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Eleven-year Schwabe cycle in solar activity is not yet fully understood despite of its

almost two century discovery. It is generally interpreted as owing to some sort of

magnetic dynamo operating below or inside the convection zone. The magnetic field

strength in the dynamo layer may determine the importance of the tachocline in the

model which is responsible for the cyclic magnetic field, but the direct measurement

is not possible. On the other hand, solar activity also displays short term variations

over time scale of months (Rieger-type periodicity), which significantly depend on solar

activity level: stronger cycles (or more active hemisphere in each cycle) generally show

shorter periodicity and vice versa. The periodicity is probably connected to Rossby-type

waves in the dynamo layer, therefore alongside with wave dispersion relations it might

be used to estimate the dynamo magnetic field strength. We performed the wavelet

analysis of hemispheric sunspot areas during solar cycles 13–24 and corresponding

hemispheric values of Rieger-type periodicity are found in each cycle. Two different

Rossby-type waves could lead to observed periodicities: spherical fast magneto-Rossby

waves and equatorial Poincare-Rossby waves. The dispersion relation of spherical fast

magneto-Rossby waves gives the estimated field strength of >40 kG in stronger cycles

(or in more active hemisphere) and<40 kG in weaker cycles (or in less active hemisphere).

The equatorial Poincare-Rossby waves lead to >20 kG and <15 kG, respectively.

Future perspectives of Rieger-type periodicities and Rossby-type waves in testing various

dynamo models are discussed.

Keywords: solar activity, rossby waves, rieger-type periodicity, solar interior, solar dynamo

1. INTRODUCTION

Solar activity has tremendous influence on interplanetary space and the planets of the
solar system including the Earth. It basically determines plasma conditions in the Earth’s
magnetosphere/ionosphere with possible harming effects on technological systems and human
life. Therefore, solar activity prediction is very important scientific problem. Solar activity is
characterized by 11 year quasi-periodic variation (Schwabe, 1844), but the underlying physical
mechanism is not yet clear. The periodic increase/decrease of large-scale magnetic field is probably
connected to some sort of magnetic dynamo which operates below or inside the convection zone
owing to the existence of differential rotation and convection (Charbonneau, 2005). The magnetic
field strength inside the dynamo layer is crucial to test different models, but the direct measurement
is obviously complicated.
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Besides the Schwabe cycle, solar activity also undergoes short
term variations with the periods from several months to few
years. The periodicity of 150–155 days was first discovered by
Rieger et al. (1984) in strong solar flares. This periodicity has
been later found in many indices of solar activity (Carbonell and
Ballester, 1990; Oliver et al., 1998). Recently, Gurgenashvili et al.
(2016) showed that the periodicity is anti-correlated with solar
activity being shorter in stronger cycles, which probably means
that the period depends on magnetic field strength in the internal
dynamo layer. Then one can indirectly estimate the field strength
if the generation mechanism of the periodicity is known. Several
different mechanisms have been supposed from time to time to
explain the periodicity, but more plausible reason seems to be
connected with Rossby waves.

Rossby waves govern large scale dynamics of rotating sphere
and are well studied in the Earth’s atmosphere and oceans
(Rossby, 1939; Gill, 1982). Recent direct observations of Rossby
waves in coronal bright points based on STEREO and SDO
observations (McIntosh et al., 2017) significantly increased
the interest toward Rossby waves in the solar context. Lou
(2000) suggested that the equatorially trapped hydrodynamic
Rossby waves in the solar photosphere could explain Rieger-
type periodicity in solar activity. Zaqarashvili et al. (2010a)
showed that the instability of spherical Rossby waves in the
solar tachocline owing to the joint action of the differential
rotation and the toroidal magnetic field could give the observed
periodicity. Recently Dikpati et al. (2017) showed that the
nonlinear energy exchange between tachocline differential
rotation and Rossby waves may occur over the time scales
of Rieger-type periodicity, which might lead to the observed
oscillations. Therefore, it is increasingly clear that a mechanism
for the Rieger-type periodicity is related with Rossby waves in the
tachocline.

