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The plasma thermodynamics in the solar upper atmosphere, particularly in the corona,
are dominated by the magnetic field, which controls the flow and dissipation of energy.
The relative lack of knowledge of the coronal vector magnetic field is a major handicap
for progress in coronal physics. This makes the development of measurement methods
of coronal magnetic fields a high priority in solar physics. The Hanle effect in the UV
and IR spectral lines is a largely unexplored diagnostic. We use magnetohydrodynamic
(MHD) simulations to study the magnitude of the signal to be expected for typical coronal
magnetic fields for selected spectral lines in the UV and IR wavelength ranges, namely
the H I Ly-α and the He I 10,830 Å lines. We show that the selected lines are useful
for reliable diagnosis of coronal magnetic fields. The results show that the combination
of polarization measurements of spectral lines with different sensitivities to the Hanle
effect may be most appropriate for deducing coronal magnetic properties from future
observations.

Keywords: sun: corona, sun: magnetic fields, sun: UV radiation, sun: infrared, polarization, scattering, atomic
processes, plasmas

1. INTRODUCTION

Our understanding of coronal phenomena, such as plasma heating and acceleration, particle
energization, and explosive activity, faces major hurdles due to the lack of reliable measurements
of key parameters such as densities, temperatures, velocities, and particularly magnetic fields. The
knowledge of key plasma parameters, particularly the magnetic field and plasma velocity, in the
solar corona is a prerequisite to advance our understanding of coronal manifestations that greatly
affect and modulate the interplanetary medium, particularly the Earth’s environment.

Spectroscopic diagnostics in the ultraviolet (UV) and extreme ultraviolet (EUV) wavelength
regimes provide measurements of plasma densities, temperatures, and partial information on the
velocity. But they cannot provide any insight into the coronal magnetic field, which is the key
player in the structuring of the solar corona and in dominating most (if not all) physical processes
underlying the multi-scaled solar activity. For instance, the abundant mechanical energy that is
available in the convection zone is partially transferred to the corona, where it is stored in complex
magnetic field structures and dissipated in the form of heat, acceleration, and energization of the
plasma during activity events occurring at different spatial and temporal scales. The magnetic
activity manifests itself in different forms such as Coronal Mass Ejections [CMEs], flares, jets, waves
and instabilities, magnetic reconnection, and turbulence.
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Magnetic fields measurements in the photosphere and, to a
lesser degree, in the chromosphere, which are based mainly on
the Zeeman effect, have been a routine exercise for decades.
The Zeeman effect in the higher layers of the solar atmosphere,
particularly the corona, are limited to regions of relatively strong
magnetic fields (i.e., above active regions) and to infrared lines
due to the wavelength squared scaling of this effect and the
relatively large widths of coronal lines (Lin et al., 2004). Other
methods based on radio emissions could provide constraints
on the magnetic field in the corona (White, 1999; Gibson
et al., 2016). Coronal magnetic fields are usually approximated
through MHD modeling and extrapolation of photospheric
measurements (e.g., Wiegelmann et al., 2014). These approaches
have, however, their limitations. For instance, extrapolation
models are based on the assumption that the magnetic field
is force-free at the lower boundary of the calculation, which
is not the case in the photosphere. Additionally, large-scale
MHD models of the solar corona are based on synoptic maps
of the photospheric magnetic fields, which are built up from
images taken by near-Earth observatories recorded over a whole
solar rotation. Finally, the MHD models may underestimate
the magnetic field strength in the corona (Riley et al., 2012).
Moreover, coronal plasma parameters obtained through the
models cannot be constrained without direct measurements. For
more details on methods for the measurements of magnetic fields
in upper solar atmosphere, see reviews by Fineschi (2001) and
Raouafi (2005, 2011).

In this paper, we focus on the diagnostics of coronal magnetic
fields through the linear polarization of selected spectral lines
(i.e., H I Ly-α and He I 10,830 Å) that are sensitive to the “Hanle
effect.” Other spectral lines are also of interest, but the analysis of
their polarization is left for future publications.

