment (v3.2.4); all data processing and algorithmic activi-
ties were performed using custom routines in the R statistical 
software (v 3.3.1).

Algorithm
The objective of our algorithm is to identify landmarks in the 
kinematic record where the subject is most likely to be transition-
ing between targets. Our main assumption is that targeted move-
ments begin and end at a local velocity minimum (Jeannerod, 
1990; Culmer et al., 2009; Perfetti et al., 2011). Our two secondary 
assumptions are (1) patients’ true transition point is most likely 
to be found after the file terminus and not before; and (2) the 
local minimum associated with the true transition point is a deep 
valley offset by relatively large decrease and/or large increase in 
velocity.

Data files were loaded two-at-a-time, in serial order, i.e., 
Northeast toward  +  Northeast back (NEb), then NEb  +  East 
toward, etc. As a precaution against artifact, data were smoothed 
with an additional local polynomial regression fitting (LOESS) 
with a 0.5-s (100-sample) window.
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FiguRe 2 | Illustration of Steps 1–3: two serial movement records are 
concatenated; all local extrema were extracted (circles and squares; Step 1) 
and retained if occurring later than 0.5-s before the terminus of file 1 
(diamond) or before the peak velocity in file 2 (last square; Step 2), and local 
min–max ranges were calculated (Step 3, dashed lines). Direction 
annotations in figure legend is Eb = East back (from East target back to 
center target), and SEt = Southeast toward (from center target toward 
Southeast target); see Section “Patient Population and Protocol.”
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Following the main assumption: local maxima Mj and minima 
mk were extracted as ordered pairs of time and instantaneous 
velocity:

 

M t v a a
t t

a v v
t

j J

m t v

j i i
i i

i
i

i i

i

k i

= ,
−

= − : 
−

=

= ,

+

+

+

+

′
−

=
−

 1

1

1

1
2 1

i it


ii
i

i
i

i

i

a a
t t

a k K′ −
−

=
−
−

 +

+

+

+
= + : =1

1

1

1
2 1 .i

i

i

i

v v
t t



 

The plus-or-minus 2 reflects that this difference is taken over a 
signed value (value is either +1 or −1, so the difference between 
adjacent points across a transition will yield ±2).

Following secondary assumption 1: local minima were 
retained if they occurred late in the first file or prior to the 
peak velocity of the second file; “late” is defined as within 0.5 s  
(100 samples) of the first file terminus.

Following secondary assumption 2: for each local minimum 
in the velocity versus time portrait, the greater valley depth, 
δ, was calculated as the maximum of (i) the vertical distance, 
d1, from nearest preceding local maximum versus (ii) the 
vertical distance, d2, from nearest succeeding local maximum,  
i.e., δ = max(d1, d2), where
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where ⟨tj, vj⟩ = Mj and ⟨tk, vk⟩ = mk. Any minima such that δ 
was greater than 10% of the total range of velocity across the 
two files were retained as candidate transition points (Figure 2). 
Given the prioritization of the main assumption, if there were 
no “substantial” minima, then the set of candidate minima was  
re-defined to include any local minima. Figure  2 highlights 
identification of d1 and d2 for one local minima (at time approxi-
mately t  =  1.2  s), but per  secondary assumption 1, the local 
minima at t = 1.5 and 1.9 s would both yield their own d1 and d2s.

Among all surviving candidate minima, the following rule was 
used to identify the transition point.

Within 1 s (200 samples) of the first candidate minimum, the 
single candidate with the least absolute instantaneous velocity 
was retained as the transition point. If multiple candidates shared 
the same instantaneous velocity value, then the earliest candidate 
was retained.

If there were no local minima whatsoever, the original file 
terminus was retained as the transition point.

We summarize our algorithm in Figure 3.

Analysis
In order to measure both the extent to which target-partitioned 
files deviate from expectation, and also the effectiveness of our 
algorithm, we extracted several features from the raw- and re-
conditioned data including average velocity and instantaneous 
velocity at movement onset and cessation. Additionally, given 
the template of an approximately bell-shaped velocity profile, 
we measured the goodness-of-fit of a second-order polynomial 
function to log-transformed velocity data via the coefficient of 
determination (R2). Lastly, we report on the number of samples 

relocated to a new file. All hypothesis tests were performed via  
a paired t-test on samples.

ResuLts

descriptive statistics
A total of 16 participants met our inclusion criteria; several 
participants met these criteria on multiple days, yielding 40 
datasets total. The participant pool at the time of study entry 
was 14 (88%) male, 65.8 ± 14.9 years of age, 63.4 ± 47.5 months 
poststroke, 23.9 ± 10.1 Fugl–Meyer scores.

Analysis
Results from our analysis of the data packaged by the robot 
(“raw”) and re-packaged by our algorithm (“conditioned”) are 
shown in Table 1.