Gurgenashvili et al. (2016) used the observed Rieger-type
periodicities in sunspot numbers and dispersion relation of
spherical 2D magnetic Rossby waves to estimate the magnetic
field strength in the dynamo layer during solar cycles 14–24.
Their estimations suggested a field strength of 40 kG in the
stronger cycles 16–23 and 20 kG for the weaker cycles 14-15 and
24. The estimated field strength is favor for the dynamo models
with tachocline rather than those without tachocline. However,
using the simple dispersion relation of Rossby waves might lead
to the rather rough estimation of the field strength and hence
the conclusions could be overestimated. On the other hand, sub-
adiabatic temperature gradient in the upper overshoot part of the
tachocline creates negative buoyancy force resulting significant
reduction of the gravity (Gilman, 2000; Dikpati and Gilman,
2001). The reduced gravity might lead to the concentration
of shallow water waves around the equator. These equatorially
trapped or equatorial waves (Matsuno, 1966) have quiet different
periods comparing to those with the whole latitudinal extent.
Using equatorial waves as the reasons for Rieger-type periodicity
may change estimated strength of dynamo magnetic field.

Here we discuss the current achievements and future
perspectives of Rossby-type waves in the estimation of dynamo
magnetic field.

2. RIEGER-TYPE PERIODICITY IN SOLAR
ACTIVITY

In this section, we present the evolution of Rieger-type
periodicities over many solar cycles using the Greenwich Royal
Observatory (GRO) daily and monthly sunspot area data, which
are available from 1874 till 2016 (http://solarscience.msfc.nasa.
gov/greenwch.shtml). GRO contains the records of the full disc
data as well as sunspot area measurements for northern and
southern hemispheres separately. Solar activity is not entirely
homogeneous in the both hemispheres and sometimes has
significantly different occurrence. The N-S asymmetry is seen in
different indicators, such as sunspot area, sunspot number, group
sunspot numbers, coronal mass ejections, solar flares, filaments,
differential rotation, photospheric magnetic flux, post eruption
arcades, polar field reversals, coronal green line intensity etc. This
phenomenon was also presented during the Maunder minimum.
Several authors reported strong hemispheric asymmetry in
historical data which is claimed to be south-dominated. The GRO
sunspot data correspond to the cycles 12–24, but the cycle 12 is
not as reliable as other cycles, therefore we decided to use only
the cycles 13–24.

Figures 1, 2 (upper panels) show the evolution of sunspot
areas over the cycles 13–24 in the northern and the southern
hemispheres respectively. It is clearly seen that the northern
hemisphere was more active during the cycles 14–20, and the
asymmetry was shifted to the southern hemisphere starting
from the cycle 21. The north-south asymmetry is questionable
in the cycle 13, but in the literature it is usually referred as
south-dominated. It is possible that the transition from south
to north domination occurred in this cycle. The corresponding
lower panels of Figures 1, 2 display the Morlet wavelet analysis
(Torrence and Compo, 1998) of the data, which shows the
periodicity of amplitude variations. The wavelet analysis was also
performed for each cycle separately to find the corresponding
periodicity. Vertical solid lines correspond to solar activity
minimum, while white lines encircle the most important powers
above confidence level 99.9%. The Rieger periods that resulted
from the global wavelet spectra are given in Table 1.

The wavelet analysis confirms recent results of Gurgenashvili
et al. (2016, 2017) that the Rieger-type periodicity depends
on activity strength and the stronger activity displays shorter
periodicity. For example, the northern hemisphere was more
active during cycles 14–20, and consequently the corresponding
wavelet analysis shows shorter periods of 155–165 days. After
the cycle 21, when the northern hemisphere became weaker,
the periods grew up to 175–190 days. The opposite dynamics is
seen in the southern hemisphere. The longer periodicities about
190–195 days are observed during the cycles 13–20, while the
period is shortened during the cycles 21–24, when the southern
hemisphere became stronger. Red curves on the bottom panel of
both figures display the fit of calculated Rieger-type periodicity
over cycles. It is clearly seen that the periodicity is anti-correlated
with the long term evolution of solar cycle strength in both
hemispheres. Therefore, the Rieger-type periodicity is clearly
magnetic strength dependent and it is probably related with the