2. THE HANLE EFFECT

The Hanle effect (Hanle, 1924), which is the modification of the
linear polarization of a spectral line by a local magnetic field,

FIGURE 1 | Illustration of the Hanle effect due to a magnetic field aligned with the line of sight (Py). In the absence of a magnetic field, the direction of the
linear polarization of the scattered light is parallel to the (Px) axis (left panel). In the presence of a magnetic field, the combination of the precession around the magnetic
field and the damping of the atomic dipole results in a modification of linear polarization that depends on both the strength and direction of the field vector (right panel).

may provide strong diagnostics of regions of weak magnetic
fields such as the solar corona, where a number of spectral lines
with different but complementary sensitivity ranges are present.
Unlike the Zeeman effect, the Hanle effect does not create
polarization but requires its presence through other physical
processes such as radiation scattering. The Hanle effect is a
purely quantum phenomenon and has no classical equivalent.
However, for brevity, to provide a simplified illustration of such a
complex effect, it can be explained by approximating the excited
atom/ion to a damped oscillator with Larmor frequency that is
scattering incident non-polarized radiation (see Figure 1). The
Larmor frequency, ωL, of the precession motion around the
magnetic field vector is directly related to the magnetic field
strength. The damping is proportional to the finite lifetime, τ , of
the upper level of the atomic transition.We note that this classical
description could explain only the case of the normal Zeeman
triplet (i.e., two-level atom Ju = 1; Jl = 0). Significant advances
in the theory of radiation scattering in the presence of magnetic
fields have been achieved in the last four decades (Sahal-Bréchot
et al., 1977; Bommier, 1980; Landi Degl’Innocenti, 1982; Casini
and Judge, 1999; López Ariste and Casini, 2002; Raouafi, 2002;
Trujillo Bueno et al., 2002a; Landi Degl’Innocenti and Landolfi,
2004).

The sensitivity of a given spectral line to the Hanle effect is a
function of the lifetime of the atomic transition and |B|. Ideally, a
spectral line is sensitive to magnetic field strengths satisfying the
relation

γ B τ ≈ 1, (1)

where γ = gJu µB/h̄, gJu is the Landé factor of the upper atomic
level, µB is the Bohr magneton, and h̄ is the reduced Planck
constant. Practically, the Hanle effect is measurable for 0.2 ≤
ωL τ ≤ 10 (Bommier and Sahal-Bréchot, 1978, 1982). Table 1
provides the magnetic field strengths corresponding to the ideal
sensitivity of the different spectral lines to the Hanle effect.

Theoretically, direct determination of the magnetic field in
the solar corona could be achieved through linear polarization
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TABLE 1 | Magnetic field strengths corresponding to the ideal Hanle effect
for a number of spectral lines (column 4).

Spectral Wavelength Aul B

line (Å) (108 s−1) (Gauss)

H I Ly-α 1215.16 6.265 53.43

H I Ly-β 1025.72 1.672 14.26

H I Ly-γ 972.53 0.682 5.81

H I Ly-δ 949.74 0.344 2.93

O vi 1031.91 4.16 35.48

He I 10,830.0 0.344 0.82

Aul is the Einstein coefficient of spontaneous emission of the upper level of the

corresponding transitions.

of spectral lines with suitable sensitivity to the Hanle effect. The
Hanle effect in selected spectral lines yields a powerful diagnostic
tool for magnetic fields typically ranging from a few milli-Gauss
to several hundred Gauss (depending strongly on the chosen line
and the strength and direction of the magnetic field). Unlike the
Zeeman effect, the depolarization of spectral lines by turbulent
magnetic fields can be detected in the Hanle regime allowing
the determination of the strength of the field in mixed-polarity
regions (e.g., Stenflo, 1982; Trujillo Bueno et al., 2004).

In the solar corona, the Hanle effect manifests itself primarily
through a depolarization and a rotation of the plane of linear
polarization, with respect to the zero-field case where the plane
of polarization is parallel to the local solar limb. Bommier et al.
(1981) studied various measurement scenarios allowing for the
complete diagnostic of the coronal magnetic field vector. The
Hanle effect diagnostic of magnetic fields has been successful in
solar prominences (Leroy et al., 1977; Sahal-Bréchot et al.,
1977; Bommier, 1980; Landi Degl’Innocenti, 1982; Querfeld
et al., 1985; López Ariste and Casini, 2002; Trujillo Bueno
et al., 2002b), as well as in arch filament systems (Solanki
et al., 2003; Lagg et al., 2004; Xu et al., 2010; Merenda et al.,
2011).

