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Parameterization of Fuel-Optimal 
synchronous approach Trajectories 
to Tumbling Targets
David Charles Sternberg* and David Miller

Space Systems Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 
Cambridge, MA, United States

Docking with potentially tumbling Targets is a common element of many mission 
architectures, including on-orbit servicing and active debris removal. This paper studies 
synchronized docking trajectories as a way to ensure the Chaser satellite remains on 
the docking axis of the tumbling Target, thereby reducing collision risks and enabling 
persistent onboard sensing of the docking location. Chaser satellites have limited com-
putational power available to them and the time allowed for the determination of a fuel 
optimal trajectory may be limited. Consequently, parameterized trajectories that approx-
imate the fuel optimal trajectory while following synchronous approaches may be used 
to provide a computationally efficient means of determining near optimal trajectories to 
a tumbling Target. This paper presents a method of balancing the computation cost 
with the added fuel expenditure required for parameterization, including the selection 
of a parameterization scheme, the number of parameters in the parameterization, and 
a means of incorporating the dynamics of a tumbling satellite into the parameterization 
process. Comparisons of the parameterized trajectories are made with the fuel optimal 
trajectory, which is computed through the numerical propagation of Euler’s equations. 
Additionally, various tumble types are considered to demonstrate the efficacy of the pre-
sented computation scheme. With this parameterized trajectory determination method, 
Chaser satellites may perform terminal approach and docking maneuvers with both fuel 
and computational efficiency.

Keywords: trajectory, parameterization, synchronous, docking, fuel minimizing

inTrODUcTiOn

On-orbit servicing and active debris removal share many common characteristics. Such missions 
require at least two objects to interact in proximity: the Chaser satellite and Target object. There 
are currently orbiting Targets for both mission architectures that may be taken to be uncoopera-
tive and naturally tumbling, while requiring soft docking to prevent damage to the Chaser or 
Target. The necessity to perform soft dockings requires the Chaser to expend fuel, so approach 
trajectories that minimize fuel use are desirable. Additionally, the Chaser must be able to generate 
its approach trajectory without extensive computation to stay within computational constraints 
imposed by the Chaser’s hardware or to adapt to changes in the environment. Therefore, this paper 
addresses the need for a computationally efficient means of generating fuel efficient trajectories 
that can enable safe dockings to potentially tumbling Targets.
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Autonomous Chasers are necessary, since the docking phase 
of servicing and debris removal missions occurs at the Target’s 
location. During the far rendezvous, ground-based control can 
adequately maneuver the Chaser satellite into position. The final 
approach and soft docking to the Target satellite, however, occur 
at time scales that prevent ground-based control: autonomous 
systems are required to perform the complex motions for soft 
docking. This time scale poses an urgency for the Chaser to 
compute its trajectory while avoiding excessive fuel consumption, 
especially when driven by a tumbling Target (NASA Goddard 
Space Flight Center, 2010). Autonomous systems can also be used 
to explore new areas of the servicing or debris removal tradespace, 
especially for locations beyond Low Earth Orbit and of Targets of 
multiple types and tumbles, without imposing a risk to humans 
(NASA Goddard Space Flight Center, 2010). Furthermore, 
autonomous Chasers can reduce mission costs by decreasing the 
required ground and communications infrastructure required 
(Gurevich and Wertz, 2001; Wertz, 2003). The benefits of autono-
mous operation justify designing Chaser satellites to be capable of 
autonomous trajectory generation and control.

One of the more important tasks of the autonomous Chaser 
is that of trajectory generation for the terminal approach for 
docking. Methods for generating safe, optimal trajectories are 
the focus of ongoing research. Planning information for these 
trajectories may be acquired from one or more onboard sensors 
(Sternberg et  al., 2015), requiring estimation frameworks like 
that presented by Setterfield et al. (2017). There have been many 
optimization cost functions for generating approach trajectories. 
Engineers may define trajectory optimality for each mission 
scenario, but typically optimization cost functions include 
elements for fuel, time, and thruster activity (Robertson, 1968; 
Jackson, 1994; Paluszek and Thomas, 2005; Miele et al., 2007a,b; 
Bevilacqua et al., 2009; Vazquez et al., 2011; DiGirolamo et al., 
2014). Constraints may also be added to the optimization pro-
cess. These constraints often are imposed to ensure that Chaser 
satellite can operate safely. For example, to ensure that thruster 
plumes do not impinge on the Target satellite, Mixed-Integer 
Linear Programs have been studied by Richards et  al. (2002) 
and Henshaw and Sanner (2010). Safety-based trajectories 
are assessed by Breger and How (2008). An assessment of the 
safety of different trajectories was studied in Luo et al. (2011). 
Therefore, there exist optimization frameworks for safe, fuel 
efficient docking trajectories.

