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An introduction to the avian gut 
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based prebiotic-type compounds as 
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The poultry industry has been searching for a replacement for antibiotic growth promot-
ers in poultry feed as public concerns over the use of antibiotics and the appearance 
of antibiotic resistance has become more intense. An ideal replacement would be feed 
amendments that could eliminate pathogens and disease while retaining economic value 
via improvements on body weight and feed conversion ratios. Establishing a healthy gut 
microbiota can have a positive impact on growth and development of both body weight 
and the immune system of poultry while reducing pathogen invasion and disease. The 
addition of prebiotics to poultry feed represents one such recognized way to establish 
a healthy gut microbiota. Prebiotics are feed additives, mainly in the form of specific 
types of carbohydrates that are indigestible to the host while serving as substrates to 
select beneficial bacteria and altering the gut microbiota. Beneficial bacteria in the ceca 
easily ferment commonly studied prebiotics, producing short-chain fatty acids, while 
pathogenic bacteria and the host are unable to digest their molecular bonds. Prebiotic-
like substances are less commonly studied, but show promise in their effects on the 
prevention of pathogen colonization, improvements on the immune system, and host 
growth. Inclusion of yeast and yeast derivatives as probiotic and prebiotic-like sub-
stances, respectively, in animal feed has demonstrated positive associations with growth 
performance and modification of gut morphology. This review will aim to link together 
how such prebiotics and prebiotic-like substances function to influence the native and 
beneficial microorganisms that result in a diverse and well-developed gut microbiota.

Keywords: poultry, microbiota, lactobacillus, Bifidobacterium, yeast

introduction

Poultry production in the past century has transitioned from predominantly breeding layers to 
breeding a mixture of both layers and broilers, based on the evolution of consumer demand (1–3). 
Success in the optimization of different broiler lines is due to genetics as well as optimizing diets with 
more precise nutritional formulations (4, 5). Comparison of individual genetic lines has revealed 
differing intestinal development, feed intake, and digestibility traits among other characteristics, 
which may impact performance (6–9). Improved diets have allowed broilers to reach their optimum 
body weight and feed conversion rate while minimizing mortality. Comparing poultry diets from 
the 1950s to those of the 1990s and 2000s illustrates the progress made (10, 11). For example, broiler 
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chickens raised on a typical diet in 1957 had an average weight 
of 1,430 g at 84 days of age, whereas broilers fed a diet from 2001 
yielded an average weight of 5,520 g at the same age. The feed 
conversion ratio in 2001 (2.68) was also considerably better com-
pared to 1957 (3.26) (11). The current poultry diet contains the 
appropriate balance of amino acids, fatty acids, major and trace 
minerals, energy, and protein necessary for optimum growth (12).

Supplementation of various biologics have been attempted 
to enhance poultry feed for maximum growth development 
and health. Antibiotics enhance growth and reduce pathogens 
and although the exact mechanisms remain unclear, numer-
ous working hypotheses have been offered (13–17). Antibiotic 
incorporation into poultry feed has since been tightly restricted 
and/or omitted due to microbial antibiotic resistance, presum-
ably originating from both poultry (among other livestock) and 
humans (18–20). Since the exclusion of antibiotics in diets, a 
number of alternative supplements have been tried (Table  1), 
including prebiotics (21).

A prebiotic, as defined by Gibson and Roberfroid (35), is 
“a non-digestible food ingredient that beneficially affects the 
host by selectively stimulating the growth and/or activity 
of one or a limited number of bacteria in the colon and thus 
improves health.” This definition has been subsequently refined 
to include the requirements for resistance to the acidic gastric 
environment, gastric enzymes, gastrointestinal absorption, 
and fermentation by the gastrointestinal microbiota while 
stimulating growth of beneficial intestinal bacteria (22). Being 
indigestible by the upper gastrointestinal tract (GIT) enables 
it to enter the lower GIT as a substrate for health-promoting 
bacteria, such as bifidobacteria and lactobacilli, thereby modu-
lating the microbiota (35). Many feed additives currently used 
do not fit wholly into the strict prebiotic classification; they 
may lack one or more of the criteria set by Roberfroid (22). 
Although these substances have differing modes of action com-
pared to prebiotics, they have a similar end result of a healthy 
and mature GIT microbiome. They may inhibit pathogenic 
invasion, reduce pathogens in the environment, modulate the 
host immune response, or enhance the host GIT morphology 
to enable the host to better limit pathogens in the GIT lumen. 

These substances will be referred to as prebiotic-like substances 
for the remainder of this review.

The objective of this review is to provide an overview of the 
effects of prebiotic-like substances, particularly those that are 
yeast-derived, while assessing the influence on microbial diver-
sity of the poultry gut microbiota when using single or complex 
mixtures. In order to achieve this, both the gut microbiota as 
well as prebiotics is reviewed. Additionally, the characteristics 
of complex mixtures of prebiotic-like substances are assessed, 
including their effects on the gut development and physiology, 
the interactions that occur between host and microorganisms, 
and the potential use of prebiotic-like substances in creating a 
more healthy gut microbiota. This review includes findings from 
not only poultry but also human and animal models, which may 
provide insight into potential effects in poultry.

Gut Microbiome: Terminology and 
Definitions

The microbiota is defined as the diverse population of microor-
ganisms in a given environment, while the microbiome can be 
defined by either its genetic or ecological capacities (36). Genetic 
diversity is the entire collection of genes of the microorganisms in 
an environment, while the ecological diversity is all the microor-
ganisms that make up an ecosystem (36). The term “microflora,” 
once commonly used, is now often replaced by “microbiota” to 
avoid the plant connotation from the suffix “flora.” (36). Regardless 
of the term used, it is essential to use a modifying adjective 
when referring to a specific anatomical region. For example, 
“gut microbiome” is indicating only the microorganisms in the 
GIT. There are numerous microbiome sites in addition to the gut 
microbiome, as they can be any shared anatomical sites between 
a community of microorganisms (commensal, pathogenic, or 
symbiotic) (37–39). An oral microbiome, for example, is the 
community of microorganisms that interact with and live within 
the oral cavity. It has several distinct microbial habitats within 
the oral cavity (gingival, tongue, and teeth) and extensions of the 
oral cavity (esophagus, middle ear, and nasal passages). Each dif-
ferent habitat within the oral cavity has its own distinct bacterial 

TABLe 1 | Commonly researched feed additives for host health, including growth promotion and pathogen prevention, used in animal feed, their modes 
of action, and reviews for references.

Compound what they do How they work Reviews for 
reference

Prebiotic Food ingredient to act as substrate 
for beneficial bacteria in the host GIT 
microbiota

Host consumes prebiotic and it endures through the GIT relatively intact 
to the lower intestines where it selectively acts as substrate for beneficial 
bacteria

(22–24)

Probiotic Live microbial feed supplements that 
beneficially impact intestinal microbial 
balance

Competes with pathogenic bacteria to colonize the intestines; ferments 
substrates to produce short-chain fatty acids; stimulates the immune 
response of the host

(23, 25, 26)

Mannan-oligosaccharide Specific oligosaccharide that inhibits 
pathogenic bacteria from binding the 
mucosal epithelial lining

Pathogens have receptors specific for mannan residues, the pathogenic 
bacteria binds the mannan and does not bind to the host epithelial cells

(27–29)

Organic acid Reduce the number of pathogens Undissociated form traverses the bacterial cell membrane; once inside the 
bacterial cell, the organic acid dissociates to produce H+ ions, which lowers 
the pH. The bacterial cell then has to expend its energy to restore it natural 
balance rather than promote its own growth

(30–34)
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population in the form of complex biofilms (40). Research has 
shown that even the distinctive sites of the tongue – the dorsal 
and the lateral regions – possess differing bacterial profiles (41). 
Other frequently studied sites of microbiomes are the skin and 
the respiratory tract (42–44). The various regions and diversity 
among bacterial communities of the microbiota are indicative of 
the inherent complexity of microbiome research.