2.1. Prominence Magnetic Fields
Bommier et al. (1994) and previous related papers (Sahal-Bréchot
et al., 1977; Bommier and Sahal-Bréchot, 1978) have successfully
demonstrated the power of the Hanle effect method for
measuring the magnetic fields in solar prominences. Leroy et al.
(1983, 1984) used observations obtained with the coronagraph
polarimeter at the Pic du Midi observatory (France) to study
the magnetic field of several hundreds of prominences based on
the Hanle effect of spectral lines such as H-α, H-β , and He I

5876 Å. Leroy et al. (1983) found that magnetic field strengths
increased with the rise of the solar cycle. They reported an average
field strength of ∼ 6 Gauss at the beginning of the cycle and
about twice this value near solar maximum. Furthermore, Leroy
et al. (1984) found that the magnetic field strength and direction
depend also on the prominence height: prominences with heights
lower than 30 Mm have ∼ 20 Gauss fields with α ∼ 20◦ and
prominences higher than 30 Mm have 5 − 10 Gauss fields with
α ∼ 25◦ (α is the angle between the magnetic field vector and the
prominence spine).

More recently, the He I 10,830 Å triplet has provided
additional, very detailed diagnostics of the magnetic field in
filaments. Thus, Kuckein et al. (2009, 2012), Sasso et al. (2011),
and Xu et al. (2012) found that active region filaments have
hectoGauss field strengths, i.e., an order of magnitude larger
than the quiet filaments and prominences studied earlier. The
spectropolarimetry of this set of lines even revealed the complex
multicomponent structure of an activated filament, with the
different components displaying magnetic vectors with different
field strengths and directions and gas flowing at different speeds
and in different directions (Sasso et al., 2014).

2.2. Polarization of Coronal Forbidden
Lines
Charvin (1965) has shown that the direction of polarization
of some forbidden lines is expected to be either parallel or
perpendicular to the local magnetic field projected onto the
plane of the sky. This provides a useful approach to study
the orientation (direction) of coronal magnetic fields. No
information on the field strength can, however, be obtained from
such diagnostics.

The polarization of forbidden lines such as Fe XIV 530.3 nm
and Fe XIII 1074.7 nm have been studied for more than
three decades during solar eclipses and using coronagraph
observations (Querfeld, 1974, 1977; Querfeld and Elmore, 1976;
Arnaud and Newkirk, 1987, etc.). The relatively low resolution
observations show a striking evidence of a predominant radial
orientation of the polarization, found everywhere independently
of the phase of the solar cycle, which depicts the direction
of the coronal field projected on the plane of the sky (see
Arnaud, 1982a,b; Arnaud and Newkirk, 1987). This may,
however, be attributed to the low resolution of the instruments
used in the above studies. In addition due to the van Vleck
ambiguity, the magnetic field can also be perpendicular to the
direction of the linear polarization. This is likely the case at
tops of large coronal loops where the magnetic field is nearly
horizontal.

Habbal et al. (2001) analyzed intensity and polarization maps
with better resolution of the Fe XIII 1074.7 nm line. They found
evidence for two magnetic components in the corona: a non-
radial field associated with the large-scale structures known as
streamers (with loop-like structures at their base) and a more
pervasive radial magnetic field, which corresponds to the open
coronal magnetic field. More recent observations from the CoMP
telescope (Tomczyk et al., 2008) with higher resolutions show
significant non-radiality of the coronal magnetic field projected
on the plane of the sky. For examples of CoMP observations, see
Gibson et al. (2016).

2.3. Polarization of FUV and EUV Coronal
Lines
Several lines in the far UV (FUV) and EUV wavelength ranges
have suitable sensitivity to determine the coronal magnetic field
via the Hanle effect. The coronal Hanle effect in the FUV and
EUV wavelength ranges is largely unexplored despite the high
potential of this diagnostic. Li-like ion lines (O VI, N V, C IV, ...)
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are presumed to be observed high in the corona due to their
broad abundance curves (Sahal-Bréchot et al., 1986). Li-like ion
lines are very intense lines of the chromosphere-corona transition
region (the O VI 103.2 nm line is one of the most intense lines
after H I Ly-α). For instance, the observed emission of the O VI

ion by Vial et al. (1980) at 30′′ above the limb (as well as Reeves
and Parkinson, 1970) has shown that the O VI emission extends
out into the corona to a few arcmin above the limb. Observations
from the Ultraviolet Coronagraph Spectrometer (UVCS; Kohl
et al., 1995) on the The Solar and Heliospheric Observatory
(SOHO; Domingo et al., 1995) show that the O VI emission
extends several solar radii above the limb, with a line ratio
and line widths sensitive to Doppler dimming and anisotropic
velocity distributions (Kohl et al., 1998; Li et al., 1998). Such
lines have small natural widths and short lifetimes of the upper
levels of the corresponding atomic transitions. Themagnetic field
strength corresponding to their sensitivity to the Hanle effect
ranges from a few Gauss to more than 300 Gauss. This interval
contains the expected magnitude of the magnetic field strength
in the solar corona.