Because the optimization process may require extensive 
computation time, however, research efforts have focused on 
creating rapid trajectory generation techniques. The resulting 
trajectories may be for the satellites themselves (McInnes, 2000; 
Munoz, 2011; Munoz and Fitz-Coy, 2013), or for manipulators 
attached to the Chaser satellite (Lampariello and Hirzinger, 
2013). Combining the trajectory planning for the Chaser and 
its manipulators has also been studied (Rekleitis et  al., 2007). 
Constraints have also been incorporated into these techniques. 
For example, nonlinear optimization for avoiding collisions 
between the Chaser and Target has been studied by treating the 
problem of collision avoidance as a nonlinear boundary value 
problem (Stoneman and Lampariello, 2016). This approach, 
while ensuring that the Chaser satellite will not hit a tumbling 

Target at any point during the rendezvous, is computationally 
efficient for the Chaser, but requires prior computation on the 
ground. The planning method is shown to find a global optimum 
for the defined problem in 50 min, requiring a ground-based 
component prior to online execution of a reference-tracking 
controller. These examples show that there is a continued need 
for trajectory optimization schemes that combine fuel and 
computational efficiency.

This paper considers the need for balancing computational 
efficiency with the fuel cost associated with the approxima-
tion of the fuel optimal trajectory for the scenario of a Chaser 
satellite conducting an approach and docking maneuver with a 
Target satellite. Additionally, it is based on the work presented 
in the doctoral thesis by the first author (Sternberg, 2017), 
and it assumes that the docking falls within the feasibility 
space for the Chaser to dock with the Target (Sternberg and 
Miller, 2017). The Chaser satellite is taken to have accurate 
state estimation and control. The Target satellite is assumed 
to be uncommunicative, rigid, without flexible structures, or 
fuel slosh. Additionally, the Target is assumed to be passive 
and not actively thrusting or otherwise creating motions or 
disturbances to its natural tumble. The Target may be tumbling, 
spinning, or nutating, and the docking axis may not be aligned 
with either the spin, body, or principle moment of inertia axes. 
To minimize the potential for undesired contact between the 
Chaser and Target, and to maintain sensor lock on the Target, 
the Chaser is constrained to remain synchronous with the 
Target. This synchronicity enforces that the Chaser approaches 
along the docking port axis of the Target. The short duration 
of the approaches allows the relative orbital dynamics to be 
excluded (the approaches are on the order of a tenth the orbital 
period or less), and the short, synchronous approach allows the 
Chaser to approach the Target  along a rotating radial direc-
tion that decreases the likelihood of a collision between the 
Chaser and Target. Docking with tumbling targets have also 
been studied in the past, but without the synchronous approach 
as their focus (Boyarko et  al., 2011; Virgili-Llop et  al., 2017; 
Ventura et  al., 2017; Wilde et  al., 2017). Additionally, these 
other sources do not minimize the computational time required 
to obtain the fuel optimal trajectory through the parameteriza-
tion of the approach trajectory to a set of basis functions of a 
reduced order. This paper first describes the method by which 
the Target’s tumble proscribes the motion of the Chaser along a 
synchronous path. To study fuel optimality, this paper uses the 
net ΔV as a metric for the required Chaser fuel consumption. A 
method of finding the fuel optimal trajectory is presented for a 
specified docking time. Several parameterization schemes are 
analyzed to reduce the computational complexity of generating 
the fuel optimal trajectory, and a reduced parameterization is 
studied for multiple tumbles. This paper identifies that two-term 
exponential expressions are able to provide a computationally 
efficient means of generating fuel efficient approach trajectories 
for several potential Target tumbles. Results are shown, for 
examples, drawn from potential servicing and debris removal 
scenarios, but the approach and key findings can be applied 
to support the development of an infrastructure for these and 
other mission architectures.
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FigUre 1 | Definition of reference frames.
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MODeling saTelliTe DYnaMics

In order to model the Chaser’s approach, the behavior of 
the Target must be simulated as it tumbles. Several reference 
frames are used to describe the motion of both the Target and 
Chaser: those of the Target (TAR), docking port (UDP), inertial 
(INT), and Chaser (CHA). These reference frames are shown in 
Figure 1. Variables have superscripts to define the frame in which 
the quantity is measured, and for instances where both subscripts 
and superscripts are used, the quantity is a relationship from the 
subscript to the superscript (such as a quaternion from one axis 
system to another). The INT frame shares the same origin as the 
TAR frame, though TAR is body-fixed to the Target. The Chaser 
maintains synchronicity along its approach by keeping its axis 
system aligned along the docking axis. The UDP frame defines 
the docking axis, and it is translated by rf along the body axis of 
the Target.

The frames allow several rotations to be defined between 
them. To describe the transformation from one frame to another, 
quaternions are used: qYX is the quaternion from the Y frame to 
the X frame. For example, qINT

CHA is the quaternion from the inertial 
frame to the Chaser’s body frame, assuming that the Chaser’s 
docking port frame is co-aligned with the Chaser body frame.