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 2 February 2018 | Volume 5 | Article 7

http://solarscience.msfc.nasa.gov/greenwch.shtml
http://solarscience.msfc.nasa.gov/greenwch.shtml
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Zaqarashvili and Gurgenashvili Magneto-Rossby Waves and Seismology of Solar Interior

FIGURE 1 | The upper panel represents GRO daily (black) and monthly averaged (red) hemispheric sunspot area data for cycles 13–24 for the northern hemisphere.

The lower panel shows the corresponding wavelet analysis.

internal dynamo layer. However, a proper physical mechanism
of the periodicity is needed in order to make the estimation of
dynamo magnetic field strength. Here the Rossby waves appear
to have interesting consequences.

3. ROSSBY WAVES

Rossby waves arise owing to the conservation of absolute vorticity
in rotating fluids. Therefore, inclusion of magnetic field has
important influence spliting the hydrodynamic (HD) Rossby
waves into fast and slow modes (Zaqarashvili et al., 2007). On the
other hand, to study the Rossby waves in magnetohydrodynamic
(MHD) approach is obviously more complicated. The dispersion
relation of Rossby waves also significantly depend on angular
velocity of rotating sphere and it is mostly controlled by the
parameter

ǫ =
�2R2

gH
, (1)

where � is the angular velocity, R is the distance from the center
to a shallow layer, g is the gravity and H is the layer thickness.
Here gH is the square of surface gravity speed of the shallow

layer. When ǫ ≪ 1 then the Rossby waves can be considered on
spherical surface, which significantly simplifies the solution. On
the other hand, when ǫ ≫ 1, which means either fast rotation
or small surface gravity speed, then the waves in shallow layer
can be trapped near the equator (Longuet-Higgins, 1968), but the
solution is very complicated. Here we consider the both limits
separately for the conditions of the tachocline.

3.1. Spherical Rossby waves
In the first case, we consider (θ ,φ) surface over the sphere
in the rotating frame with the toroidal magnetic field in the
form Bθ sin θ . In the simplest case of homogeneous magnetic
field, Bθ = B0, the Fourier analysis of linear MHD equations
with exp(−iωt + mφ), where ω is the wave frequency and m
is the toroidal wavenumber, allows exact solutions in terms of
associated Legendre polynomials

uθ ∼ Pmn (cos θ), (2)

where n is an integer and corresponds to a poloidal wavenumber.
The exact dispersion relation for the spherical magneto-Rossby
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FIGURE 2 | The upper panel represents GRO daily (black) and monthly averaged (red) hemispheric sunspot area data for cycles 13–24 for the southern hemisphere.

The lower panel shows the corresponding wavelet analysis.

TABLE 1 | Estimated Rieger periods (days) for northern and southern hemispheres from GRO sunspot area data for solar cycles 13–24.

Cycle Number 13 14 15 16 17 18 19 20 21 22 23 24

Period, days (North) 168 165 171 160 153 160 158 165 183 180 175 192

Period, days (South) 187 194 185 195 193 175 177 190 158 160 160 150

waves can be obtained as (Zaqarashvili et al., 2007)

ω2
nm +

2m�

n(n+ 1)
ωnm +

m2υ2
A

R2

(

2

n(n+ 1)
− 1

)

= 0, (3)

where υA = B0/
√
4πρ is the Alfvén speed. Fast and slow

magneto-Rossby waves are described by the expression

ωnm = −
m�

n(n+ 1)



1±

√

1−
υ2
An(n+ 1)

�2R2
(2− n(n+ 1))



 .

(4)
The spatial structure of spherical magnetic Rossby waves for
m = 1 and n = 3 (n = 4) harmonics is shown on the Figures 3, 4.
In both cases the poloidal velocity is stronger on higher latitudes.

