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Growth factors and feeder cells promote differentiation 
of human embryonic stem cells into dopaminergic 
neurons: a novel role for fi broblast growth factor-20
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Human embryonic stem cells (hESCs) are a potential source of dopaminergic neurons for treatment of 
patients with Parkinson’s disease (PD). Dopaminergic neurons can be derived from hESCs and display a 
characteristic midbrain phenotype. Once transplanted, they can induce partial behavioral recovery in animal 
models of PD. However, the potential research fi eld faces several challenges that need to be overcome 
before clinical application of hESCs in a transplantation therapy in PD can be considered. These include 
low survival of the hESC-derived, grafted dopaminergic neurons after transplantation; unclear functional 
integration of the grafted neurons in the host brain; and, the risk of teratoma/tumor formation from the 
transplanted cells. This review is focused on our recent efforts to improve the survival of hESC-dervied 
dopaminergic neurons. In a recent study, we examined the effect of fi broblast growth factor (FGF)-20 
in the differentiation of hESCs into dopaminergic neurons. We supplemented cultures of hESCs with 
FGF-20 during differentiation on PA6 mouse stromal cells for 3 weeks. When we added FGF-20 the yield 
of neurons expressing tyrosine hydroxylase increased. We demonstrated that at least part of the effect is 
contributed by enhanced cell differentiation towards the dopaminergic phenotype as well as reduced cell 
death. We compare our results with those obtained in other published protocols using different sets of 
growth factors. Taken together, our data indicate that FGF-20 has potent effects to generate large number 
of dopaminergic neurons derived from hESCs, which may be useful for hESC-based therapy in PD.
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obtained from therapeutic abortions has provided 
proof-of-concept that PD can be treated with cell 
therapy (for review see Morizane et al., 2008). 
However, not all patients have improved after trans-
planted with embryonic mesencephalic tissue and 
subsets of patients have developed troubling dys-
kinesias (Freed et al., 2001; Hagell and Cenci, 2005; 
Hagell et al., 2002; Levivier et al., 1997; Olanow et al., 
2003). Furthermore, this source of dopaminergic 

INTRODUCTION
The motor symptoms in Parkinson’s disease (PD) 
are primarily due to the loss of a single cell type, i.e. 
the dopaminergic neurons located in the substan-
tia nigra pars compacta that project to the putamen 
and caudate nucleus. Due to the relatively restricted 
neuropathology, PD is considered a suitable disease 
for cell replacement-based therapy. Transplantation 
of mesencephalic tissue from human embryos, 
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hESC-derived dopamine neurons

neurons is not readily obtainable, it is heterogeneous 
in cell composition and its application is inherently 
connected to ethical issues related to the abortion. 
An ideal source of cell material should be available in 
large quantities in a predictable manner, it should be 
highly enriched in midbrain dopaminergic neurons, 
and safe to transplant with no risks of infection or 
tumor growth.

Human embryonic stem cells (hESCs) derived 
from the inner cell mass of human blastocysts 
are such a potential source of cells. These cells are 
pluripotent and can self-renew (allowing massive 
expansion). It has already been demonstrated that 
they can generate dopaminergic neurons in culture 
(Ben-Hur et al., 2004; Brederlau et al., 2006; Cho 
et al., 2008; Iacovitti et al., 2007; Ko et al., 2007; 
Park et al., 2004, 2005; Perrier et al., 2004; Roy et al., 
2006; Schulz et al., 2004; Sonntag et al., 2007; Ueno 
et al., 2006; Yan et al., 2005; Yang et al., 2007; Zeng 
et al., 2004) (Table 1). Improving the survival and 
functional integration of hESC-derived dopamin-
ergic neurons after transplantation is a major 
challenge that has to be overcome before clini-
cal application of hESCs is even to be considered 
in PD (Björklund et al., 2008; Correia et al., 2005; 
Deierborg et al., 2008; Hall et al., 2007; Morizane 
et al., 2008). Dopaminergic neurons derived from 
hESCs are functional in vitro, as shown by their 
ability to generate action potentials and release 
dopamine (Brederlau et al., 2006; Hong et al., 2008; 
Ko et al., 2007; Park et al., 2005; Perrier et al., 2004; 
Roy et al., 2006; Yan et al., 2005; Zeng et al., 2004). 
However, only a few studies have demonstrated 
that hESC-derived grafts can contain considerable 
numbers of tyrosine hydroxylase (TH)-expressing 
neurons and have claimed that they consistently 
induce behavioral improvement in the unilateral 
6-hydroxydopamine (6-OHDA)-lesion rat model 
of PD (Cho et al., 2008; Ko et al., 2007; Roy et al., 
2006; Yang et al., 2007).