The behavior of the Chaser and Target satellites is modeled by 
the dynamics is shown in Eq. 1 through Eq. 6. These equations 
describe the velocity profile that the Chaser satellite must follow 
if it is to remain along the docking axis of the Target, which is 
taken to be rotating at ωTAR. The quaternion multiplications in 
Eqs 1 and 2 represents the need for the two satellites to be oriented 
such that the docking ports are aligned and capable of docking: 
quaternion multiplication with qZrot rotates the orientation of the 
Target’s docking port in the inertial frame about the vertical axis 
to obtain the quaternion the Chaser must attain for both docking 
ports to align

 q q qINT
UDP

TAR
UDP= ⊗ INT

TAR (1)

 q q qZ
INT
CHA

INT
UDP rot= .⊗  (2)

Equations 3–6 are used to compute the resulting velocity that 
the Chaser must attain. These equations do not have a specific 
computation of the rotation rate of the Chaser, since both Chaser 
and Target must rotate at the same rate to maintain alignment. 
Equation  3 represents Euler’s equations, which are propagated 

over a series of time steps to determine the angular acceleration 
of the target resulting from its inertia, moment, and net torques

 ω = −ω × ω τ .−TAR TAR TAR TAR1I I MTAR TAR TAR+( ) +( )  (3)

Equation  4 determines the rate of change of the Target’s 
quaternion resulting from its tumble. Here, MTAR is the Target’s 
internal momentum, and τTAR is the applied torque in the Target’s 
frame (which could include external disturbance torques). This 
equation, therefore, allows the orientation of the Target to be 
computed at each time step by the quaternion rate of change 
equation

 
q qINT

TAR TAR T
INT
TAR1

2
;0T= ω ⊗ . ( )  (4)

The velocity of the chaser is computed by integrating the 
angular acceleration of the Target’s tumble and taking the cross 
product between the angular rate and the vector from the Target 
to the Chaser satellite

 
ω ω∫TAR

0

TAR
end

=
t

dt

 
(5)

 ν .= ω ×CHA TAR
TAR
CHAr  (6)

In this equation, rTARCHA is the vector from the Target to the 
Chaser. These equations are, therefore, based on the properties 
of the Target satellite’s dynamic state and physical parameters. 
Importantly, these sets of dynamics do not account for relative 
orbital dynamics, since the terminal approaches are taken to 
occur over a sufficiently short duration as compared to the Target’s 
orbital period. The computation of the velocity of the Chaser 
satellite at each time step enables both the propagation of the 
Chaser’s position with time and the determination of the change 
in velocity at each time step necessary to maintain synchronicity. 
Therefore, these equations set up the computation of the Chaser’s 
fuel requirements.

cOMPUTing FUel cOsTs

In order to determine fuel optimal trajectories, a process must 
be created to compute the fuel requirements for various tumble 
types. This process is designed to be generic and based on the 
dynamics of the Chaser’s approach to a tumbling Target so 
that any trajectory may be analyzed. Throughout the approach, 
the Chaser satellite will be subject to the accelerations both to 
maintain synchronicity with the Target’s docking axis as well as 
to close the distance from its initial position to the final docking 
radius. For this work, the Target’s docking port is taken to be a 
distance rf from the center of rotation of the Target and that the 
Chaser’s approach begins a distance r0 from the Target’s center of 
rotation along the docking axis. Furthermore, the Chaser is taken 
to be moving along the docking axis of the Target. With this set of 
initial conditions, the Chaser begins its approach by adjusting its 
trajectory from one that is orthogonal to the docking axis to an 
accelerated trajectory inward along the docking axis.

The constraint of maintaining synchronicity throughout the 
terminal approach to the rotating Target forces the Chaser to 
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FigUre 2 | Acceleration component diagram: position and velocity vectors of the approaching chaser are shown on the left, and the four acceleration components 
are shown on the right.
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follow an accelerated profile, i.e., the Chaser must use its thrust-
ers throughout the maneuver. For this analysis, the Chaser is 
assumed to have the ability to fire its thrusters at any magnitude 
as required. This assumption enables the assessment of Chaser 
satellite requirements without placing constraints on the satellite’s 
design. The assumption was made to allow further analysis into 
the feasibility of multiple families of trajectories. The inclusion 
of minimum or maximum firing times representative of a pulse-
width modulated thruster system would increase the fuel use 
away from the obtained results because of the discretization of 
the required thruster firing, though only small modifications to 
the presented approach would be necessary to account for this 
Chaser satellite-specific characteristic. Additionally, the Chaser 
is assumed to have a controller which will enable it to follow 
the desired trajectory. This reference-tracking controller will be 
unable to track the reference perfectly, increasing the net fuel use; 
this cost is not factored into the analysis in this paper because it 
is controller specific and represents an additional, variable cost 
beyond the determination of the fuel optimal trajectory.

The accelerated trajectory requires the chaser’s thrusters to 
generate four types of acceleration. Equation  7 has five parts: 
the first is the summation of the four acceleration terms (linear, 
Coriolis, angular, and centripetal) that comprise the total accel-
eration ( )r  seen by the Chaser on its approach. The remaining 
four parts are the expressions for each of these accelerations. 
In each equation, the radial distance from the Target’s center 
of rotation to the Chaser’s center of mass is given as R and the 
angular rate shared by both Chaser and Target is given by ω. In 
these expressions, the variables are 3 × 1 vectors with components 
describing the quantity of interest with R and ω being described 
in the Target’s frame. The components are shown graphically in 
Figure  2. Additionally, these acceleration components do not 
account for any rotation of the Chaser satellite as it maintains its 
relative orientation to the Target; these accelerations are assumed 
to be provided by means other than thruster systems, such as 
reaction wheels or control moment gyroscopes. Should thrusters 
be used instead, an additional fuel penalty would be necessary 
to account for the need to maintain the appropriate docking 
attitude. Owing to the scale of expected Chaser satellites, such 
a fuel cost would be small in comparison to the fuel required to 
move the Chaser throughout its terminal approach profile. This 
cost is considered to be small because of the ability of the Chaser 
to change its orientation through rotating its inertia over the 

same duration as the whole mass must move in the synchronous 
approach. Consequently, the rotation of the body is less than the 
translation of the body when over the same duration and while 
maintaining center-pointing