Average velocity does not change following adjustment of 
the file boundaries (8.0 ± 3.9 versus 7.9 ± 3.9 cm/s, P > 0.05). 
Raw data files started and ended with high velocities: 6.1 ± 6.0 
and 6.9  ±  6.2  cm/s, respectively, equivalent to 32–36% of the 
total velocity range. Following file reapportionment, start- and 
end-velocities were reduced to 1.3  ±  1.7 and 1.2  ±  1.4  cm/s, 
respectively, equivalent to 7% total velocity range.

The average improvement in fit to a bell-shaped profile was 
16.3% (0.50  ±  0.29 versus 0.43  ±  0.25, difference greater than 
zero per paired t-test: P < 0.001); however, the absolute value of 
change was >30% (|ΔR2| = 0.15 ± 0.15), showing that some raw 
data, when partitioned by the robot, yielded deceivingly large R2, 
when the movements, where not quite so bell-shaped. While the 
improvement of the fit to the bell-shape was interesting to us, 
we find the absolute value of change to be more compelling: a 
per-movement change of more than 30% suggests a remarkable 
susceptibility to error in assessing motor performance by this 
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tABLe 1 | Summary statistics for before and after file reapportionment.

Raw Conditioned

Average velocity (cm/s) 8.0 ± 3.9 7.9 ± 3.9
Velocity at movement start (cm/s) 6.1 ± 6.0 1.3 ± 1.7‡

…as a proportion of peak velocity 32.6 ± 26.4% 7.4 ± 9.5%‡

Velocity at movement end (cm/s) 6.9 ± 6.2 1.2 ± 1.4‡

…as a proportion of peak velocity 36.2 ± 24.5% 6.9 ± 7.8%‡

Average R2 of log-velocity to  
second-order polynomial

0.43 ± 0.25 0.50 ± 0.29‡

Absolute value change in R2 – 15.0 ± 14.7%
Samples transacted – 63.6 ± 64.2

…as a proportion of total duration – 12.4 ± 10.4%
Movement distance transacted (cm) – 12.6 ± 18.6

…as a proportion of total range – 6.3 ± 14.2%

‡P < 0.001.

FiguRe 3 | Flowchart summarizing partitioning algorithm.
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metric when the data are partitioned by target achievement as 
opposed to the nearest movement reversal. The high SD indicates 
that this effect is highly variable cycle-to-cycle and that the effect 
of re-partitioning does not incur uniform change on extracted 
features. We note the substantial transfer of data between files: 
12.4 ±  10.4% of data were re-allocated to different files, corre-
sponding to 6.3 ± 14.2% of total movement range.

In Figure 4, we show two complete exemplars before and after 
re-partitioning.

In Figure 5, we show two exemplars plotted in the plane of 
movement, i.e., x and y within the transverse plane, demonstrat-
ing conditioned data partitioned at movement reversals.

disCussioN

importance
There is increasing interest in understanding kinematic move-
ments of the upper-limb in motor-impaired individuals (Averta 
et al., 2017); while not all studies involve targeted movements, 
target training is a ubiquitous paradigm in rehabilitation. 
Furthermore, identification of single movements by velocity 
threshold algorithms are widely used (Burdet et  al., 2000; 
Yoon et al., 2001; Casellato et al., 2012). To our knowledge, we 
are the first to raise issue with the convention of imposing a 
constant time criterion over all movement directions, given 
that many patients exhibit directionally dependent movement 
characteristics and propensity to move slowly through a target 
overshoot. We show that data outputted by a popular, com-
mercially available robot, measuring impaired persons, yield 
highly counter-intuitive file sets when partitioned according to 
target presentation does not yield data files partitioned near 
movement reversals. Despite the erratic nature of data collected 
from impaired individuals, we obtained robust results through 
a simple algorithm involving straightforward calculations with 
only three assumptions. This study is most relevant to those 
extracting kinematic data from rehabilitation robots situated in 
a clinic with moderately to severely impaired clientele: a fixed 
and brief time criterion for target achievement may coincide with 
movement reversals in highly skilled and healthy individuals, 
but we should expect that for most patients with neurological 
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FiguRe 4 | Exemplars of complete target cycles: 16 movements each. Top panels show movement cycles as partitioned by the robot; bottom panels show 
movement cycles conditioned post hoc: all boundaries coincide with local minima.
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deficit, movement reversals will lag target achievement across 
some or all of the targets.