In a series of papers, Fineschi et al. (1991, 1993) and Fineschi
and Habbal (1995) studied both theoretically and from an
instrumental point of view the feasibility of coronal magnetic
field diagnostics through the Hanle effect. In particular, they
considered the case of the strongest UV coronal line, H I

Ly-α. One of the advantages of using H I Ly-α is the very
broad line profile of transition region incident radiation, which
makes it insensitive to effects of the solar wind velocity at
low coronal heights. Additionally, H I Ly-α has a negligible
collisional component compared to that of the other H I

Lyman series. This results in a H I Ly-α zero-field polarization
larger than that of the other H I Lyman lines, increasing the
overall line sensitivity to the Hanle effect (see Fineschi et al.,
1999).

Raouafi et al. (1999a) used spectroscopic observations from
the SOHO Solar Ultraviolet Measurements of Emitted Radiation
spectrometer (SUMER; Wilhelm et al., 1995) to measure the
linear polarization of the O VI 103.2 nm line. SUMER calibration
before launch shows that the instrument is sensitive to the linear
polarization of the observed light (Hassler et al., 1997). The
observations were made during the roll manoeuver of the SOHO
spacecraft on March 19, 1996, in the southern coronal polar
hole at 1.3 R⊙. For more details on the observations see Raouafi
et al. (1999a,b). The data show in particular that the plane of
polarization has an angle of ∼ 9◦ with respect to the solar limb.
In contrast, the polarization direction is expected to be tangent
to the local solar limb in the absence of the magnetic field effect.
Raouafi et al. (1999a,b, 2002) interpreted these measurements
in terms of the Hanle effect due to the coronal magnetic field.
They developed models to simulate the observational results and
inferred a field strength of ∼ 3 Gauss at 1.3 R⊙ above the solar
pole. The main result from this work is a clear evidence for the
Hanle effect in the strongO VI 103.2 nm coronal lines. This opens
a window for direct diagnostic of the coronal magnetic field by
using different FUV-EUV lines with complementary sensitivities
to the magnetic field.

Manso Sainz and Trujillo Bueno (2009) discussed the
possibility of mapping the on-disk coronal magnetic fields using
forward scattering in permitted lines at EUV wavelengths (e.g.,
the Fe X 17.4 nm line).

3. SIMULATION DATA: MAGNETIC FIELD
CONFIGURATION AND PLASMA
PARAMETERS

To develop useful model solutions for the solar corona, we
use the magnetohydrodynamic (MHD) approximation, which
is appropriate for long-scale, low-frequency phenomena in
magnetized plasmas. In the past, we employed a “polytropic
approximation" for treating the heating of the coronal plasma
and the acceleration of the solar wind (Riley et al., 2001; Riley
and Luhmann, 2012). While this approach produces remarkably
good solutions for the structure of the coronal magnetic field, this
is at the expense of poorer velocity and density profiles. In this
study, however, we use our “thermodynamic" model, which relies
on coronal heating functions that are guided by observational
constraints (Lionello et al., 2009; Riley et al., 2015). Detailed
comparisons with EUV and X-ray observations from several
spacecraft have allowed us to constrain the likely functional forms
for this heating, such that they reproduce the observed emission.

Most (if not all) of the Hanle effect studies in the literature
were based on well-defined magnetic field configurations
(e.g., theoretical models or extrapolated photospheric magnetic
fields), which were lacking well-defined plasma parameters
such as densities, temperatures, and velocities. These quantities
enter directly into the definition of the Stokes parameters
encompassing the magnetic field signature that is the Hanle
effect. Ad-hoc approximations may provide valuable results and
order of magnitude estimates of different quantities as well as
estimates of linear polarization of a given spectral line, but
they cannot yield physically meaningful estimates of the coronal
magnetic field through the Hanle effect. These assumptions can
be improved upon by considering self-consistent magnetic fields
and plasma parameters obtained through MHD simulations.