If we take m = 1, n = 3 harmonic with the magnetic field

of 10 kG, then the period of fast magneto-Rossby waves is 150
days and the period of slow magneto-Rossby waves is 6.3 years.

n = 4 harmonics for the same field strength gives the period

of 226 days for fast magneto-Rossby waves and 4 years for slow

magneto-Rossby waves. For the stronger magnetic field with 100

kG n = 3 (n = 4) harmonic of the fast wave has the period

of 47 days (52 days) and that of the slow wave has the period
of 71 days (63 days). Therefore, the magnetic field strength of

the order of 10 kG, which is an equipartition value of magnetic
pressure in the tachocline with the overlying convection, gives
nice correspondence with observed periodicity.

For the magnetic profile of Bθ = B0 cos θ , the Fourier analysis
of linear MHD equations leads to the spheroidal wave equation
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FIGURE 3 | Spatial structure of spherical magneto-Rossby waves. Here the poloidal velocity of m = 1 and n = 3 harmonic is shown.

FIGURE 4 | Spatial structure of spherical magneto-Rossby waves. Here the poloidal velocity of m = 1 and n = 4 harmonic is shown.
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for the weak magnetic field limit. The solutions are prolate
spheroidal wave functions (Snm(cos θ)) and the corresponding
dispersion relation is

ω2
nm +

2m�

n(n+ 1)
ωnm −

m2υ2
A

R2
= 0. (5)

Fast and slow magneto-Rossby waves are described by the
expression

ωnm = −
m�

n(n+ 1)



1±

√

1+
υ2
A

�2R2
n2(n+ 1)2



 . (6)

For m = 1, n = 3 harmonic with the maximal magnetic field
strength of 10 kG (this value is estimated taking into account
the latitudinal profile of magnetic field, while B0 = 20 kG in this
case), the period of fast magneto-Rossby waves is 130 days and
the period of slow magneto-Rossby waves is 1.7 years. n = 4
harmonics for the same field strength gives the period of 170 days
for fast magneto-Rossby waves and 1.3 years for slow magneto-
Rossby waves. Here we see that with the equipartition field
strength, the m = 1, n = 4 harmonic of fast magneto-Rossby
waves gives the value of Rieger-type periodicity, while the same
harmonic of slow magneto-Rossby waves gives the similar value
of annual oscillation (McIntosh et al., 2017). It is remarkable
that the period exactly equals to the periodicity obtained by
helioseismology near the base of convection zone (Howe et al.,
2000). It is very interesting to study if this coincidence is just
occasional or has a real physical ground.

3.2. Equatorial Waves
We consider the solar tachocline as a shallow layer with thickness
H (∼ 109 cm) located at the distance R (∼ 5 · 1010 cm) from
the solar center (Spiegel and Zahn, 1992). We consider a local
Cartesian frame (x, y, z) on rotating Sun, where x is directed
toward west (i.e., in the direction of solar rotation), y is directed
toward north, and z is directed vertically outwards. We adopt
solid body rotation with the angular velocity –� = 2.6×10−6 s−1.
Differential rotation is neglected at this stage for two reasons.
First, the value of differential rotation is small near the equator.
Second, the differential rotation is of importance for instabilities
and it will not significantly affect wave dispersion relations.

The sub-adiabatic temperature gradient in the upper part
of the tachocline provides a negative buoyancy force to
the deformed upper surface, therefore the surface feels less
gravitational field compared to the real gravity (Gilman, 2000).
The negative buoyancy force is proportional to the fractional
difference between actual and adiabatic temperature gradients
|∇ − ∇ad|, which is in the range of 10−4 − 10−6 in the upper
overshoot part of the tachocline and may reach up to 10−1 in the
lower radiative part of the tachocline (Dikpati and Gilman, 2001).
Then the dimensionless value of reduced gravity G = 1/ǫ =
gH/(R2�2) is proportional to 103|∇ − ∇ad|, therefore it is in the
range ofG > 100 in the radiative part of the tachocline and in the
range of 10−3 ≤ G ≤ 10−1 in the upper overshoot part (Dikpati
and Gilman, 2001).