Previous studies suggest that approximately 
100,000 surviving dopaminergic neurons are needed 
in the grafts on each side of the brain in a PD patient 
in order to obtain any clinical benefi ts after trans-
plantation (Hagell and Brundin, 2001). For rats 
with unilateral 6-OHDA lesions of the nigrostriatal 
pathway, only 1000 dopaminergic neurons must 
survive for the transplants to exert a signifi cant 
effect on amphetamine-induced rotation around 
6 weeks after surgery (Nakao et al., 1994). Therefore, 
obtaining a large fraction of hESCs that differenti-
ate into dopaminergic neurons in vitro would be 
an important step towards success of a cell-based 
therapy for PD. For this reason, we recently stud-
ied the effect of a known midbrain dopaminergic 
trophic factor, fi broblast growth factor (FGF)-20 
(Ohmachi et al., 2000, 2003), on the differentiation 

of hESCs into dopaminergic neurons and their 
 subsequent survival in vitro. Earlier work has shown 
that FGF-20 increases the number of TH- expressing 
neurons derived from neural stem cells in vitro 
(Grothe et al., 2004; Takagi et al., 2005). Expression 
of this growth factor is specifi c to the substantia 
nigra in the rat brain (Ohmachi et al., 2000). In 
addition, the FGF-20 receptor, FGFR1c, is highly 
expressed by TH-positive neurons in the substantia 
nigra and is present at lower levels in other brain 
regions (Ohmachi et al., 2003). In serum-free cul-
tures of primary rat mesencephalic tissue, FGF-20 
only prevents the death of the TH-expressing cells 
and does not affect the total number of neurons 
yielded (Ohmachi et al., 2000, 2003). Moreover, cer-
tain Fgf20 gene haplotypes are associated with the 
increased risk of PD (van der Walt et al., 2004). In 
our recently published study we found that addi-
tion of FGF-20 during differentiation of hESCs also 
increases the yield of dopaminergic neurons, prob-
ably both by promoting differentiation of the stem 
cells and by decreasing apoptosis among the differ-
entiated neurons (Correia et al., 2007).

FACTORS THAT INCREASE THE EFFICIENCY 
IN THE DIFFERENTIATION OF hESCs 
INTO DOPAMINERGIC NEURONS IN VITRO
Recent years have seen a dramatic number of stud-
ies describing the effects of a plethora of growth 
 factors and feeder cells on the development of 
neural cells from ESCs. It is believed that ESCs 
differentiate into neuronal cells “by default”, if 
not presented with stimuli that drive towards an 
alternative fate. These stimuli may be either solu-
ble growth factors, or signaling elicited by cell-to-
cell contact. Bone morphogenic proteins (BMPs) 
suppress neuronal differentiation. For this reason, 
addition of Noggin, a BMP antagonist, increases 
the commitment of hESCs to a neuronal fate dur-
ing differentiation (Ben-Hur et al., 2004; Iacovitti 
et al., 2007; Pera et al., 2004; Sonntag et al., 2007). 
Two major in vitro systems that induce neuro-
nal differentiation of ESCs are the formation of 
embryoid bodies (Carpenter et al., 2001; Park 
et al., 2004; Schulz et al., 2003; Zhang et al., 2001) 
and the co-culturing with a layer of specifi c feeder 
cells (Perrier et al., 2004; Roy et al., 2006; Zeng 
et al., 2004). In suspension cultures, ESCs sponta-
neously aggregate, differentiate and form spheri-
cal embryoid bodies containing precursor cells of 
all three germ layers (mesoderm, endoderm and 
neuroectoderm). By supplementing the culture 
medium with certain mitogenic factors, such as 
epidermal growth factor (EGF) and basic fi broblast 
growth factor (bFGF), neural precursor cells can 
be expanded further. Alternatively, co- culturing 
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of ESCs with specifi c feeder cells induces their 
 differentiation into neurons. Feeder cells with such 
properties include: (1) mouse stromal cell line PA6, 
isolated from mouse skull bone (also known as 
MC3T3-G2) (Park et al., 2005; Zeng et al., 2004); 
(2) mouse stromal cell line MS5, derived from the 
aorta-gonad-mesonephron (Hong et al., 2008; 
Ko et al., 2007; Perrier et al., 2004; Sonntag et al., 
2007); (3) amniotic membrane matrix (Ueno et al., 
2006) and (4) human midbrain astrocytes (Roy 
et al., 2006). Stromal cell-derived inducing activity 
(SDIA) is the name given to the activity of factors 
produced by the stromal cells that promote neuro-
nal differentiation of ESCs (Kawasaki et al., 2000), 
which have still not been fully identifi ed (Hayashi 
et al., 2008; Kawasaki et al., 2000; Yamazoe et al., 
2005; Zeng et al., 2004). In the same way, the differ-
entiation factors produced by the amniotic mem-
brane matrix and human midbrain astrocytes are 
also still not completely defi ned (Roy et al., 2006; 
Ueno et al., 2006).