To obtain realistic estimates of the polarization parameters
of the UV H I Ly-α (1216 Å), we utilize high-resolution MHD
simulations using Predictive Science’s state-of-the-art MAS code.
The simulation includes a full thermodynamic description of
the plasma. All parameters needed for the calculation of the
polarization of the spectral line are obtained in a self-consistent
fashion, thus removing any need for heuristic assumptions. All
quantities are provided on the nodes of spherical grids whose
resolution changes with the heliodistance. Figure 2 displays the
magnetic field configuration of the solar corona corresponding
to Carrington rotation 2130. The synthetic white-light coronal
emission is shown in the right-hand-side panel.

For the coronal Hanle effect of the different spectral lines,
we use the magnetic field, density, temperature, and velocity
data cube. Line-of-sight (LOS) integration is taken into account.
All quantities at any given point on the LOS are obtained by
interpolation of the simulation data.
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FIGURE 2 | Predictions of the coronal magnetic field configuration
(left) and white-light synthetic image (right) for the solar eclipse of
November 13, 2012. The images shown below are aligned such that solar
north is vertically upward and includes the tilt due to the solar B0 angle. The
date on the panels is when the prediction was made. PSI have been providing
predictions for solar eclipses for many years, which can be found at:
http://www.predsci.com/corona/.

4. H I LY-α SOLAR DISK RADIATION

The H I Ly-α line is formed in the transition region at
a temperature ∼ 1 MK. The coronal counterpart is formed
by scattering of this incident radiation, resulting in the most
intense UV coronal line. The solar disk radiation of this line
is characterized by very little to no center-to-limb variations
(Bonnet et al., 1980). The line profile is substantially wider
than other lines and is typically complex. Figure 3 shows an
average H I Ly-α line profile as observed by SOHO/SUMER
(Lemaire et al., 1998). It is characterized by an inversed
peak at the center of the line, making a single Gaussian fit
meaningless. For the present study, this profile is fitted with
four Gaussians whose parameters are shown in the same figure.
Numerically, we assume four individual Gaussian spectral lines
(Figure 3) at different frequencies and with different widths
and intensities. This assumption is, we believe, the best way to
realisticallymimic the incident radiation from the solar transition
region.

We consider a two level atomic model for the H I Ly-α
line. This assumption is sufficient to describe the light scattering
by hydrogen atoms in the solar corona. The spectral line
has two components, 2p 2Po3/2 →1s 2S1/2 (polarizable) and

2p 2Po1/2 →1s 2S1/2 (non-polarizable), with virtually the same
Einstein coefficients of spontaneous emission, Aul ≈ 6.2648 ×
108 s−1. The coronal electron collisional component represents
less than 1% of the total intensity (Raymond et al., 1997). We
neglect this component and assume that the H I Ly-α coronal
line results only from the scattering of incident radiation from the
transition region. Since we are interested in themagnetic field, we
also neglect the effect of the solar wind velocity. This assumption
is justified by the fact that the polarization calculations presented
in this paper are achieved at coronal heights lower than 1 R⊙,
where the solar wind speed is lower than 100 km s−1. Considering
the line width of the incident line, the Doppler distribution effects
are neglected. The incident radiation from the solar transition
region is unpolarized and the radiation field is assumed to be
cylindrically symmetric around the solar vertical, with half-cone

FIGURE 3 | Average transition region profile (Solid profile) of the H I

Ly-α profile as observed by SOHO/SUMER (Lemaire et al., 1998). The
“+” signs are the best 4-Gaussian fit of the observed profile. The individual
Gaussians are given by the dotted, dashed, dot-dashed, and
triple-dot-dashed profiles. The incident H I Ly-α radiation is assumed to be
composed of four individual Gaussian profiles. The parameters of the individual
profiles (i.e., amplitude [in photons cm−2 s−1 Å−1 sr−1], central wavelength
[in Å] and width [in Å]) are also displayed.

angle αr (i.e., solar disk radiation inhomogeneities [e.g., active
regions] are also neglected).

4.1. The Atomic Model and Polarization
We consider the case of a two-level atom (αlJl, αuJu) in the
presence of a magnetic field B. We also assume a non-polarizable
lower level, such as that of the H I Ly-α line whose spherically
symmetric lower level 2S1/2 (that is not polarizable). Within the
frame of the densitymatrix formalism, the lower level is described
only by its population represented by αlJlρ00 within the frame of
density matrix formalism.