 





r a a a a
a t R
a

=

( )
linear coriolis centripetal+ + +

=
angular

linear

ccoriolis

angular

centripetal

( ) ω
( ) ω×
( ) ω×(ω× ).

t R
a t R
a t R

= ×
=
=

2 



 (7)

The computation of these time histories for each acceleration 
term is performed using a numerical propagator. The initial 
conditions listed above are set along with the properties of the 
Target satellite. A sequence of time steps, dti, are computed to 
span the radial distance from r0 to rf, with i = 1:100. The accelera-
tion components are computed at each time step, with the total 
acceleration being computed as the norm of the vector sum of all 
components. In this manner, the total acceleration accounts for 
potentially opposing acceleration terms, and relies on the Chaser 
being able to provide the corresponding thrust level in the same 
direction as the resultant total acceleration vector. The inability to 
provide this thrust would serve as an inefficiency factor, though 
the overall computation process would remain unchanged.

The computation of the acceleration terms in Eq.  7 enable 
the computation of the ΔV required to perform the approach 
maneuver. The integration of each acceleration component 
reveals the corresponding ΔV cost. For example, a Chaser spiral-
ing radially inward at a constant speed to a Target in a flat spin 
with a constant rotation rate would have no linear acceleration 
component except for an initial impulse to begin the inward 
motion, a constant Coriolis component, no angular component, 
and a shrinking centripetal acceleration component. The largest 
component for both acceleration and ΔV for the majority of the 
approach is centripetal. The linear ΔV component is constant after 
the initial inward thruster firing, and the angular component is 
0 m/s. Furthermore, since the Coriolis acceleration is a constant, 
the corresponding ΔV is linear over the course of the approach. 
Equation  8 shows how the net ΔV is obtained through the 
integration of the total acceleration. This approach accounts for 
the orthogonality between the tangential (Coriolis and angular) 
accelerations and the radial (linear and centripetal) accelerations. 
Additionally, this method for computing the total ΔV prevents 
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double-counting should any acceleration terms act in opposite 
directions. For example, a radial deceleration would require that 
the linear acceleration term act in the opposite direction as the 
centripetal acceleration. In such a situation, the net acceleration 
vector would be the sum of both terms, so opposing thrusters 
would not simultaneously fire

 
∆ .V t dtr

t f

total

0

( ) ( )∫= 

 
(8)

This process for computing the acceleration and ΔV demands 
of trajectories is applied for all Targets, including those that 
are tumbling with varying levels of precession and nutation 
as dictated by inertia ratios and angular rates. All the Target 
properties are prescribed at the start of each propagation simu-
lation and are unforced, which is in agreement with the overall 
goal of this paper corresponding to rigid, naturally tumbling, 
and uncooperative Targets. The approach in this section for 
computing the ΔV for each trajectory, therefore, enables solvers 
to determine the optimal time steps between radially spaced 
waypoints to minimize the total ΔV needed. The solver can, 
therefore, be used to determine fuel optimal trajectories for the 
Chaser satellite to follow as it approaches the Target.

generaTing The FUel OPTiMal 
TraJecTOrY

In order to make comparisons between full trajectory optimiza-
tions and reduced parameterizations, a common method for 
generating trajectories must be established. This method relies 
on the prior section’s propagation of the Target’s tumble through 
the time of docking and the subsequent computation of the ΔV 
cost to the Chaser. Therefore, the following sequence of steps is 
performed to determine the optimal trajectory for a specified set 
of boundary conditions and the corresponding reduced param-
eterization of that optimal trajectory:

 1. Find the fuel optimal trajectory.
a. Discretize the terminal approach into a sequence of radial 

steps from r0 to rf.
b. Find the time steps dti for a fixed tf for each radial step that 

result in a minimization of the net required ΔV.
 2. Fit a parameterized approximation to the fuel optimal 

trajectory.
a. Try fitting different curve expressions to the fuel optimal 

radial trajectory.
b. Evaluate fit accuracy vs. the number of required parame-

ters.
 3. Compare optimal and parameterized trajectories.

a. Select the reduced parameterization that balances fit accu-
racy with computational efficiency.

b. For the same boundary conditions across several tumble 
types, assess the computation time and fuel cost of the 
reduced parameterizations.

The process in step 1 is performed by finding the optimal 
time history for the Chaser satellite to travel between 100 

radially spaced points. The number of radially spaced points 
affects the computational complexity of computing the optimal 
trajectory and the level of discretization of the true optimal 
trajectory (a continuous path). This analysis uses 100 points 
to represent the true optimal trajectory, since this number is 
computationally tractable while affording time steps on the 
order of no more than a few seconds for expected docking 
approach durations.