The gut microbiome is a widely studied topic because of its 
impact on health as well as its characteristic intricacy. The gut 
microbiome is home to one of the densest bacterial populations 
on earth, with numbers ranging from 108 to 1014/g of digesta (45, 
46). The microbiome encompasses biochemical and metabolic 
pathways not found in the host genome; this attests to the extent 
to which the microbiome has evolved (47). Microorganisms that 
comprise the gut microbiota have been found to directly impact 
the health of the host, providing protection against epithelial 
damage, aiding in digestion, and promoting development of a 
healthy immune system (48, 49). Commensal bacteria, in the 
GIT of animals, aid in absorption of nutrients as well as enhance 
nutrient utilization (50). Additionally, research conducted thus 
far has shown that earlier development of a mature and diversi-
fied microbiota leads to better growth and fewer health issues, 
such as obesity, allergies, and asthma (51, 52). This is in part due 
to healthy competition among microorganisms.

Avian Gut Anatomy, Structure, and 
Functionality

For a thorough understanding of the microbial communities that 
inhabit the GIT of poultry and the effects they may have, a brief 
description of the poultry GI system is warranted. The GIT of 
poultry, chickens specifically, begins at the esophagus and contin-
ues down past the crop, proventriculus, and gizzard, through the 
intestines (duodenum, jejunum, ileum, and ceca), and ends at the 
colon and cloaca (53, 54). The gut microbiota generally refers to 
the intestinal regions and the studies included in this review focus 
on the duodenum, jejunum, ileum, ceca, and fecal contents as well 
as the structural characteristics to illustrate the gut microbiome of 
poultry. The ceca and their contents are most often studied based 
on their slow passage rate [comparatively, gut transit time from 
mouth to the lower ileum is approximately 3 h, while contents 
may be retained in the ceca as long as 35 h (55–57)] as it exhibits 
the most diversification in the bacterial communities it harbors, 
in turn, indicating its impact on host health (54).

The intestines are multi-layered tubes, containing epithelial, 
muscular, and mucosal layers (58). Each section of the intestine, 
from the most proximal duodenum passing through the jejunum 
and out to the most distal ileum, contains numerous folds and is 
lined with villi and crypts. The villi are finger-like projections on 
the surface of the mucosal lining responsible for increasing surface 
area to maximize nutrient absorption and containing a meshwork 
of capillaries to allow nutrients entry into the bloodstream (59). 
When moving in the distal direction from the duodenum down 
toward the ileum, the mucosal lining reduces in thickness. The 
villi length and crypt depth also decrease in a continual gradation, 
which supports the notion of the majority of nutrient absorption 
occurring in the small intestine (58). Reduced intestinal weight is 

associated with improved nutrient absorption (60). Microscopic 
analysis has revealed that the reduction of intestinal weight is due 
to thinning of the epithelial lining rather than to the reduction 
in intestinal length, which is suggested to allow for improved 
nutrient absorption (61, 62).

The pancreas functions in hydrolysis of macromolecules, 
releasing digestive enzymes into the duodenum responsible for 
the hydrolysis of proteins, carbohydrates, and lipids supplied by 
the diet. In addition to enzyme production, the pancreas also 
produces hormones and bicarbonate that aid in metabolism 
regulation and buffer the intestinal pH, respectively (59, 63). The 
addition of enzymes to the duodenum allows for the small intes-
tine to be the primary site of nutrient digestion and absorption. 
Having a general understanding of the digestive system of poultry 
allows for a more thorough insight into how microorganisms may 
impact GIT physiology. Turk (58) provides a more encompassing 
review of the entire avian GIT.

Avian Gut Microbiome Characterization

Characterization of microbial communities native to the poultry 
GIT began in 1901 and has since revealed these communities to 
be both diverse and dynamic (64). As biased culture-based meth-
ods advanced to molecular and sequencing techniques, a broader, 
more comprehensive representation of the microbiome has been 
recognized (64, 65). Researchers have attempted to determine a 
bacteriological profile of the poultry GIT via 16S rRNA gene-based 
studies; the findings have demonstrated that the majority of the 
16S rRNA sequences in the cecal contents are not-yet-identified 
bacterial species (64, 66, 67). These discoveries uncovered the 
shortcomings of previously employed culture-based methods. 
For example, comparison of results obtained from Zhu et  al. 
(64) and Rada et al. (68) found differing levels of Bifidobacteria-
species present in untreated chicken cecal contents. Zhu et  al. 
(64) used temporal temperature gradient gel electrophoresis 
followed by sequencing of the 16S rRNA fragments, while Rada 
et al. (68) used selective media; the experimental designs of both 
were comparable. The works of Zhu et  al. (64) and Rada et  al. 
(68) are two such examples for the characterization of the GIT 
microbiome; various techniques have been attempted to ascertain 
the microbial populations present in the different regions of the 
intestinal tract (Table 2).

Each area of the intestinal tract harbors distinct microbial com-
munities. For example, the cecal contents exhibit greater levels of 
Clostridiaceae-related sequences as opposed to the ileum where 
more abundance of Lactobacillus-related sequences occurs (75). 
Apajalhti et al. (70) used G + C content to demonstrate similar 
results: the measurement of bacterial communities present in the 
ceca and ileum exhibited considerable variation when compar-
ing the two G + C profiles. Variation in microbial communities 
is not only limited to differing organs, there is also a temporal 
factor in the nature of the microbiome (76). The cecal contents of 
younger birds appeared to possess more transient communities 
that matured into communities with much greater complexity, 
while the ileum indicated an overall constant microbiome except 
at days 3 and 49 (the youngest and oldest sampling points) (75). 
The response to newly introduced microorganisms also appears 
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TABLe 2 | Research conducted on commensal bacteria in poultry GiT based on location.

Host Site(s) Age(s) Commensal or pathogenic Method of investigation Reference

Chicken Ileum, cecum 7, 13 days Commensal PCR-based DGGE; 16S rRNA gene 
library analysis; qPCR

(69)

Chicken Ileum 4, 8, 14, 21, 35 days Commensal DGGE; RFLP (6)

Chicken Ileum, cecum 4 weeks Commensal Percent G + C profiling (70)

Chicken Cecum, intestines 4, 14, 25 days Pathogenic Primers (species-specific) of 16S rDNA (71)

Chicken Cecum 1 day, 1, 2, 4, 6 weeks Commensal TTGE; 16S rRNA gene sequencing (64)

Chicken Crop, ileum, cecum, rectum 40, 41 daysa Commensal 16S rDNA sequencing (72)

Chicken Ileum, cecum 28 days Commensal FISH with 16S rRNA oligonucleotides (73)

Chicken Crop, duodenum, colon 2 months Commensal FCM-FISH (74)

aIndicates differing rearing methods: conventionally raised and organically raised, respectively.
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to be dependent on sex of the host when analyzed in a mouse 
model; male and female GIT microbiota influence the metabolic 
activities and immune system differently (77). The concept of host 
factors affecting microbial diversity offers the opportunity to use 
established and healthy microbiomes to generate a working GIT 
microbial profile. However, this may prove to be quite challeng-
ing as it has been found that chickens interacting together in the 
same conditions, receiving the same feed, and of the same age and 
sex still display uniquely dominant bacterial communities (78). 
Although the exact quantities and qualities of a healthy micro-
biota have yet to be determined, a relationship appears to exist 
between the establishment of a mature intestinal microbiome and 
positive impacts on the host, resulting in improved growth and 
health (79).