We assume that the incident radiation is characterized by a
Gaussian spectral profile

I(�, ν) =
Ic f (�)√
π σi

e
−

(

ν−ν0
σi

)2

, (2)

where Ic is the solar disk center radiance (in
erg cm−2 s−1 sr−1 Hz−1), ν0 and σi are the line center
frequency and width of the incident profile, and f (�) describes
the center-to-limb variation of the incoming radiation field. In
the case of Ly-α, f (�) ≈ 1 (see Bonnet et al., 1980). In the solar
frame, the properties of the incident radiation field are given by

J
0
0(ν) =

∮

d�

4π
I(�, ν)

J
2
0(ν) =

∮

d�

4π

1

2
√
2
(3 cos2 αr − 1) I(�, ν)

(3)

All other multipoles (i.e., J10,±1 and J2±1,±2) are zero since the
incident radiation is not polarized. The density matrix multipoles
of the incident radiation have to be re-written in the magnetic
field reference frame, which is obtained from the solar frame by a
rotationR(ψ, η, 0), whereψ and η are, respectively, the azimuth
and co-latitude of the vector magnetic field with respect to the
solar vertical reference frame.
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For a two-level atom with unpolarized lower level, the atomic
polarization properties of the upper level are given by the atomic
density matrix:

αuJuρKQ (ν,�) =
αlJlρ00 (ν)

Aul + i Q ωL

√

3(2Jl + 1) Blu (−1)1+Jl+Ju+Q

{

1 1 K
Ju Ju Jl

}

B
J
K
−Q(ν,�)

=

√

2Jl + 1

2Ju + 1

Blu
αlJlρ00 (ν)

Aul + i Q ωL
w
(K)
ul

(−1)Q B
J
K
−Q(ν,�)

(4)

where K = 0, · · · , 2Ju and Q = −K, · · · ,K. ωL = 2π gu νL
is the Larmor angular frequency. For details on the derivation
of Equation (4), see Landi Degl’Innocenti and Landolfi (2004).
νL is the Larmor frequency and reflects the Hanle effect due to
the presence of the magnetic field, gu is the Landé factor of the
upper level, and Aul and Blu are the Einstein coefficients for the
spontaneous emission and absorption from the lower to upper
levels. The symbol between the brackets is the Wigner 6j-symbol.

Equation (4) is the solution of the statistical system of linear
equations of the atomic system in the steady-state case.

5. HANLE EFFECT OF THE H I Ly-α
CORONAL LINES

The results of the forward modeling of the linear polarization
of the coronal H I Ly-α line are shown in Figure 4. In the
absence of the effect of the coronal magnetic field (i.e., Hanle
effect), the direction of polarization is parallel to the local
solar limb regardless of coronal altitude. The fractional linear
polarization increases as a function of altitude because of the
increased anisotropy of the incident solar disk radiation. The LOS
integration is also more important with increasing altitude above
the solar limb. This is due to the increasingly shallower density
gradient. For the present calculations, the LOS integration is done
for a range of 5 R⊙ centered on the plane of the sky.

The top panels of Figure 4 illustrated the altitude variation
of the Stokes parameters (log10 I, Q/I, and U/I, respectively).
The lowest coronal altitude of the calculations is 1.015 R⊙. The
bottom panels show the degree of linear polarization (in %, left),

FIGURE 4 | Line-profile-integrated Stokes parameters (top) and linear polarization (bottom) of the coronal H I Ly-α line. P, P0, and R are the polarization
degree, the polarization degree in zero magnetic field, and the rotation of the plane of polarization with respect to the local solar limb, respectively. Above regions of
relatively strong coronal magnetic fields the Hanle depolarization attains about 10% and the rotation of the plane of polarization is about 3◦. This illustrates that
although this line is not the best in terms of sensitivity to the Hanle effect, the effects of the magnetic field on the linear polarization are significant.
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depolarization (i.e., the ratio of the degree of polarization to that
in the absence of magnetic field, middle), and the rotation of the
plane of linear polarization with respect to the local solar limb
(in degrees). It is clear that the signature of the Hanle effect,
which is given primarily by the depolarization and the rotation
of plane of polarization, is limited to low-altitude regions where
the magnetic field is relatively strong. This is expected because of
the sensitivity of this line to the Hanle effect.