Different soluble factors, which are known to 
be involved in the development and maintenance 
of the midbrain dopaminergic system in vivo, have 
been used to induce the dopaminergic differentia-
tion of hESCs in vitro (see Table 1). Sonic hedgehog 
(SHH) and FGF-8 are involved in the patterning 
of mesencephalic dopaminergic neurons (Ye et al., 
1998). Addition of FGF-8 into a co-culture sys-
tem with PA6 feeder cells genetically modifi ed to 
overexpress SHH leads to a substantial increase in 
the number of neurons expressing TH (Park et al., 
2005). Transforming growth factor (TGF)-α is 
present in early embryonic structures where mid-
brain dopaminergic neurons develop. This fac-
tor is believed to be essential for both induction 
and survival of dopaminergic neurons in vitro 
and in vivo (Farkas et al., 2003). After culturing in 
the presence of TGF-α for 21 days, about 15% of 
the hESC-derived cells become TH-positive and 
release dopamine (Park et al., 2004). Perrier and 
co-workers combined co-culture with addition 
of different soluble factors in their differentiation 
protocol. They co-cultured hESCs with MS5 cells 
overexpressing wingless-related MMTV integra-
tion site 1 (Wnt1), and the culturing medium was 
sequentially supplemented by combinations of the 
following factors SHH, FGF-8, brain-derived neu-
rotrophic factor (BDNF), GDNF, TGF-β3, dibu-
tyryl cAMP (dbcAMP) and ascorbic acid (AA). 
The sequential addition of a combination of these 
factors presumably imitates the development of 
the midbrain in vivo. Thereby it leads to the expres-
sion of transcription factors typical for midbrain 
neurons in a sequence similar to that observed 
during normal development. After 50 days expo-
sure to those growth factors, over 100 TH-positive 

 neurons could be generated from each undifferen-
tiated hESC initially plated, which is the highest 
yield reported to date (Perrier et al., 2004).

In our own experiments, when we co-cultured 
hESCs with PA6 feeders in presence of 1 ng/ml 
FGF-20, we observed a 5-fold increase in the yield 
of hESC-derived TH-positive neurons (Figures 1 
and 2). The percentage of TH-expressing neurons 
among the total hESC-derived cells increased from 
3% in the absence of FGF-20 to 15% in its pres-
ence (Correia et al., 2007). In concordance with 
our results, FGF-20 treatment of monkey ESCs 
 during differentiation also resulted in a 5-fold 
increase (from 5% to 24%) in the percentage of 
TH-positive neurons within the total number of 
neurons (Takagi et al., 2005).

HOW DOES FGF-20 PROMOTE THE INCREASE 
IN THE YIELD OF DOPAMINERGIC NEURONS 
FROM hESCs?
The underlying mechanism by which FGF-20 
enhances the yield of stem cell-derived dopaminer-
gic neurons still remains unclear (Takagi et al., 2005). 
In our study, supplementation of culture media with 
FGF-20 did not increase cell proliferation. However, 
it decreased the fraction of apoptotic cells, as detected 
by the presence of cleaved caspase-3 (from 2.5% with-
out FGF −20 to 1.2% with FGF-20, out of the total 
hESC-derived cells, Figures 1 and 2) (Correia et al., 
2007). Therefore, we conclude that FGF-20 increases 
the yield of TH-positive neurons via increased 
dopaminergic differentiation and reduced apoptotic 
cell death. Furthermore, we did not observe an effect 
of FGF-20 on the percentage of cells positive for βIII-
Tubulin (about 17% out of the total hESC-derived 
cells in both conditions, Figure 1), indicating that it 
did not increase overall neuronal differentiation.