Magnetic field of the tachocline may obviously influence
the dynamics of shallow layer, but the solutions for equatorial
trapped HD shallow water waves are also very important at the
first stage. These solutions can be found elsewhere (Matsuno,
1966; Lou, 2000), but we will study their properties in the
tachocline conditions.We use equatorial β-plane approximation,
which means to retain only the first order term in the expansion
of Coriolis parameter near the equator, f = βy, where

β =
2�

R
. (7)

Then the equation governing the linear dynamics of HD shallow
water system is

d2uy

dy2
+
[

ω2

c2
− k2x +

kxβ

ω
−

β2

c2
y2
]

uy = 0. (8)

This is the equation of parabolic cylinder (also known as the
equation of quantum harmonic oscillator) and when

ω2

c2
− k2x +

kxβ

ω
=

β

c
(2n+ 1) (9)

then it has bounded solutions

uy = C exp

[

−
β

c

y2

2

]

Hn

(

√

β

c
y

)

, (10)

where Hn is the Hermite polynomial of order n and C is a
constant. The solutions are oscillatory inside the interval

y <

∣

∣

∣

∣

√

c

β
(2n+ 1)

∣

∣

∣

∣

(11)

and exponentially tend to zero outside.
Equation (11) shows that the waves are trapped near the

equator only for small c =
√

gH and n. Therefore, in order to
have equatorially trapped shallow water waves one needs very
small surface gravity speed i.e., very small reduced gravity,G. This
means that the waves can be trapped near the equator only in the
upper overshoot part of the tachocline, where the reduced gravity
is very small. In the lower radiative part of the tachocline the
reduced gravity is still large, therefore the shallow water waves
can not be trapped near the equator, but rather penetrate to
higher latitudes and give the similar results those of the previous
subsection. Therefore, in this subsection we will consider only
the upper overshoot layer of the tachocline, where the reduced
gravity is very small and hence it creates excellent conditions for
the trapping of shallow water waves near the equator.

Equation (9) defines the dispersion relation for equatorial HD
waves (see also Lou, 2000)

ω3 −
[

k2xc
2 + βc(2n+ 1)

]

ω + kxβc
2 = 0. (12)

From this equation it is immediately seen that the reduced gravity
implies very low frequency waves for larger wavelengths with the
dispersion relation

ω ≈
kxc

2n+ 1
, (13)
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which correspond to Rossby waves. The important point is that
here the Rossby waves depend on the surface gravity speed, which
was not the case in the previous subsection.

The discriminant of the cubic equation, 4[k2xc
2+βc(2n+1)]3−

27k2xβ
2c4, is positive for entire range of kx and c when n ≥ 1 and

hence the equation has three real solutions

ωj = 2

√

−
p

3
cos

[

1

3
arccos

(

3q

2p

√

−
3

p

)

−
2π j

3

]

(14)

where p = −k2xc
2 − βc(2n + 1), q = kxβc

2 and j =
0, 1, 2. The three solutions correspond to eastward propagating
Rossby waves and two westward and eastward propagating
Poincare waves plotted on Figure 5. Here the non-dimensional
wavenumber kxR is in the range of 1–5. The initial value of
kxR = 1 corresponds to the wavelength of 2πR and hence
to the m = 1 harmonic in spherical coordinates, which has
higher possibility to be excited. One can see from Figure 5 that
the Rossby and Poincare waves have very different time scales.
Figure 6 shows the dependence of Rossby waves on the value of
normalized reduced gravity, G, for the wavenumber of kxR = 1.
When the gravity reaches the value of G = 0.001− 0.0005 which
is still reasonable for the overshoot layer, then the time scale of
HD Rossby waves approaches to that of solar cycle, i.e., tens of
years. This is a very interesting result which shows that solar cycle
period can be obtained owing to equatorial Rossby waves in the
case of temperature stratification of solar tachocline (or more
correctly upper overshoot region). However, in order to make
any connection of Rossby waves to solar cycles, the magnetic field
should be inevitably involved.