Avian Gut Microbiome-Metabolic Activities

The poultry GIT is essentially coated in a dense layer of com-
mensal bacteria in a diverse array of niches. Generally, the most 
complex microbial communities are found in the crop and the 
ceca. There is less colonization in the intestines based on the 
unfavorable environment. For example, the duodenum contains 
numerous enzymes, high concentrations of antimicrobial com-
pounds, such as bile salts, and also has a rapidly changing envi-
ronment due to reflux from the jejunum up to the gizzard (80). 
Traveling further down the GIT, the ileum and ceca become more 
favorable environments with fewer enzymes and antimicrobial 
compounds; this is reflected in the increased concentrations of 
commensal bacteria, around 109 and 1011 bacteria/g, respectively 
(46). The unique anatomical structure of the cecum allows for 
the occupancy of fermentable substrates not widely available in 
different areas of the GIT; this enables differing microorganisms 
to reside and produce large amounts of energy metabolites to aid 
in achieving the bird’s energy requirements (81).

Research profiling whole body energy consumption patterns 
has attributed 22.8% to being utilized by the GIT and liver (82), 
but not all of that energy is actually being used by and for the 
host. It was reported that the presence of GIT microbiota signifi-
cantly increased the dietary metabolizable energy in the broiler 
chicken host, indicating that the microbiota are responsible for 
utilizing the additional dietary energy (83). The commensal 
bacterial communities utilize nutrients from the host’s diet 

as energy sources, making those nutrients unavailable to the 
host. However, they are able to produce short-chain fatty acids 
(SCFAs) from the fermentation of those nutrients (84). Research 
suggests the GIT microbiota aid in digestion and energy release 
from starch and fibrous contents, especially in the ceca. It is 
proposed that the amounts and types of SCFAs that are generated 
in the ceca are in proportion to differing starches that enter the 
ceca (85). Although SCFAs serve as additional energy sources 
for the host, it is suggested that only a proportion (up to 25%) 
of the overall SCFA energy is recovered by the bird (85, 86). In 
high-fiber and low-energy diets, bacterial digestion of the fiber 
also releases energy in the form of SCFA (84, 87). Along with 
generating accessible energy, the gut microbiome is associated 
with conservation of energy when nutrient sources (proteins, 
fats, and sugars) are low (88, 89). The production and absorption 
of SCFAs in the intestine are occurring continuously, with more 
or less being produced due to alterations in the diet or cecal 
microbiome (85).

Conversely, the resident microbiome has also been associated 
with unfavorable effects to the host’s utilization of dietary energy. 
Although the presence of the GIT microbiota has indicated 
a significant increase in levels of metabolizable energy in con-
ventionally raised broiler chickens when compared to germfree 
(89), the metabolizable energy is attributed to the products 
generated by the GIT microbiota. The variation can be associated 
with the digestibility of those energy sources (dietary fiber and 
starches) being broken down into monosaccharides and SCFA. 
The SCFA are portrayed as possessing a high metabolic energy 
value, yet they are inefficiently utilized by the host. Therefore the 
levels of SCFA present are not reflective of the net deposition of 
energy to the host (86, 89). Another potential explanation may 
be that the presence of the gut microbiota increases the cost of 
energy by altering the rate of energy-consuming reactions (89, 
90). For example, pathogens attach to the epithelial lining, alter 
its integrity and function, and in turn stimulate the renewal of 
epithelial lining, which increases the amount of dietary energy 
spent on gut maintenance (27, 91). It has also been observed that 
conventionally raised birds have higher energy requirements for 
maintenance when compared to germfree birds (92). This may 
be due to the addition of the host’s microbiota usage of metabo-
lizable energy, or the host’s microbiota making dietary energy 
unavailable to the host (92).
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Avian Microbiome and Foodborne 
Pathogens

The complex lining of the lower intestines with bacteria serves 
as a barrier against colonization of pathogenic bacteria, which if 
allowed to occur, could lead to infection. The bacteria that set-
tle first in the lining of the intestines necessitate that any other 
microorganisms in search of new residence must compete for 
space and nutrients in order to survive and colonize (80, 93, 94). 
Establishing the early foundation of a mature GIT microbiota 
has been associated with prevention of infection with pathogens, 
namely Salmonella, by beneficial bacteria outcompeting the 
pathogenic bacteria for space and nutrients (95–98). In nature, 
chicks are hatched in the presence of maternal fecal contents, 
allowing rapid colonization of members from the maternal gut 
microbiome (25). In an attempt to colonize newly hatched chicks 
with a mature and healthy microbiome that will discourage 
pathogenic bacteria from colonizing, chicks have been experi-
mentally inoculated with competitive exclusion culture mixtures 
(97, 99–102). Introduction of the competitive exclusion cultures 
has proven to be effective in protecting young chicks from enteric 
pathogens and several reviews have been written on various 
aspects of this research (103–106).

As previously mentioned, commensal bacteria produce SCFA, 
which are recognized as having growth-inhibiting effects on 
enterobacteriaceae (107–109). The presence of the SCFA causes 
a drop in cytoplasmic pH, which is recognized as a contributing 
factor to the inhibition of pathogen growth (110). Although the 
mechanisms of SCFAs are not well understood, they are known 
to exhibit bactericidal and bacteriostatic properties (30–32, 111). 
Russell (30) suggested that it is not only the result of a drop in pH 
caused by the SCFA but also the uncoupling reactions produced 
by the translocation of protons by SCFA that contribute to the 
growth inhibition effects seen. In accordance with this notion, 
Davidson et  al. (112) suggested that because the fatty acids 
produced are weak acids, they are effective as antimicrobials in 
their undissociated forms as they are able to easily diffuse through 
the cytoplasmic membrane of the microorganism. The fatty acids 
dissociate into anions and protons once in the cytoplasm of the 
microorganism (maintained relatively neutral or slightly alkaline), 
in turn decreasing the pH and causing conformational changes of 
cytoplasmic proteins, enzymes, and nucleic acids. In an attempt 
to reestablish a neutral/slightly alkaline pH, microorganisms 
utilize ATP-dependent pump systems to transport the anions and 
protons outside of the cell. This is in accordance with findings of 
Cherrington et al. (113), where incubation of Escherichia coli with 
propionic and formic acids resulted in reduced rates of macromo-
lecular synthesis initially, yet it partially regained synthesis rates 
after continued incubation.

Anion accumulation is suspected to be another factor in uncou-
pling reactions that attributes to growth inhibition of bacteria in 
the presence of SCFA. It is suggested that the accumulation of 
acid anions causes an uncoupling effect of the electron transport 
chain from oxidative respiration (via the passage of molecules in 
their dissociated and undissociated forms, transferring protons 
into the cell to dissipate the proton motive force) as well as a 
chaotropic effect (disrupting hydrogen bonding in water causing 

macromolecules in solution to lose stability) that are accountable 
for the increased hydrogen ion leakage into the cell. The cell is 
unable to excrete hydrogen ions rapidly enough, making it dif-
ficult for the cell to regain its neutral/slightly alkaline intracellular 
pH (30, 110, 114, 115). The intracellular increase in hydrogen 
is unable to counteract the accumulation of acid anions (116). 
Another inhibitor of bacterial growth by SCFA is the disruption 
of the membrane of a microorganism by means of permeabiliza-
tion or intercalation, allowing for the release of macromolecules 
and the destabilization of the membrane (117, 118). However, 
there are instances of pathogenic bacteria acquiring resistance to 
SCFAs (32). For example, pre-incubation of Salmonella with high 
concentrations of SCFA at neutral pH resulted in an acid toler-
ance response and has also been demonstrated to be responsible 
for modulation of virulence gene expression and attachment/
invasion of in vitro tissue culture cells (119–122).