Although these results are still preliminary, they suggest that
the H I Ly-α line could be very useful for measuring the coronal
magnetic field, particularly at low latitude, and in strong field
regions (i.e., above active regions). Theoretical polarization rates
(not shown here) in these coronal line are reasonably high and
could be easily measured. The depolarization with respect to the
zero magnetic field case attains ∼ 10% in some areas. The main
parameter that limits the measurability of the Hanle effect in
this line is the rotation of the plane of polarization. Above active
regions, a rotation of about 3◦ is obtained, and rotations of more
than 1◦ are obtained in larger areas. These results show that this
line is promising in terms of constraining the coronal magnetic
field, despite the fact that it is not themost suitable line in terms of
sensitivity to the coronal Hanle effect. In combination with other
spectral lines with complementary sensitivities to the effect of the
coronal magnetic field, the Hanle effect could provide reliable
constraints on the coronal magnetic field.

6. HANLE EFFECT OF THE He I 10,830 Å
CORONAL LINE

Kuhn et al. (2007) showed evidence for an extended diffuse
surface brightness flux at the He I 10,830 Å line using
observations from the SOLARC coronagraph. The observations
show that emissions result from cold helium (i.e., narrow line

profiles), which is unlikely to be scattered by the solar wind
helium that is presumably significantly hotter. The authors argue
that cold helium atoms form on dust grains, which provide
an atomic population different to that of the solar wind. The
importance of these observations stems from the sensitivity of
the He I 10,830 Å line to the Hanle effect, which corresponds to
magnetic field strength ranging from ∼ 0.2 Gauss to <10 Gauss.
This line may be the most suitable line for the diagnostic of
coronal magnetic fields through the Hanle effect.

Figure 5 shows forward modeling results of the linear
polarization of the He I 10,830 Å. The LOS-integration scheme
is the same as for H I Ly-α. Unlike H I Ly-α where the
Hanle effect is limited to low-height, strong field regions, the
linear polarization of He I 10,830 Å shows more variations
as it depicts coronal structures, such as streamers, closed field
regions. The variation of the polarization parameters spreads
over larger intervals, which make their measurement easier. This
is expected because of the higher sensitivity of this line to the
relatively weak coronal magnetic fields. Dima et al. (2016) present
a complementary analysis of the polarization of the He I 10,830 Å
line.

We believe that the linear polarization of the He I 10,830 Å
line could provide valuable constraints on the coronal magnetic
field. In combination with UV lines such as H I Ly-α, -β , and
O VI 103.2 nm, as well as IR forbidden lines, the coronal Hanle
effect could provide reliable diagnostic of the coronal magnetic
field and consequently to extrapolation and MHDmodels.

7. SUMMARY AND CONCLUSIONS

The preliminary results of the forward modeling of the linear
polarization of two coronal spectral lines (i.e., H I Ly-α and
He I 10,830 Å) with different sensitivities to the Hanle effect

FIGURE 5 | Polarization parameters of the He I 10,830 line. (Left) polarization degree (in %) and (Right) rotation of the plane of polarization (in degrees) with
respect to the local tangent to the solar limb.
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are promising. The UV H I Ly-α line is mainly sensitive to
low-height, strong magnetic fields above active regions. The
polarization of the He I 10,830 Å line, which is sensitive
to magnetic fields ranging roughly from ∼ 0.2 Gauss up to
<10 Gauss, shows more variations with coronal height and traces
different coronal structures with different magnetic topologies
(e.g., streamers and closed field regions).

Forward modeling of the Hanle effect is an important step
in our quest for direct measurements of the magnetic field in
the solar corona, which is a very difficult problem that includes
different issues that observations will be subject to (e.g., 180◦

and Van Vleck 90◦ ambiguities and LOS-integration). Forward
modeling will allow us to fully understand these problems and
develop the necessary tools to analyze the observations. It also
shows the potential of the Hanle effect in different wavelength
regimes, which can be utilized for future space solar missions
with UV and IR polarimeters (e.g., Peter et al., 2012).

We believe that the combination of the linear polarization of
coronal lines with complementary sensitivities to the Hanle effect
is promising and could provide long-sought measurements of the
coronal magnetic field. The Hanle effect is a powerful tool that

may provide the most reliable diagnostics of the magnetic field
at relatively low coronal heights. Radio observations along with
polarimetric measurements in the Zeeman and saturated Hanle
regimes may provide complementary constrains that could help
help piece together the coronal magnetic field structure.
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