Advantages and Limitations
This method is intended to allow for enhanced accuracy in 
extracting data from biomedical robotic devices. In any scenario 
where it is desirable to analyze motor skill on a per-movement 
basis, this method will allow for high-fidelity partitioning of data 
from movement start to movement end, not per se from target 
presentation to target achievement. The main limitation of this 
method is that it requires three embedded assumptions about 
the velocity profile: onset and cessation of movement at velocity 
minima; transition of movement at the point of target achieve-
ment or after; and the local minimum will occur in a “deep valley” 
where at least one “valley wall” is tall (10% of total velocity). While 

the first two assumptions are intuitive and compatible with com-
monly held expectations of human motor performance, the third 
assumption is potentially problematic, as the optimal threshold 
may change, depending on the sampling rate, filter characteristics, 
and raw performance of the human actor. While within our own 
dataset, δ equivalent to 10% velocity range provided adequate 
threshold, we recognize that this is at best a rule-of-thumb and 
that threshold selection may be empiric from study to study. 
Nevertheless, we believe that this is a feature of the algorithm 
that is easy to modify ad hoc and does not impact interpretation  
of results.

Regarding our assumptions, it is instructive to contemplate 
scenarios where the assumptions come into jeopardy. Given the 
apparently universal precept that movement epochs begin and end 
with—at minimum—a change in movement direction, and more 
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FiguRe 5 | Exemplars in the plane of movement: data from two files are 
plotted. Raw data (left) show partitioning within the bounds of center target 
(data break near origin); conditioned data (right) show partitioning at 
movement reversals.
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typically, a pause in motion, the assertion of a local minimum in 
velocity at the movement boundaries seems robust. There may be 
higher-dimensional movement tasks where high velocity in one 
dimension obscures a velocity minimum in another dimension, 
but this may be addressed by selective filtering for minima. On the 
other hand, there is the implicit expectation here that the target is 
always achieved. In cases where the target is not achieved, but the 
user changes direction anyways, this autonomous over-ride will 
not be detected: it’s the robot’s acquisition of target achievement 
that guides our algorithm. We believe this to be valid, since the 
robot-aided rehabilitation paradigm assumes that the user attends 
to the presented target until achievement, i.e., until such time that 
the robot presents a new target. Our secondary assumptions are not 
as straightforward: in particular, the designation of 0.5 s and 10% 
velocity range as thresholds for winnowing candidate minima was 
arbitrary, albeit informed from inspection of the data. Surely, there 
are plausible circumstances where these conditions may prove 
sub-optimal; we urge vigilance on the part of the investigator, and 
a willingness to take an empiric approach to threshold setting.

implications
We do not necessarily suggest that the native data obtained from 
robots are flawed. However, given the evidence that this problem 
pervades other studies (Perfetti et al., 2011; Huang and Ahmed, 
2014; Muceli et al., 2014), we believe that our findings may add 
impetus to revisit prior inquiries into directional-specific move-
ment. It is beyond the scope of this paper to speculate on which 
scenarios may make this issue more likely. Investigators would 
be well-advised to check their data in all cases to verify their 
assumptions.

Future Work
Whereas the algorithm presented here is the first of its kind, 
it remains to be determined whether other approaches may 
provide yet improved results, particularly on more challeng-
ing datasets. Of further interest to the community would be 
establishing normative ranges for multi-target datasets so that 
further developments in this arena can be objectively measured 
against empirical benchmarks. We believe that this algorithm 
may provide additional tools to those wishing to study the 
directional dependency of movement exhibited by healthy and 
impaired actors. While it would be ideal to test the need for this 
algorithm in healthy persons, such exploration is beyond the 
scope of this article. However, we speculate that most healthy 
individuals, given a reasonable task (adequately sized target and 
adequate target achievement time within sub-maximal velocity 
range, etc.), would yield data that were suited for partitioning 
by target achievement: it would be expected that in most cases 
the actor would have no physiological impediment to stopping 
on-target.

summary
In this work, we draw attention to the potential for error con-
sequent from the partitioning of kinematic data obtained from 
rehabilitation robots: human actors start- and stop movements 
at low velocity, including severely impaired individuals; at the 
same time, impaired persons are unlikely to stop on-target. 
Thus, in target-tracking tasks, it is likely preferable to partition 
data at velocity minima. In our own dataset, we found that data 
partitioned according to target presentation exhibited features 
inconsistent with the basic assumptions of human motor control. 
Re-partitioning the data resulted in the re-assignment of >10% of 
data points, but a substantial restoration of boundary conditions 
to levels commensurate with expectation.

CoNCLusioN

In this study, we identify a problem endemic to robotic tracking 
of targeted movements in impaired persons: the inappropriately 
parsed datasets when partitioned according to target presentation 
in the setting of a constant time target achievement criterion. We 
propose an algorithm for re-partitioning these data according to 
finding local minima of velocity near the file terminus, yielding 
new data series segmented naturalistically in conformance with 
the assumption that targeted movements begin and end with a 
movement reversal. We encourage others to consider incorporat-
ing a re-partitioning step in analysis of robot data, and in cases 
where re-partitioning is not undertaken, to justify that the data 
were partitioned properly by the robot.
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