While the production of fatty acids is inhibitory to invading 
bacteria, studies suggested that the fatty acids are inactive against 
the species that produced them (123). Smulders et al. (124) found 
that acid-producing bacteria are tolerant to acids and in turn, the 
acidic environments that they generate. Therefore, the influences 
of the SCFAs produced by autochthonous bacteria may provide 
protection against pathogenic bacteria – Salmonella, coliforms, 
and Campylobacter – intent on colonizing in the intestine while 
leaving commensal bacteria unscathed (125). However, little else 
has been reported on the effects of the fatty acids on the produc-
ing species.

Key Players in the Gut Microbiota

In the past, the microorganisms colonizing the GIT were thought 
to be commensal, neither beneficial nor harmful to the host, as 
opposed to being mutualistic (37). However, numerous germfree 
experiments in various animal models have indicated the value 
of these indigenous microorganisms (126–128). There has been 
overwhelming data collected revealing the beneficial impacts on 
both host physiology as well as immunology (75, 129). Several 
studies have indicated that introducing a balance of beneficial 
microorganisms to the poultry microbiota improves body weight 
gain and feed conversion ratio as well as warding off common 
diseases in poultry, such as Newcastle disease and infectious 
bursal disease (130–132). However, in order to better promote 
strategies for increasing the presence of beneficial bacteria, those 
bacteria and their interacting counterparts must be identified.

Although being incredibly diverse, the most abundant 
microorganisms in the gut microbiota of poultry are primarily 
anaerobic (54). This is somewhat expected since there is little to 
no oxygen available as an electron acceptor in the lumen, although 
the concentration of oxygen is greater toward the epithelium, thus 
forcing bacteria to use fermentation to produce pockets of organic 
acids within the lumen (133). Moreover, Sun and O’Riordan 
(133) suggest that as a result of this environment, it is necessary 
to investigate SCFAs more in depth because bulk analysis does 
not reveal the true nature and spatial arrangement of these acids 
(which would further indicate the location and family of anaero-
bic bacteria). There is no consistent data available indicating the 
overall Gram status of poultry GIT microbiota. Investigation into 
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TABLe 3 | Suggested microorganisms for potential probiotic use based on various characteristics.

Microorganism Host Site isolated Rationale Reference

Enterococcus faecium Chicken Intestines Bacteriocin-producing ability (135)

Pediococcus pentosaceus Chicken Intestines Bacteriocin-producing ability (135)

Mixed culturea Chicken Cecum Inhibition ability of Salmonella (99, 136–139)

Lactobacillus reuteri Chicken GIT β-glucanase gene enhances growth and nutrient digestion (140)

Lactobacillus fermentum Chicken GIT Intestinal adherence, pathogen inhibition, tolerance to gastric enzymes (141)

Bifidobacterium longum Chicken GIT Anti-Campylobacter activity (142)

Streptococcus faecium Chicken GIT Impacts of body weight, feed conversion, carcass yield, Salmonella 
colonization

(143)

Streptococcus bovis Cattle Rumen Inhibition ability of Salmonella (144)

aMixed culture composed of 29 cecal bacterial strains that have shown to inhibit Salmonella colonization.
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the commensal bacteria present in an untreated chicken ceca has 
resulted in an array of bacterial communities (Gram-positive 
Y-branched, Gram-positive non-sporulating, Gram-negative) 
and may be attributed to the rearing conditions, chicken breed, 
diet, or even the cultivation and enumeration methods applied 
for bacterial characterization (125). Nevertheless, there are trends 
observed in available data investigating the microbial populations 
in broiler chickens grown in a conventional poultry flock and 
those raised under laboratory conditions (76, 134).

Lactobacilli and bifidobacteria are two of the more well-
known beneficial bacteria, however, there are numerous others: 
Bacillus, Enterococcus, E. coli, Lactococcus, Streptococcus as well 
as undefined mixed cultures (Table  3) (23). These bacteria are 
indigenous to the GIT, occupy space, and consume nutrients 
along the intestinal tract, limiting the colonization of pathogenic 
bacteria. In addition to competing for space and nutrients, these 
bacteria have been recognized for exporting bacteriocins, which 
can target and kill invading pathogens (133). All of these micro-
organisms fit under the umbrella term probiotics. Like prebiotics, 
probiotics also have specified criteria and characteristics: (1) 
non-pathogenic and of host origin, (2) resistant to gastric pH 
and processing/storage, allowing them to persist in the intestinal 
tract, (3) able to adhere to epithelial and mucosal membranes, 
(4) modulate immune responses, and (5) produce inhibitory 
compounds (23). It is the complexity and broad diversity of the 
beneficial microorganisms that make up the microbiome and 
allow for a mature and healthy host (51, 52).

Bacteria may be beneficial to the host by aiding in degrada-
tion of polysaccharides otherwise indigestible to the host. The 
monosaccharides produced can be subsequently broken down 
further into SCFAs and lactic acid (37). As previously mentioned, 
both lactobacilli and bifidobacteria are beneficial and indigenous 
to the human and chicken GIT (145). Lactobacilli are members 
of a group collectively referred to as lactic acid bacteria, which 
metabolize carbohydrates to produce lactic acid as the primary 
end product (146). Oligosaccharides are their main nutritional 
source, which is reflected in their residence in ecological niches 
rich in carbohydrate-containing substrates, most commonly 
plant material, spoiled or fermented foodstuffs, and mucosal 
membranes of humans and animals (147). Along with their broad 
range of habitats, lactobacilli are able to adapt to various condi-
tions by altering their strictly fermentative metabolism accord-
ingly; they may be obligately homofermentative, facultatively 

homofermentative, or obligately heterofermentative (148). Their 
fermentative status is based on the levels and proportions of end 
products they generate from fermentation of differing substrates 
(although other factors, such as chemical and physical environ-
ment, play a role in determining fermentative status). Obligately 
homofermentative indicates that their primary fermentation 
product is lactic acid (>85%) generated by fermenting hexoses 
(149). Facultatively homofermentative indicates that they are 
capable of fermenting hexoses and pentoses using different 
pathways to generate lactic acid (although under low substrate 
concentration and strictly anaerobic conditions, they are capable 
of producing acetic acid, ethanol, and formic acid). Obligately 
heterofermentative lactobacilli ferment hexoses generating equi-
molar amounts of lactic acid, CO2, and acetic acid (148–150). 
Although the end products produced are a fair indication of 
fermentative status, they are not the sole factor. These microor-
ganisms are aerotolerant and acidophilic, allowing for the GIT to 
be an optimal residence (146, 151).

Bifidobacteria are another well-documented example of ben-
eficial bacteria. They are often associated with lactic acid bacteria 
for their production of lactic acid, however, they are phylogeneti-
cally distinct. Bifidobacteria are Gram-positive, heterofermenta-
tive, and non-motile (152). Like lactobacilli, bifidobacteria digest 
oligosaccharides to use as carbon and energy sources, to produce 
lactic acid, acetic acid, ethanol, and formic acid (153). They are 
not exclusive to the utilization of dietary compounds, they can 
also digest carbohydrates produced by other members of the GIT 
(154). Additionally, they are capable of internalizing simple sug-
ars remaining in the environment, thus preventing pathogenic 
bacteria from utilizing them as a nutrient source (155).

Both lactobacilli and bifidobacteria are known to be members 
of the intestinal microbiota in animals and humans; their presence 
is important for the maintenance of the GIT microbiota (156–158). 
Being that lactobacilli and bifidobacteria are autochthonous and 
dominant in the GIT, they can be utilized as a control method 
of pathogenic bacteria by competition, for example Clostridium 
perfringens (156). Lactobacilli and bifidobacteria possess char-
acteristics that allow them to out-compete pathogenic bacteria. 
Various strains of lactobacilli adhere to intestinal epithelial-like 
cells and exhibit antimicrobial activity against bacteria typically 
found in the (human) GIT (157). A link between the lactobacil-
lus strain’s pH tolerance and antimicrobial properties has been 
reported, both in vitro and in vivo (157).
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TABLe 4 | Published reviews on the considerations of common prebiotics in various hosts.