The choice of radially spaced points affects how well the 
Matlab fmincon solver can identify the optimum sequence of 
time step lengths. Because the solver must find the value for 
an arbitrary number of time steps, each time step represents 
a variable whose value must be identified, a process that can 
become computationally inefficient rapidly. The number of time 
steps is taken as 100 for this paper to balance the computational 
requirement and the accuracy of the resulting optimal trajec-
tory, since a forward propagation using Euler’s equations is 
used to determine the states of the Chaser and Target over time. 
Spacing the radial points was performed via linear and logarith-
mic means. In the linear case, the radial waypoints maintained 
a constant separation from one another over the full range of 
initial radius to final radius. Consequently, the linear spacing 
tasked the solver with finding the time steps between points 
that were uniformly distributed over the desired radial span. 
The logarithmic spacing, however, generated a radial distribu-
tion with points spaced between logarithmic decades, thereby 
increasing the concentration of points nearer the Target. The 
solution that is provided by the optimization solver is depend-
ent on initial values. From the scenarios tested in this paper, 
the results were unchanged despite changing the initial guess to 
linear or exponentially decreasing radial distances.

Because the final radius is smaller than the initial radius, 
the additional points near the Target provided by the logarith-
mic spacing over the linear spacing method help to provide 
a smoother trajectory with more uniform dt time step sizes. 
This result may be illustrated by an example where a Chaser 
approaches from 10 m a Target of 1 m final radius rotating in 
a flat spin at 5  deg/s. The optimal trajectory was found using 
both linear and logarithmic radial point spacing, with each being 
shown in the left plot of Figure 3. While both trajectories carry 
the Chaser satellite from its initial point to the docking location, 
the logarithmic spacing approaches the Target quicker over the 
course of the prescribed 180 s maneuver. Additionally, though 
both the linear and logarithmic spacing time steps averaged to 
1.8 s (180 s trajectory broken into 100 time steps), the SD of the 
time steps is 1.7 s for the logarithmic spacing and 2.8 s for the 
linear spacing. The logarithmic spacing’s smaller variability in its 
time steps enables it to provide improved ΔV performance over 
the linear case, with the logarithmic case being able to provide 
improved fuel use by up to approximately 15% over the linear 
case. The resulting trajectory is smoother because of the more 
uniform time steps across less uniform radial points.

This behavior may also be observed by plotting the Chaser’s 
approach in both cases, as shown in the right plot of Figure 4. 
The logarithmic spacing provides a smoother approach particu-
larly nearer the Target, where the linearly spaced points with 
corresponding long time steps create visible segments of the 
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FigUre 3 | Radial approach comparison between linear and logarithmic optimal radial spacing (left) and comparison of inertial frame trajectory of linear and 
logarithmic optimal radial spacing (right).

FigUre 4 | Schematic showing that the optimization process occurs over 
the time taken between radial steps along the synchronous terminal 
approach.
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approach. The resulting acceleration spikes at these locations 
require additional ΔV, thereby increasing the net fuel cost for 
these trajectories that is higher than the fuel cost for the loga-
rithmic spacing. Consequently, the analysis presented in this 
paper centers around the use of logarithmically spaced points 
for determining fuel optimal trajectories.

While this figure focuses on a single example, the results may 
be generalized. In particular, the poor performance near the 
Target exhibited for small radii (near the Target) by the linearly 
spaced points becomes exacerbated for larger rotation rates or 
smaller radii, i.e., the conditions which create large accelerations 
as the Chaser moves along comparatively long line segments.  
A limit case occurs when the time step takes the Chaser between 
radial points which, on account of the rotation of the Target, 
may be connected by a line segment which intersects the Target 
spacecraft. Solving for optimal dt steps between logarithmically 
spaced radial points, therefore, mitigates this effect without the 
need to increase the number of time steps (and the associated 
computational cost) and enables trajectory generation for range 
of tumble types.

In step 1a, the points are spaced logarithmically such that 
a higher number of points are placed nearer the Target. The 
optimization process centers on the determination of a large 
number of values, in this case time steps between radii, as 
determined by numerical propagation of the Chaser’s state. 

This process is computationally expensive, since each of the 
100 time steps must be optimized. Computing the fuel mini-
mum trajectory, therefore, requires the computation of the 100 
variables that minimize the fuel consumption of the Chaser, a 
task that requires nonlinear constrained optimization. Matlab’s 
fmincon function is used to perform the optimization with the 
options set to allow 100,000 maximum function evaluations, as 
well as a “TolFun,” “TolX,” and “TolCon” of 1 × 10−8. The initial 
guess that is provided to the solver is an evenly spaced set of 
time points (constant dt steps) from t = 0 to t = tf. The initial 
condition for this optimization is shown by the schematic in 
Figure 4. The optimization function propagates the Target and 
Chaser over the course of the time history along the radial 
distance from r0 to rf, computing the ΔV for each functional 
evaluation of a set of time step vectors. When a solution that 
meets the fmincon constraints for finding a minimum cost 
is found, the resulting ΔV is reported as the minimum fuel 
required to perform the approach. The resulting time sequence 
of dti represents the optimal time history for the initially 
provided radial profile. Together, the optimal trajectory can be 
plotted, completing step 1b.