3.2.1. Poincare-Rossby Waves with n = 0
Equation (12) needs particular treatment for n = 0 mode, which
has non-oscillatory structure with y direction. In this case it can
be factorized as

(ω − kxc)(ω
2 + kxcω − βc) = 0. (15)

The first zero ω = kxc leads to the spurious solutions as the
velocity perturbations become infinite in the initial equations.
Consequently, n = 0 case has only two solutions: westward
propagating Poincare wave and eastward propagating Poincare-
Rossby wave (thin green solid lines on Figure 5, see detailed
treatment in Matsuno, 1966).

For the small reduced gravity approximation, large-scale (in
the toroidal direction) Poincare and Poincare-Rossby waves with
n = 0 are described by the dispersion relation

ω = ±
√

βc, (16)

which for G = 0.001 − 0.0001 gives the periods of 107–190
days. Therefore, the mixed Poincare-Rossby waves with n =
0 resemble the time scale of Rieger-type periodicity. Figure 7
displays the dependence of Poincare waves on the value of
reduced gravity.

In the case of n = 0 mode, a simple solution can be found
in the presence of a homogeneous toroidal magnetic field, B0.

Near the equator the Equation (8) is now replaced by the equation
(Zaqarashvili et al., 2007)

d2uy

dy2
+
[

ω2 − k2xυ
2
A

c2
− k2x +

kxβω

ω2 − k2xυ
2
A

−
β2ω2

c2(ω2 − k2xυ
2
A)

y2
]

uy = 0.

(17)

As uy is not oscillatory along y, the bounded solution

∼ exp

[

−β|ω|y2/
(

2c
√

ω2 − k2xυ
2
A

)]

leads to the dispersion

relation

(ω2 − k2xυ
2
A)(

√

ω2 − k2xυ
2
A + kxc)− βc|ω| = 0. (18)

For large-scale waves (small kx) the dispersion relation can be
approximated as

ω ∼ ±
√

βc+ k2xυ
2
A. (19)

3.2.2. Kelvin Waves

Particular class of waves arise when northward component of
velocity (uy) is zero. HD shallow water equations are rewritten
as

∂ux

∂t
= −g

∂h

∂x
, (20)

∂h

∂t
+H

∂ux

∂x
= 0, (21)

fux = −g
∂h

∂y
. (22)

The Fourier expansion of Equations (20–21) with exp(iωt+ ikxx)
leads to the dispersion relation

(ω − ckx)(ω + ckx) = 0, (23)

which yields two different modes. The solutions for each mode
can be easily found from Equation (22) as

ux = u0 exp

(

1

2

β

c
y2
)

(24)

for ω = ckx mode and

ux = u0 exp

(

−
1

2

β

c
y2
)

(25)

for ω = −ckx mode. It is seen that the first solution does not
satisfy boundary condition, therefore it is ruled out from the
consideration. Hence, only the mode with the dispersion relation

ω = −ckx (26)

remains as the solution for Kelvin waves (see Figure 5).
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FIGURE 5 | Dispersion curves for various equatorial HD shallow water waves in the solar tachocline. Red and blue thin solid lines correspond to eastward (positive)

and westward (negative) propagating Poincare waves. Red and Blue thick solid lines correspond to eastward propagating Rossby waves. Green solid lines

correspond to eastward propagating n = 0 mixed Poincare-Rossby waves and westward propagating n = 0 Poincare waves. Magenta solid line corresponds to

Kelvin waves. Here the normalized value of the reduced gravity is G = 0.001.

FIGURE 6 | Period of equatorial HD Rossby and Kelvin waves vs. the value of normalized reduced gravity, G. Red and blue lines correspond to n = 1 and n = 2

Rossby wave harmonics, respectively. Magenta line corresponds to HD Kelvin waves. Here the harmonics with the wavenumber of kxR = 1 are shown.
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FIGURE 7 | Period of equatorial Poincare waves vs. the value of normalized reduced gravity, G. Red and blue lines correspond to n = 1 and n = 2 Poincare wave

harmonics, respectively. Green lines correspond to n = 0 mixed Poincare-Rossby waves. Here the harmonics with the wavenumber of kxR = 1 are plotted.