Prebiotic Considerations Host Reference

Inulin-type Structure overview Not applicable (172)

Short-chain carbohydrates Gut function and health Human (175)

Inulin-type Bifidogenic, resistant to digestion Non-specific (176)

Resistant starch Production of SCFA, microbiome modulation, gut-associated 
immunomodulation

Human (177)

Mannan-oligosaccharides Modulation of gut microbiome Poultry (27)

Fructo-oligosaccharide, galacto-
oligosaccharide, lactulose

Criteria for prebiotic classification Human (168)

Inulin-type, oligofructose Quantification of inulin and oligofructose in Western diet Human (173)

Fructo-oligosaccharide Bifidogenic, lack carcinogenic and toxic effects Poultry, swine (174)

Fructo-oligosaccharide, inulin-type Selective to beneficial bacteria, prevent pathogen colonization Poultry (178)
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Different species of lactobacilli and bifidobacteria produce vari-
ous antimicrobial agents, which allow them to be inhibitory toward 
pathogenic bacteria. Many species of lactobacilli and bifidobac-
teria produce SCFA; the production of these acids causes a drop 
in intestinal pH. The lowered pH level extends the lag phase for 
sensitive microorganisms (124). The undissociated forms of these 
acids are able to penetrate the microbial cell and hinder metabolic 
functions (further information on the mechanisms of these acids 
was discussed in a previous section of the current review). Another 
end product generated from lactobacilli and bifidobacteria is CO2, 
which has demonstrated inhibition of microbial growth (149). The 
inhibitory mechanism of CO2 is unclear, although Eklund (159) 
was able to rule out the proposed mechanism of CO2 accumulation 
in the membrane of the microorganisms, physically interrupt-
ing the bacterial membrane. Growth of E. coli, Bacillus subtilis, 
Pseudomonas aeruginosa, and Bacillus cereus has been shown to be 
inhibited in the presence of CO2 at various concentrations (159). 
Succinic acid is produced by both lactobacilli and bifidobacteria, 
although at minimal levels (160, 161), and is associated with 
antibacterial activities in a multitude of environments (162, 163). 
Diacetyl is an end product of lactobacilli that exhibits antimicrobial 
effects. It is suggested that diacetyl is more effective in a lower pH 
(≤7) causing it to be lethal to Gram-negative bacteria and inhibi-
tory of yeasts (164). Bacteriocins, produced by lactobacilli, may 
have a narrow or broad range of activity. Lindegren and Dobrogosz 
(149) have reviewed the various antimicrobial agents produced by 
lactic acid bacteria in more detail.

Overgrowth of any single type of bacteria can have unfavora-
ble effects on the host. Lactobacilli are considered beneficial 
bacteria, however, antibiotic growth promoters that stimulate 
improved growth of broilers were also associated with heightened 
sensitivity of lactobacilli to those antibiotics (165). Although the 
host may benefit from the commensal bacteria competing with 
pathogenic bacteria, an overgrowth of commensal bacteria can be 
detrimental to the host by excessive uptake of nutrients making 
them unavailable to the host (166). Additionally, overgrowth of 
lactobacilli can impair host fat absorption by not allowing proper 
biotransformation – deconjugation and dehydroxylation – of bile 
acids (14). Overgrowth of bacteria can also lead to overproduc-
tion of fermentation end products to the detriment of the host. 
For example, overgrowth of Streptococcus bovis, a commensal 
lactic acid-producing bacteria can generate considerable acid 

production and a concomitant lowering of the surrounding 
environment pH. This sequence can be advantageous for compet-
ing against pathogens. Consequently, under in vitro incubation 
conditions in co-culture with Salmonella typhirmurium growth 
of S. bovis can behave as a probiotic and directly limit Salmonella 
growth as a function of carbon source and time of inoculation 
(144). However, when easily fermented carbohydrates are fed 
to ruminants, excessive S. bovis growth can occur in the rumen 
resulting in rapid lactic acid overproduction, subsequent lower-
ing of the ruminal pH, and the eventual development of a harmful 
ruminal lactic acidosis condition in the animal (167). Therefore, 
even though S. bovis might be considered a gut commensal 
organism, and in some cases a probiotic candidate, it can also 
be associated with host clinical disease states, such as bacterial 
endocarditis and colon cancer in humans (144).

introduction and History of Prebiotics

The most widely accepted definition of prebiotics are non-
digestible feed ingredients that are selectively fermented by 
beneficial bacteria in the lower GIT (capable of withstanding 
harsh conditions in the upper GIT) so as to provide energy to 
promote bacterial growth and metabolism in the colon which 
contributes to specific changes that lead to improved host health 
(22, 35, 168). Colonic food is a non-digestible ingredient that 
makes it past the upper GIT and into the colon, serving as a sub-
strate for non-specific bacterial inhabitants, both beneficial and 
harmful (169, 170). Not all colonic foods are necessarily prebi-
otics; the rationale for designating a compound as a prebiotic or 
not depends upon whether beneficial bacteria alone are able to 
digest it. Some miscellaneous compounds that serve as colonic 
food, but do not fall into the category of prebiotics because 
of the non-specific targeting of microbiome bacteria include 
resistant starch, non-starch polysaccharides, non-digestible 
oligosaccharides, and yeast fermentation products (171). 
There have been numerous studies conducted and reviews 
written covering common prebiotics and their beneficial 
impacts; therefore they will not be discussed in detail here 
(Table 4) (35, 172–174).

Some lesser-studied prebiotic-like compounds are 
Saccharomyces cerevisiae fermentation products (SCFPs) or 
yeast culture (YC) components; these compounds do not fall 
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into the precise definition of prebiotics as set by Roberfroid (22), 
among other classical definitions. However, they have prebiotic-
like effects in that they have been shown to enhance nutrient 
utilization and digestibility, as well as improving the immune 
system and inhibiting pathogen-intestinal cell interaction by 
modifying the GIT microbiome (179–181). The fermentation of 
S. cerevisiae – undefined strains – produces SCFP. They include 
the fermentation products and metabolites, the media used in the 
fermentation to preserve fermentation activity, and both the yeast 
cell wall fragments and residual live yeast cells; thus, they share 
characteristics in both probiotic and prebiotic realms (179). There 
are commercial YC products available that are being more thor-
oughly investigated to identify their exact effects and maximize 
the directed influence(s) they may have.

Because yeasts are most often associated with the wine mak-
ing, brewing, baking, and other fermenting industries, it is critical 
to consider why these unique organisms were initially promoted 
for use in improvements of animal and human health. In order to 
do this, a brief review of the history of yeast that led to its usage 
as a feed additive is discussed in the following section.

introduction to Yeast: History and 
Background

To understand the current use of yeast and yeast products in food 
and agricultural settings, it is important to at least briefly describe 
the history of yeast in scientific applications and the evidence for 
the close relationship among yeast strains originally uncovered 
and those used in today’s laboratory-based research. Humans 
began using yeast over 7,000  years ago, with its earliest usage 
dating back to the Neolithic times for wine making (182, 183). In 
the past century, yeasts have been investigated on a genetic level 
after the Carlsberg Laboratory introduced scientific concepts to 
the brewing industry, as discussed by Greig and Leu (184). In the 
1930s, the genetic analysis of yeast became accepted based on its 
potential as an experimental organism; it was pioneered by Øjvind 
Winge and Carl Lindegren (185). Winge used a strain isolated from 
the Carlsberg Laboratory, while Lindegren used a strain, EM93, 
isolated from rotting Californian figs (182). Yeast continued gain-
ing popularity in the scientific field for its ease in gene manipula-
tion (182). In the 1950s, Robert Mortimer constructed the strain 
S288C, which has been purported to share more than 85% of its 
genome with EM93, Lindegren’s original strain (most laboratories 
involved in the analysis of yeast use a derivative of EM93 – a strain 
of S. cerevisiae). This strain was subsequently sequenced in 1996, 
making it the first fully sequenced yeast genome (186, 187). For 
further purposes of the current review, S. cerevisiae is the main 
species of yeast discussed unless otherwise indicated.