ParaMeTeriZing The FUel OPTiMal 
TraJecTOrY

To avoid a computationally expensive full optimization, thereby 
enabling the Chaser satellite to update its trajectory in real-time 
while approaching the Target, a smaller number of parameters 
is necessary to describe the shape of the trajectory. This reduced 
parameterization decreases the number of free variables for an 
optimization, but yields a more fuel-costly trajectory. The task 
for mission planners is to trade the computational complexity 
and processing time of generating the trajectory against the fuel 
cost of the trajectory. In seeking an efficient balance between the 
two metrics, it is possible to study different parameterizations of 
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Table 1 | Parameterization expressions for optimal trajectory fitting.
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an optimal trajectory and determine their comparative ability to 
approximate a fuel optimal radial path in step 2.

identifying reduced Parameterization 
expression
To determine the appropriate parameterization of the optimal 
trajectories, there are two aspects to consider: the fit approxima-
tion type and the number of parameters used in the fit. Fitting 
with sums of terms (like polynomials and exponentials) or 
existing functions (like the generalized logistic function) may 
be performed. These expressions are described in Table  1 and 
are, therefore, the fit functions used in step 2a. In this table, the 
expressions include up to six optimization parameters. Since 
the expressions have different numbers of parameters per term, 
comparisons must be made based on the number of parameters, 
not the number of terms. The upper limit of the summations cor-
responds to this difference in total number of fit terms.

Importantly, this set of expressions inherently provides 
several properties. The polynomial terms each have a factor of 
time to a power, with that power growing with the number of 
added terms. As a result, the coefficients of these time factors 
have a greater impact on the net fit than those of lower powers 
of time, especially for longer duration maneuvers. This negative 
effect is offset by the ability for this parameterization to continue 
improving its approximation with higher numbers of terms 
since each new term can improve the fit for particular sections 
of the trajectory, such as during the later stages of an approach. 
The exponential fit’s expression, however, is comprised of identi-
cal, two-parameter terms. Consequently, the terms allow for 
improved fits with increasing numbers of terms, but must add 
two parameters at a time. Unfortunately, the identical form of 
each term can engender numerical ill conditioning with larger 
numbers of terms. This ill conditioning arises because each term 
has the same impact as the rest when computing the optimal set 
of parameters. As a result, it is possible for the leading parameters 
to become several orders of magnitude larger than the parameters 
in the exponentials. In this way, the polynomial fits avoid the 
term cancelation issue seen by the exponential fits, but instead 
exhibit large differences in the comparative contributions of the 
different terms over the duration of the docking maneuver. The 
generalized logistic function has several shaping parameters and 
cannot be expanded with additional terms; it is, therefore, able to 
be modified only by the choice of its six parameters. Termination 

criteria in the optimization can, therefore, have a large effect on 
the final parameter values.

The fitting process in step 2b is performed via a least squares 
approach. The optimal trajectory is first determined, providing 
the optimal time history associated with the initially chosen 
radial spacing. In this analysis, the fit functions are hardcoded 
to accept input vectors containing the parameters that define the 
order of the expression. The least squares fitting process again 
uses the Matlab fmincon function with the same set of user-
defined options, but with the function for minimization, J, being:

 
J

n
r r

i

n

i i= − .
=

, ,∑1
1

opt fit
 

(9)

In this equation, ropt is determined by the aforementioned 
optimization process, while the rfit radial distribution is deter-
mined for the ith iteration of the fitting optimization. Both r0 
and rf must be matched and are, therefore, treated as equality 
constraints. The initial guess for fmincon is taken to be that 
which provides the one-term fit that matches r0 or a plausible 
trajectory. Therefore, the initial guess in the polynomial case 
is b1 = r0, the initial guess for the exponential case is b1 = r0, 
c1 = 0, and the initial guess for the generalized logistic function 
is L1 =  10, L2 = L3 = L4 =  1, L5 = L6 =  0.1. The higher order 
expressions use the solution from the lower order fits as their 
starting points; this approach necessitates that n fits must be 
performed to determine the best fit of an n-term expression. 
There is the potential to find local minima using this process. 
To minimize the likelihood of this occurrence, the fmincon 
options were set to allow large numbers of iterations with tight 
constraints. Furthermore, the bounds on the possible parameter 
values are kept open to give the fmincon solver flexibility in its 
searching. These options are set prior to calling the optimizer, 
and the output of the optimizer is saved for the forthcoming 
analysis. Separate functions are written for the cost function, 
nonlinear constraint function, and the analysis function. 
Additional details about the optimization process may be found 
in Sternberg (2017).

The fit accuracy must be assessed as a function of the number 
of parameters in step 2b. The number of parameters is a measure 
of the optimization complexity, while the accuracy is the cost 
of the parameterization. Figure 5 shows a comparison of the fit 
error from Eq. 9 as the one-norm of the distance between three fit 
functions and the optimal trajectory for a flat spin from 10 to 1 m 
in 2 min while rotating at 5 deg/s. The horizontal line in Figure 5 
shows the error level that is found when fitting the generalized 
logistic function; its error level provides a threshold where points 
below the line offer improved fits over the generalized logistic 
function. The error curves for both sums of exponentials and sums 
of polynomials cross this threshold, but at different locations. 
Sums of exponentials provide improved fitting performance than 
generalized logistic functions with two terms (four parameters), 
and sums of polynomials provide improved fitting performance 
with five terms (five parameters). Importantly, there is a marked 
decrease in the fit error for polynomial and exponential fit meth-
ods at four parameters, where thereafter little fit improvement 
is acquired with additional parameters. These expressions match 
fit error with five parameters. For larger numbers of exponential 
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FigUre 6 | Radial distance for flat spin from 10 to 1 m at 5 deg/s: 
comparing fits with six parameters each.