This solution also arises from the dispersion relation,
Equation (12), if one substitutes n = −1. Therefore, this mode
was called as n = −1 mode by Matsuno (1966). The time scale
of Kelvin waves is few years (see Figure 6), therefore it is in the
range of quasi biennial (Sakurai, 1979; Zaqarashvili et al., 2010b)
and/or annual oscillations (McIntosh et al., 2015, 2017).

The analysis of HD shallow water waves in the tachocline
conditions show three different time scales, which actually
correspond to observed variations in solar activity. It is
interesting that the Rossby waves now have the time-scale which
resembles solar cycles rather than Rieger-type oscillation. The
Rieger-type periodicity now is better explained by equatorial
Poincare-Rossby waves (n = 0). The tachocline magnetic field
will surely modify the dispersion relations, but some preliminary
estimations still can be done.

4. SEISMOLOGY OF SOLAR DYNAMO
LAYER

Observed Rieger-type periodicities and dispersion relations of
Rossby or Poincare-Rossby waves can be used to estimate the
magnetic field strength in the tachocline. First we use the
dispersion relation (Equation 6) of spherical fast magneto-
Rossby wave (m = 1, n = 4 harmonics) and the observed
periodicities from Table 1. The magnetic field is estimated for
the cycles 13–24 in the northern and southern hemispheres
separately. The resulted field strength is summarized on Table 2.
It is clearly seen that the more active hemisphere possesses

the strong magnetic field of >40 kG even in weaker cycles.
On the other hand, less active hemisphere possesses weaker
field of <40 kG even in the generally strong cycles. This result
leads to two main conclusions. First, the dynamo magnetic field
strength is more than 30 kG in all cycles, which means that the
dynamo models with tachocline better explain the solar cycles
than those without tachocline (see discussion in Gurgenashvili
et al., 2016). Second, the result may mean that the strength
of individual cycles is determined by the mutual interaction
of oscillations in hemispheric magnetic fields rather than by
the magnetic field strength itself. Therefore, the estimation
using spherical Rossby wave scenario supports the results of
McIntosh et al. (2015), who supposed that the solar cycles
can be explained by the interactions of hemispheric activity
bands.

On the other hand, n = 0 equatorial Poincare-Rossby waves
can be also invoked in the estimation of the dynamo field
strength. Using the dispersion relation, Equation (19), one can
estimate the hemispheric toroidal magnetic field strength for
solar cycles 13–24. The result is summarized on Table 3. Now
the magnetic field strength in more active hemisphere is >20 kG
even in weak cycles and <15 kG in the less active hemisphere
even in strong cycles. Therefore, the field strength estimated
by equatorial Poincare-Rossby waves is much less (almost three
times) than that of estimated by spherical Rossby waves.

Estimated field strength in the dynamo layer significantly
depends on the excitation process of Rieger-type periodicities,
therefore future detailed study may shed light in this important
problem.
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TABLE 2 | Estimated magnetic field strength (kG) using spherical Rossby waves for northern and southern hemispheres from GRO sunspot area data for solar cycles

13–24.

Cycle Number 13 14 15 16 17 18 19 20 21 22 23 24

MF, kG (North) 43.4 45.3 42 48 52.1 48.1 49.3 45.3 36.2 38 40.1 32.3

MF, kG (South) 34 31.1 35.1 30.6 31.4 40.1 39.1 33 49.2 48.3 48.1 54.3

TABLE 3 | Estimated magnetic field strength (kG) using equatorial Poincare-Rossby waves for northern and southern hemispheres from GRO sunspot area data for solar

cycles 13–24.