Yeast in the Laboratory

A renowned model organism, yeast is a single-celled fungal 
eukaryote that most often divides by budding. Yeasts are used in 
various industries because of their ability to ferment sugars in the 
absence of oxygen to produce CO2 and alcohol. In a laboratory 
setting, yeasts are most often used for analysis as a model template 
to study higher eukaryotic organisms. Yeasts are ideal for studying 

processes known to occur in more complex eukaryotic organisms 
because even though yeasts are unicellular, they encode similar 
proteins and are thus representative of more complex organisms 
at the cellular level (188). When comparing all yeast protein 
sequences to mammalian sequences, of the potential protein 
encoding regions in yeast, “statistically robust” homology among 
the two was observed (189). Because of the lack of mammalian 
protein families and proteins sequenced, there may be much 
greater similarities between the two.

Part of the attraction of yeast as an experimental model is the 
ability to easily manipulate and mutate genes, either on plasmids 
or in the yeast chromosome itself, to view the resulting pheno-
typic effects (182). An insight into its fairly simple manipulation 
is evident in research performed by both Caspeta et al. (190) and 
Liu et  al. (191). Caspeta et  al. (190) manipulated S. cerevisiae 
into expressing thermotolerance to temperatures ≥34°C (typical 
response to these temperatures is serious impairment of function) 
by exposing the isolate for short stretches of time to increased heat 
followed by serial batch transfers. This resulted in non-inheritable 
heat tolerant strains that exhibited increased growth rates as well 
as increased glucose consumption rates at higher temperatures 
when compared to thermolabile strains (190). Thermotolerance 
has also been bestowed upon S. cerevisiae by the introduction 
of genes from organisms that are naturally thermotolerant. 
This transfer of genes allows for inheritable alteration in future 
generations of S. cerevisiae. Duina et  al. (182) illustrated the 
extent to which yeast has proven its efficacy as a model organism, 
discussing research advancements and accolades (Nobel Prize 
and Lasker Award) in an array of fields achieved by utilizing yeast.

Although great progress has resulted from the study of yeast, 
it has also stimulated further inquiry. Yeast researchers began 
with the goal of determining functions of single genes and 
proteins, but now seek a “systems level” approach. The benefit of 
understanding how proteins interact to maintain cellular func-
tions (metabolism, reproduction, growth, regulation, signaling, 
and homeostasis) is now at the forefront for yeast biology (192). 
Yeast’s position as a model organism for various scientific fields 
is reviewed more thoroughly in several articles and therefore will 
not be further discussed here (192–194). A review by Siddiqui 
et  al. (195) encompasses the potential of engineering yeasts to 
contain secondary metabolite pathways for pharmacological 
purposes. Additionally, Sherman (196) has generated a compre-
hensive review (both extended and truncated versions available) 
on the biological basics of yeast, which includes a section on a 
variety of outside literature references for yeast.

Yeast Metabolism

Yeasts are capable of cellular respiration in the presence and 
absence of oxygen; for this review, we will discuss respiration only 
in the absence of oxygen, as it is most applicable to the topic of 
the current review. Anaerobic respiration, or fermentation, is the 
process of breaking down sugars to generate energy for carrying 
out cellular processes. In anaerobic cellular respiration, sugars 
are broken down into pyruvate and subsequently decarboxylated 
and reduced to form CO2 and ethanol. For fermentation to begin, 
any complex sugars must be broken down into simple sugars 
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(e.g., sucrose to glucose and fructose) via enzymes from yeasts, 
adding an additional step to the fermentation process (197). In 
the process of understanding this, it is recognized that complex 
carbohydrates (starches and fiber) are more challenging for yeasts 
to ferment than simple sugars. Investigation into the types of sug-
ars and environments yeasts are capable of fermenting is necessary 
to optimize the production and utilization of yeast fermentation 
products. By understanding the conditions in which yeast fermen-
tation is optimized, they can be engineered to generate additional 
metabolites that may prove to be beneficial for use in animal feed.

Yeast as an Animal Feed Additive

The usage of live yeast and yeast products in animal feed is 
not a new concept, although pinpointing the exact point of its 
conception has proven to be challenging. It is suggested that 
the introduction of YC in animal feed was not until the 1980s 
(198). It appears that the majority of research has been dedicated 
toward ruminants, while equine, porcine, poultry, and compan-
ion animals received attention to a lesser extent. Initially, yeast 
was used in an array of modes because of the large quantities 
of yeast biomass waste generated by distilleries (and other yeast 
utilizing industries) (199). It was used as a feed additive because 
it was a rich source of protein, fiber, and minerals. It has been 
hypothesized that both viable and non-viable yeast cells provide 
essential B vitamins and organic acids (200). In the past, both 
viable and non-viable yeast cells have been added to animal 
feed  –  including poultry feed  –  and resulted in increased host 
growth and improved health (199).

It is essential to have a precise definition for YC, so it is not 
confused with using live yeast (probiotic/direct fed microbial 
form) or yeast extract (only soluble portion of yeast autolysis) 
products (201). As described in a previous section of the current 
review, YC contains the cellular constituents as well as residual 
viable cells. It is effective when used because it contains lysed 
yeast cells; this allows for the nutrients within the yeast cells 
to be available for digestion and absorption (202). These yeast 
cells are lysed by autolysis; they are subjected to temperature or 
osmotic shock, thereby killing the yeast cell while leaving the 
endogenous enzymes undamaged. The yeast cell’s own enzymes 
begin to degrade the yeast cell, releasing its contents and further 
degrading its proteins into amino acids (203). Some yeast cells 
that are capable of tolerating the temperature or osmotic shock, 
do not autolyze, and remain metabolically active.

The mode of action of YC is seen to enhance digestive and 
fermentative functions of the GIT, while modifying activities of 
the GIT microbiota, although the mechanisms are less clear (198). 
Based on in vitro and in vivo studies, supplemented YCs appear to 
have several impacts on the rumen microbiota including increased 
numbers of beneficial bacteria and fiber digesting bacteria as well as 
shifting away from hydrogen consuming methanogens and toward 
bacteria capable of converting hydrogen and CO2 to acetic acid, 
all of which could, in turn, potentially benefit the ruminant host 
animal either directly or indirectly (204, 205). Enhanced growth 
performance resulting from the supplementation of YC with pro-
biotics (Lactobacillus acidophilus and Streptococcus faecium) has 
indicated its potential effect of increasing digestion and absorption 

of the GIT microbiota occurring in broiler chickens (206). de Oliva 
Neto et al. (207) conducted studies on the antibacterial properties 
of YC supernatant, which indicated a reduction of pathogenic 
bacterial growth when tested against a common distillery bacterial 
species. Interestingly, the supernatants were tested as both fresh 
and post freeze/thaw, and reported similar results indicating the 
antimicrobial activity could withstand freezing. Conversely, when 
heat (90°C for 20 min) was applied, the antibacterial activity was 
destroyed. Accordingly, YC and yeast extract have yielded varying 
results, which suggests the necessity for metabolically active yeast 
cells. When supplementing heat-treated inactive yeast cells to 
steer diets, there was no effect on the concentrations of cellulolytic 
bacteria, while supplementing live, metabolically active yeast cells 
increased the concentration of cellulolytic bacteria (208).