FigUre 5 | Fit error over number of terms for sums of exponentials, sums of 
polynomials, and the generalized logistic function fits.

8

Sternberg and Miller Parameterization of Trajectories to Tumbling Targets

Frontiers in Robotics and AI | www.frontiersin.org April 2018 | Volume 5 | Article 33

terms, the ill conditioning described above prevents any signifi-
cant improvement in the fit quality.

Figure 6 shows the radial history for the three fits using six 
parameters each. The generalized logistic function undershoots 
the optimal trajectory for approximately the second half of the 
spiral. Doing so also increases the collision risk with the Target 
by operating in close proximity for an extended duration, while 
requiring additional fuel to move quickly inward toward the 
target. The exponential fit provides a good approximation for the 
optimal trajectory, primarily because it does not exhibit the oscil-
lations found in the polynomial fit during the second half of the 
approach. These oscillations are damped with increased numbers 
of terms, improving the fit beyond the exponential case. With six 
parameters, the oscillations keep the polynomial fit around the 
optimal trajectory instead of remaining further from the optimal 
trajectory. Nevertheless, both perform similarly to one another at 

this number of parameters. Because the goal of the designer is to 
trade computation cost with the performance of the approxima-
tion of the optimal trajectory, this paper continues the analysis 
with the sums of exponentials, since this method enables fits 
with low numbers of parameters to outperform polynomial fits 
while being nearly equal in the ability to approximate the optimal 
trajectory with larger numbers of terms. Therefore, step 3a has 
resulted in sum of exponential parameterizations being selected 
as the reduced parameterization method.

This analysis in this subsection demonstrates that a low-order 
parameterization effectively matches the high-order optimal tra-
jectory in this example. It is, therefore, necessary to assess how well 
the parameterization can reduce ΔV, while remaining low order 
for other tumble scenarios. While the fit error indicates that an 
effective trade between computational complexity and closeness 
of the fit approximation occurs at four parameters, it is possible to 
compare the fuel use for a series of tumbles to assess the exponential 
fit’s ability to minimize fuel use while also minimizing the number 
of required parameters to be included in the optimization process.

generating the Fuel-Optimal 
Parameterized Trajectory
The process for finding the fuel optimal exponential trajectory is 
similar to that of finding the optimal trajectory. The optimization 
uses Matlab’s GlobalSearch tools along with the fmincon 
solver. Instead of solving for the time step sequence that results in 
the optimal trajectory, the optimizer searches for the parameters 
of the fit function. A time step vector is created as a linearly 
spaced vector from t = 0 to t = tf. This method of stepping the 
propagation over the duration of the approach is complementary 
to the approach used to generate the optimal trajectory. Instead 
of a logarithmically spaced set of radial points, a linearly spaced 
set of time points are selected for the optimization to determine 
the best radial approach profile. The switch in optimization 
methods enables the radial approach profile to be defined by the 
set of optimization variables. The radial distribution is computed 
from the trajectory parameters: the equation defining the sum of 
exponentials trajectory is used with the corresponding number 
of parameters. A nonlinear equality constraint function, shown 
in Eq. 10, is used to match the starting and final radii of the fit 
radial distribution

 
c

r t r
r t r

f f
eq

0 0
=

−










( ) −
.

( )  
(10)

The same optimization options for fmincon are used again, 
and the optimal parameters are output for the desired number 
of terms. The initial guess for fmincon is a parameterized tra-
jectory that meets the boundary conditions. For this paper, the 
selected initial guess is the two-term exponential fit to the optimal 
trajectory. Because this GlobalSearch process optimizes the 
parameters for a fit expression, the computational complexity is 
lower than that of an optimization of the full trajectory. By opti-
mizing up to six-term exponentials, the number of variables to be 
optimized drops by an order of magnitude, saving computation 
time for the Chaser.

The comparison between the optimal trajectory as determined 
by finding the optimal time spacing between radial points and 
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Table 2 | ΔV and computation time cost comparison between the optimal and 
two-term exponential trajectories.

example Optimal Two-term exponential

ΔV Percent 100 109
Computation time percent 100 23

FigUre 7 | Comparison between the optimal trajectory and the optimal 
two-term exponential trajectory with its two component terms for a flat  
spin at 5 deg/s from 10 to 1 m in 180 s.

FigUre 8 | Diagrams of precession types for tumbling Target satellites.
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the optimal trajectory as determined by finding the optimal two-
term exponential parameters is shown in Figure 7. The optimal 
trajectory is approximated by the sum of two exponential terms 
in which each approximate a different portion of the optimal 
trajectory. The first term approximates the slope of the optimal 
trajectory during the initial steep descent when the Chaser satellite 
moves rapidly toward the Chaser as a means of avoiding excessive 
centripetal acceleration fuel losses. The second term approximates 
the shallower slope during the time when the Chaser moves 
slowly toward the Target to ensure docking occurs at the speci-
fied time (tf). Therefore, the dynamics of the approach provide an 
additional means of selecting the number of terms with which to 
match the optimal trajectory: the optimal trajectory’s two regimes 
can be approximated by two decaying exponential terms.