Cycle Number 13 14 15 16 17 18 19 20 21 22 23 24

MF, kG (North) 17.6 18.7 16.6 20.5 22.9 20.5 21.2 18.7 12.3 13.4 15.2 8.4

MF, kG (South) 10 7.4 11.5 6.8 7.9 15.2 14.5 9.4 21.2 20.5 20.5 24

5. DISCUSSION AND CONCLUSIONS

Solar 11-year activity cycles are generally interpreted by some
sort of solar dynamo, but exact model explaining all properties
of solar magnetic field is not yet determined. Different dynamo
models claim different locations and strengths of amplified
magnetic field. The models are generally divided into two main
groups: with and without tachocline. The models of first group
consider the location of dynamo layer in the tachocline, just
below the solar convection zone, where the magnetic field is
amplified by the differential rotation and emerges on the solar
surface as sunspots. The surface magnetic field is then carried
toward poles by meridional circulation creating the poloidal
component for the next cycle (Dikpati et al., 2004). The models
of the second group consider the location of dynamo layer
somewhere in (or throughout) the convection zone and the
cyclic magnetic field is amplified due to turbulent (or say α2)
processes (Tobias, 2009). The important difference between the
models is the supposed strength of amplified magnetic field,
which is much stronger in tachocline models (>20 kG) than
in the models without tachocline (<10 kG). Therefore, even
rough estimation of dynamo magnetic field might test the
models.

Recently it was shown that the Rieger-type periodicity has
strong dependence on solar activity level (Gurgenashvili et al.,
2016), therefore it should be strongly linked to the dynamo layer
in the solar interior. The periodicity then can be used to estimate
the dynamomagnetic field strength and hence to test the dynamo
models. Here we analyzed the Greenwich Royal Observatory
hemispheric sunspot area data during cycles 13–24 by Morlet
wavelet tool and found the Rieger-type periodicity in each cycle
on both hemispheres separately. Our results again showed that
the Rieger periodicity has shorter values (155–165 days) in more
active hemisphere even in weak cycles and longer values (175–
190 days) in less active hemisphere even in stronger cycles. The
periods are summarized on Table 1.

Then the dispersion relations of Rossby-type waves were used
to estimate the magnetic field strength in the dynamo layer.
First, we showed that m = 1, n = 4 spherical harmonic
of fast magneto-Rossby waves over spherical surface might

be responsible for the Rieger-type periodicity. Corresponding
dispersion relation gave the magnetic field strength of >40 kG
in more active hemisphere also in weak cycles and<40 kG in less
active hemisphere also in strong cycles. The estimated magnetic
field strength during cycles 13–24 is presented on Table 2. Then,
we showed that equatorial HD Poincare-Rossby waves (with n =
0), which are trapped near the equator owing to the reduced
gravity in the upper overshoot tachocline, gave the Rieger-
type periodicity. Considering preliminary magnetically affected
dispersion relation, we estimated the magnetic field of >20 kG in
more active hemispheres and <15 kG in less active hemispheres.
The estimated magnetic field strength during cycles 13–24 is
presented on Table 3. The estimations by equatorial Poincare-
Rossby waves gave the magnetic field strength which is almost
three times less than that of obtained by spherical fast magneto-
Rossby waves. While the spherical Rossby waves fully support
the models with tachocline, the equatorial Poincare-Rossby
waves still keep the place for the models without tachocline
as they estimate the field strength of <10 kG at least in the
weaker hemisphere. Velocity field of spherical Rossby waves is
concentrated more in higher latitudes and consists mostly in
vortical structures, those number along latitude depends on the
value of n. But, velocity field of equatorial Poincare-Rossby waves
with n = 0 is concentrated in lower latitudes and consists in
elliptic motion around the equator (see Figure 6b in Matsuno,
1966). Therefore, helioseismology in principle may test velocity
fields of both spherical Rossby and equatorial Poincare-Rossby
waves. On the other hand, both spherical and equatorial Rossby-
type waves show that the solar cycles might be resulted from
mutual interaction of hemispheric activity bands as suggested
by McIntosh et al. (2015). Future detailed analytical, numerical
and observational studies of Rossby-type waves are necessary to
increase the accuracy of magnetic field estimation and to reveal
the most plausible models for solar activity cycles.
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