In addition to their ability to interfere with bacteria due to 
their relative large size, supplementation with live yeast products 
has led to a few suggested modes of action (209). One mechanism 
suggested by Jouany et al. (204) involves metabolic competition 
with bacteria that may be adhering to and digesting fiber or starch 
molecules. In this scenario, the yeasts ferment the carbohydrates 
produced, prohibiting their usage by other bacteria. Another 
mechanism of action of live yeast cells is their ability to produce 
protective products with antitoxin effects (210). Yeast intake has 
resulted in a stimulation of activity of host intestinal brush border 
enzymes, which has counteractive effects to those of pathogens, 
along with supplying the host with additional enzymes (211). 
Elimination of oxygen has been deemed the most influential 
mode of action in ruminants (212). Although there is little oxygen 
present in the GIT, live yeast cells scavenge for excess oxygen 
introduced by food and water intake; this allows for a more 
optimal environment for anaerobic bacteria (204, 212). Most all 
implications regarding the mechanism of oxygen elimination 
have been derived from studies conducted on ruminants.

As noted previously, the majority of the studies on the effects and 
mechanisms of YC have been performed on ruminants. Although 
such studies may be a good indicator of the potential use of YC in 
other animals, it can also be expected that there will be differences 
seen among ruminants and non-ruminants. For example, consider-
able research has been conducted on the effects of milk production 
in cattle, while this is beneficial for other lactating animals, the 
information gleaned from these studies holds little merit for poul-
try researchers. Instead, conducting in vitro and in vivo studies on 
specific animal subjects of interest would be more useful in identify-
ing the mechanisms of YC in those animals rather than projecting 
ruminant/rumen microbiota results onto non-ruminant species.

impact of YC on Host–Microorganism 
interactions

The effects of YC on the intestinal morphology in swine have 
indicated increased jejunal villi width, which allows for greater 
digestive and absorptive intestinal capacity leading to better 
body weight gain when compared to controls (180). In contrast, 
poultry data obtained has thus far indicated significant differ-
ences in intestinal morphology (213–215). Supplementation of 
YC has resulted in more shallow crypt depths, indicating less 
necessity for cell renewal and turn-over, allowing for decreased 
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host energy utilization for intestinal epithelial maintenance 
(216). Feed efficiency and body weight gain have both resulted 
in significant increases when YC, yeast derivatives, and live yeast 
cells are added to the poultry diet (215, 217, 218).

Inclusion of YC in animal feed has led to suggestions that they 
may aid in the clearing of pathogens from infected animals. A 
study involving the inoculation of pigs with Salmonella suggested 
that the inclusion of YC in the diet allowed for rapid shedding of 
the pathogen from the GIT (180). Supplementation of broiler feed 
with YC has also been seen to enhance adaptive immune system T 
lymphocytes, allowing for better clearing of the pathogens (181). 
El-Husseiny et al. (219) observed that commercial YC were able 
to significantly increase antibody production against SRBC, much 
in agreement with the findings of Al-Homidan and Fahmy (220), 
who reported significantly higher antibody titer concentrations 
in response to Newcastle disease in broilers fed YC.

Further examination into the components of yeasts’ cell 
walls indicates the beneficial structural polysaccharides present 
and released into culture when yeast cells autolyze. Mannan-
oligosaccharide (MOS) is included in the YC as it is derived 
from the outer cell wall of S. cerevisiae. MOSs bind to pathogenic 
bacteria in the GIT, preventing their attachment to the mannan 
residues on intestinal epithelia (221). This not only protects the 
host from pathogens but also allows for host energy reserves to 
be utilized for their own growth rather than to the repair and 
regeneration of the epithelial lining (222). β-glucans are also 
released when the yeast cell wall is degraded; presence of these 
molecules can lead to pathogen inhibition along with immuno-
modulating effects. Similar to MOS, β-glucans act by preventing 
pathogens from binding to the villi of the gut mucosa (214, 216). 
Additionally, β-glucans are known to activate phagocytes, natural 
killer cells and B and T lymphocytes as well as increase cytokine 
production and phagocytic activity of macrophages (223).

Mannan-oligosaccharide supplementation has been reported 
to increase broiler growth performance when supplemented in 
their diet (224, 225). In vitro experimentation has indicated that 
addition of MOS inhibits the attachment of enteropathogenic E. 
coli to the gut mucosa as well as removing attached E. coli from 
the mucosa (226). Inclusion of yeast fermentation products, like 
MOS, appears to reduce pathogenic bacterial populations. The 
mechanism is unclear, although the agglutination of the pathogens 
with sugars from the yeast cell wall occurs rather than attachment 
to the host intestinal lining is one hypothesized mechanism (227). 
Yang et  al. (228) indicated MOS altered the gut microbiota of 
broilers and reduced the number of mucosal-associated coliforms.

Although some studies suggest a positive association between 
yeast and growth promotion (229, 230), other studies have indi-
cated no positive effects on inclusion of YC in broiler diets (231). 
Paryad and Mahmoudi (229) indicated that inclusion of 2% 
yeast (Saccharomyces cerevisae) in broiler chicken diets resulted 
in significant differences in body weight gain, feed intake, and 
feed conversion rate when compared to controls. Similarly, 
investigation into YC on growth promotion in lambs suggested 
its efficacy, resulting in increased feed intake and growth by 8 
and 26%, respectively. Conversely, similar research conducted on 
lambs evaluating the efficacy of three yeast strains and a mixed 
culture resulted in little consistency and lacked an overall effect 

when compared among yeast strains (232). Adebiyi et al. (231) 
also showed no significant differences in body weight gain in 
broiler chickens when fed varying percentages of YC.

Yeast Metabolites and Metabolism as 
Prebiotic-Like Substances

In addition to the structural polysaccharides derived from the 
yeast cell wall, yeasts generate a number of metabolites that may 
offer benefits to the host animal when supplemented to animal 
feed. Metabolites include carotenoids, vitamins, enzymes, amino 
acids, and some miscellaneous products (200). Several yeast spe-
cies are naturally capable of producing carotenoids (including 
β-carotenes), which are subsequently metabolized into vitamin A 
(200). Vitamin A aids in cellular differentiation and proliferation, 
making it critical for intestinal maintenance and health (233). The 
enzyme responsible for the synthesis of vitamin A from β-carotene 
is β,β-carotene 15,15′-monooxygenase, which has been isolated and 
characterized from the intestines of poultry, among other animals 
(234, 235). Although S. cerevisiae is not capable of naturally produc-
ing carotenoids, it is capable of and has been engineered to express a 
biosynthetic pathway for the production of β-carotene (236).

Other vitamins (vitamin precursors) produced by yeasts 
include ergosterol, l-ascorbic acid, and d-erythroascorbic acid. 
Ergosterol is particularly abundant in S. cerevisiae, accounting for 
up to 90% of the total sterols (237). It is located in the membrane 
of yeasts and is responsible for its fluidity, structure, permeability, 
and activity of membrane-bound enzymes (238). Ergosterol is a 
precursor to both vitamin D2 and cortisone (239). Vitamin D2 is 
responsible for the proper absorption and transport of calcium, 
among other minerals (240). d-Erythroascorbic acid is also syn-
thesized by S. cerevisiae and depending on the substrates available, 
that pathway can be manipulated into producing l-ascorbic acid 
(vitamin C) (241). The ingestion of vitamin C has been suggested 
to alleviate some of the repercussions of heat stress: poor immune 
function and growth performance (242). However, instances of 
supplementation of l-ascorbic acid in poultry diets have had 
varying results; some resulted in increased levels of superoxide 
dismutase in 45-week-old broilers, while others revealed no effect 
on the activities of antioxidative enzymes, superoxide dismutase 
included in 7-week-old broilers (243, 244).