The fuel minimizing two-term exponential trajectory, an 
approximation to the optimal trajectory, requires that substantially 
less computation with only a slight increase in fuel use. Table 2 
shows that for this example, the fuel cost is only 10% above the 
optimal trajectory’s fuel requirement, while the computation time 
has been reduced by a factor of four. Although the optimizations 
both required the use of Matlab’s fmincon function with the 
same effective objective function (to minimize the fuel cost of 
a trajectory), the two optimizations show that the computation 
cost does not scale linearly with the number of parameters being 
optimized. It is expected that the optimization over parameters 
that individually have greater effects on the cost function in 
computing the optimal two-term exponential trajectory is a key 
contributor to its computation cost.

While the above analysis assessed the ΔV required by the best 
n-term exponentials for a flat spin case, it is also important to 
assess the fuel required by these trajectories for multiple types 
of tumbles. Figure 8 shows a notional trace of a docking port 
motion for three types of Target docking port motions. These 
motions result from a Target’s spin with different combinations 
of spin vectors and inertia ratios. The cuspidial precession case 
is a limit case between unidirectional and looping precessions. 
Because the synchronicity constraint is determined by the 
motion of the Target’s docking axis, the path traced in these 
diagrams represents the changing path that the Chaser must also 
follow. Figure  9 shows a matrix with each row corresponding 
to a type of precession that matches the diagrams in Figure 8. 
The left column states the type of precession. The central column 
shows the acceleration components for the optimal trajectories 
as fractions of the total acceleration at each time step. The right 
column shows the required ΔV for that trajectory normalized by 
the ΔV required by the optimal trajectory for the corresponding 
set of boundary conditions. These figures, therefore, also span the 
types of expected motions seen by on-orbit Targets, and they also 
provide additional evidence that two-term exponentials provide 
a balance between the computational complexity of finding the 
fuel optimal parameterization and the corresponding required 
ΔV. The rotation types presented in the figure include the three 
different types of precession that may be seen, with cuspidial 
representing the limit case between unidirectional and loop-
ing. Other cases, such as non-tumbling or axial rotations, are 
combinations of one or more of these three cases with different 
amplitudes of motion or axes of rotation. The worst case in this 
figure is that of cuspidial precession, where two- or three-term 
exponentials may be selected to provide fuel savings while 
requiring less computational time. The reduced parameteriza-
tion, therefore, may be taken to be that of two-term exponentials, 
parameterized as r t b( ) = +−

1 21 2e c t c tb e− , because they provide the 
bulk of the fuel savings over the range of potential tumbles.

Table 3 shows a comparison of the required time to compute 
the optimal trajectory by the two methods of optimizing for 100 
time steps or for the four parameters of a two-term exponential. 
The optimizations were run for 243 total trials as determined 
by a full factorial of the parameters included in the table. The 
resulting data shows that the optimization across all of the cases 
is approximately three times more computationally expensive on 
average for determining the optimal 100 point trajectory, show-
ing the benefit for employing the reduced parameterization for 
determining the fuel minimizing trajectory.
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FigUre 9 | Fitting increasing number of exponential terms to various tumble types.

Table 3 | Comparison of computation times required for both 100 point optimal 
and two-term exponential trajectories for specified parameters for 243 simulated 
approaches.

Parameters for full  
factorial of 243 runs

r0 (m) [5 10 20]
[0.5 0.75 1]

[5/|[0 0 1]| [0 0 1]T]
[5/|[1 1 1]| [1 1 1]T]

[5/|[0 0.05 1]| [0 0.05 1]T]
[1 1 1]T

[1.2 1 1]T

[2 2 1]T

[30 60 120]

rf (m)
ω (deg/s)

J
tf (s)

100 point  
optimal

Two-term exp. 
optimal

Computation  
time statistics (s)

Max 649.8287 116.3459

Min 66.0904 57.7495

Mean 238.2191 77.5673

Median 191.4989 76.2070

SD 135.1957 10.2613

This section has found fuel minimizing trajectories and a 
parameterization method to balance the computational complex-
ity of determining a terminal approach trajectory with the fuel 
cost associated with the parameterization. This process was stud-
ied, however, for set values of tf, providing a means of determining 
the fuel optimal trajectory by sweeping through tf values.

cOnclUsiOn

This paper has addressed the need for the rapid generation of fuel 
minimizing approach trajectories to Targets that may be tumbling. 
Computational efficiency and fuel optimality have been assessed 
over several approximation functions with varying numbers of 
parameters. This optimal trajectory was generated through the 
optimization of 100 radially spaced points along the docking axis. 
The approximations of this optimal are reduced parameteriza-
tions and are, therefore, able to afford computational efficiency by 
decreasing the number of optimization variables. The two-term 
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exponential parameterization was shown to closely approximate 
the optimal trajectory for a representative set of Target tumbles, 
demonstrating the generality of this reduced parameterization to 
multiple types of future mission applications.
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