Yeasts are recognized for their production of enzymes express-
ing various activities (245). Jones (246) wrote a comprehensive 
review documenting the activities of the proteolytic systems in S. 
cerevisiae, along with mentioning other enzymes elucidated in S. 
cerevisiae (carboxypeptidases, aminopeptidases, and dipeptidyl 
aminopeptidases). An enzyme in Saccharomyces boulardii, a 
subtype of S. cerevisiae, was found to degrade the ileal receptors 
in rats for toxin A generated from Clostridium difficile (a food-
associated pathogen causing gastroenteritis; one study isolated 
C. difficile from 2.3% of broiler chickens tested) (247, 248). The 
degradation of the receptors prohibits the toxin from binding and 
prevents infection from occurring (249, 250). There have been 
multiple other proposed mechanisms of action for yeast on the 
immunoprotective effect in the GIT, specifically the prevention of 
C. difficile infection: (1) S. boulardii releases proteases that hydro-
lyze toxins and prevent its binding to the intestinal receptor (250), 
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(2) S. boulardii is capable of stimulating the activity of disacchari-
dases in the intestinal brush border with no additional alterations 
of the intestinal mucosa (211), and (3) S. boulardii increased the 
production and secretion of glycoproteins, namely the secretory 
component of immunoglobulin A (251). Potentially, by narrow-
ing the focus on the exact mechanism of action, S. cerevisiae could 
be engineered to confer said mechanism and supplemented into 
animal (poultry) feed to prevent colonization of C. difficile.

Invertase is another enzyme produced by S. cerevisiae; it 
hydrolyzes sucrose into glucose and fructose (252). Invertase effi-
ciency and sucrose availability allows for glucose to be a carbon 
source for S. cerevisiae (252). Ideally, provided the diet contained 
appropriate levels of sucrose, one could engineer S. cerevisiae to 
overproduce invertase and subsequently add it to poultry feed. 
This would allow increased production of glucose, available not 
only for its own needs but also for other microorganisms in the 
surrounding environment. This mode of action would not be 
selective toward beneficial bacteria in the microbiome.

Yeasts have multiple amino acid transport systems; amino 
acids are incorporated into proteins or they are broken down and 
utilized as nitrogen and carbon sources to promote growth (253). 
Yeasts and yeast derivatives are capable of producing amino acids; 
therefore supplementation to animal feed would provide both 
the host and the microbiome with amino acids. Almquist (254) 
reviewed the essential amino acid requirements in young chicks, 
laying hens, and turkeys; Almquist included a table outlining the 
percentages of each amino acid to reach a specific protein level. 
Amino acids are necessary for poultry to have proper growth and 
promote efficient weight gain and feed conversion ratios (255). 
Lysine appears to be one such amino acid that plays a significant 
role in the body composition of poultry (256). Mutants of S. 
cerevisiae have been revealed to produce up to 17 times as much 
lysine as wildtype; thus this rich source of lysine may prove to be 
valuable to the growth and development of poultry (257).

Miscellaneous metabolites are also produced in S. cerevisiae, 
including toxins responsible for the “killer phenomenon.” 
Originally, this phenomenon was considered to be lethal only 
toward members of the same species; however, further inves-
tigation has led to the recognition of these toxic species to 
have destructive consequences reaching both prokaryotic and 
eukaryotic organisms (258–261). Polonelli and Morace (261) 
acknowledge that the inhibition of outside species may not be 
a direct impact on the toxins secreted, but more of a concerted 
effort from multiple metabolites. Nevertheless, these toxic species 
of S. cerevisiae are displaying lethality toward unrelated species. 
This can be utilized to the advantage of commercial poultry 
production, provided further research is conducted on character-
izing whether this toxicity also occurs toward beneficial bacteria.

Conclusions: impact on Poultry industry 
and Future Directions

In the search for a replacement to antibiotic growth promoters, 
the poultry broiler industry has two main objectives, a substance 
that (1) increases the growth of broiler chickens (body weight gain 
and feed conversion ratio) and (2) prevents the colonization of 
invading pathogens. Ideally, a single feed additive would prevent 

pathogen colonization while developing beneficial microbiota 
to aid in bird growth and feed conversion (262). Multiple feed 
additives have been attempted: antimicrobial agents, probiotics, 
prebiotics, and prebiotic-like substances. Probiotics need to be 
clearly identified and carefully analyzed to understand the influ-
ence they may have on the poultry GIT microbiota. As discussed 
previously, lactobacilli and bifidobacteria are two known groups 
that provide the host health and well-being based on their end 
products. These bacteria both ward off pathogens by creating 
an unfavorable environment against pathogen retention in the 
gut and also generally aid host GIT health, in turn resulting in 
enhanced bird growth (133).

To increase the efficacy of supplying probiotics to the host, 
the concept of synbiotics has been suggested. Synbiotics entail 
equipping the beneficial bacteria with substrates specific to their 
metabolic needs (23). Potentially, this allows for the greatest 
impact as it reduces the substrates taken by the probiotics from 
the host. Prebiotic-like substances are often times non-selective, 
therefore, combining a probiotic and a prebiotic-like substance 
does not fit into the synbiotic definition (263). Understanding the 
effects and specificity of probiotics, prebiotics, and prebiotic-like 
substances will allow for the best match of known commensal 
bacterial communities and substrates for a given host.

Yeast cells and YC products developed thus far have been 
extensively examined for their effects as supplements in animal 
feed. Numerous studies report the positive association with growth 
performance, immunostimulation, and microbiome modulation in 
animals and humans (209). In addition to being explored for their 
positive impacts as supplements in animal feed, yeasts and their 
derivatives have been investigated for their low risk and assurances 
of safety in their usage. Yeasts are cost efficient in both production 
and formulation (200). They do not have the ability to transfer 
genes they may acquire to pathogenic or commensal bacteria, or to 
the host. Yeasts are able to resist acquisition of antimicrobial resist-
ance as well as not allowing for the transfer of such resistance (209). 
This also allows yeast to be safely used in parallel with antibacterial 
agents. Yeasts also have multiple mechanisms of action, allowing 
them to be productive in a range of environments (200).

A more thorough understanding of the microbiome can eluci-
date the mechanisms of prebiotics and prebiotic-like substances. 
The GIT microbiome is distinct and unique in its functionality 
relying on the presence of a definable, and potentially identifi-
able, microbial consortia. Understanding the influences of the 
members of the microbiome and also the microbiome as a single 
entity will allow for a more directed approach in the search of 
therapeutics and growth promoters. The GIT microbiome may 
be more appropriately considered as an additional organ; it has 
impact on host growth and development, and host health.

The limitations in previous research conducted have made 
future research necessary to resolve unanswered questions. It 
is imperative to define universal and standardized detection 
methodology to identify the bacterial communities present in the 
healthy, mature poultry microbiome. This would alleviate the issue 
of having varying results based on detection methods utilized. In 
addition, evaluating the currently suggested probiotic candidate 
organisms (Table 3) indicates the potential advantages of involving 
multiple potential probiotic bacterial and yeast strains to exhibit 
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a concerted effort in maintaining GIT health. This would allow 
for the identification of potentially more uniform mixed probiotic 
cultures consisting of functionally well-defined individual bacterial 
members that when used to inoculate newly hatched chicks ensures 
more rapid development of a mature beneficial microbiome.

Further work with yeast, YC, and yeast extracts needs to be 
conducted on poultry. Much of the discussion in the current 
review was based on the results from yeast products applied to 
animals and humans but not poultry. To gain an accurate sense 
of the effects in poultry, such experimentation needs to be con-
ducted in poultry (in vitro and in vivo). Additionally, many of the 
metabolites mentioned previously were investigated independent 
of yeast, YC, or yeast extract. It would be beneficial to assess the 
impact of metabolites and components from yeast individually 
as well as when combined. This would allow for the identification 

of beneficial metabolites and their respective individual and 
combined functional impacts on the corresponding host.
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