Using immunocytochemistry (Correia et al., 
2007) and gene expression analysis (Anisimov et al., 
2007), we detected the presence of FGFR-1 in undif-
ferentiated hESCs, PA6 cells and hESC-derived 
TH-positive neurons. This suggests that FGF-20 
could act (1) on the pluripotent hESCs, promoting 
their differentiation into dopaminergic neurons; 
and/or (2) directly on hESC-derived dopaminergic 
neurons to increase their survival; and/or (3) on the 
PA6 cells, inducing them to produce factors that 
promote differentiation and survival of dopaminer-
gic neurons. It has been previously suggested that 
FGF-20, in a different cell culture paradigm, has an 
indirect mode of action on dopaminergic differen-
tiation mediated by Schwann cells (Grothe et al., 
2004).

FGF-20 has been suggested to activate anti-
apoptotic defenses in cultured rat mesencephalic 
dopaminergic neurons, particularly in calbindin-
negative A9 dopaminergic neurons, i.e. those 

Correia et al.
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Figure 1 | Major fi ndings of the treatment with FGF-20 of hESCs cultures 
during dopaminergic differentiation by co-culturing with PA6 cells.

Figure 2 | Representative images of TH-, cleaved caspase-3- and HNuc-positive cells in 
3 weeks differentiated hESCs/PA6 co-cultures untreated and treated with FGF-20 (–FGF-20 
and +FGF-20, respectively, adapted from Correia et al., 2007).

located in the substantia nigra pars compacta 
(Murase and McKay, 2006; Ohmachi et al., 2000, 
2003). We observed a signifi cant difference in the 
number of cells positive for cleaved caspase-3 in 
FGF-20-supplemented cultures (1.2%), compared 
to untreated cultures (2.5%). Furthermore, we 
also observed lower numbers of cells positive for 
the apoptotic markers cleaved caspase-8 and Bcl2-
associated X protein (BAX), when we added FGF-20 
to the cultures. Cleaved caspase-8 is involved in 

initiating the extrinsic cell death  pathway, while 
BAX polymerization mediates mitochondrial cyto-
chrome C release, which initiates the intrinsic path-
way (Riedl and Shi, 2004). We therefore hypothesize 
that FGF-20 inhibits apoptosis of hESC-derived 
cells that is triggered through both the extrinsic and 
intrinsic pathways. The possible effect of FGF-20 in 
reducing cell death through apoptosis has been sug-
gested by a previous study from Murase and McKay. 
In this study it was demonstrated FGF-20 promotes 
Bad phosphorylation, induced by PI3K activation, 
and Bax downregulation, due to p53 degradation 
(Murase and McKay, 2006). However, there is still 
no clear evidence of a direct relationship between 
FGF-20 and the apoptosis mechanisms. For this rea-
son, the lower number of dying cells in the presence 
of FGF-20 might as well result from an improved 
cell survival through other pathways.

The percentages of cells exhibiting cleaved 
 caspase-3 at the time of fi xation (21 days after start-
ing the co-culture) were small. However, it has to be 
emphasized that detection of cleaved caspase-3 is 
limited to a number of hours, until the cells even-
tually lyse and disappear from the culture (Correia 
et al., 2007). In essence we are only providing a 
“snapshot” of the cells that are dying at a particular 
time point in the culture procedure. Therefore, these 
values can be seen to underestimate the protective 
effect of FGF-20, and do not refl ect the cells that 
had died throughout the whole culture experiment, 
which lasted for 21 days. If the rate of cell death is 
similar over the whole 21-day culture period and 
dying/dead cells remain positive for cleaved cas-
pase 3 during approximately 12 h, we can estimate 
a 52% reduction in cell death in the presence of 
FGF-20. The lower cell death in the FGF-20-treated 
cultures can result in a substantial increase in liv-
ing TH-positive neurons. Unfortunately, we were 
not able to defi nitively determine if the dying 
neurons were dopaminergic. The identifi cation 
of dying dopaminergic neurons in culture is not 
easily achieved, because dying cells downregulate 
cytosolic proteins such as TH (Burke, 2004). As a 
result, the fact that we did not detect cells immu-
nopositive for both TH and cleaved caspase-3, does 
not clarify the issue of whether the cells positive for 
cell death markers were dopaminergic or not. Using 
for example a reporter gene coupled to TH and live 
cell imaging would be one method to address this 
issue systematically.

HOW COULD FGF-20 CONTRIBUTE TO 
THE DEVELOPMENT OF A CELL-BASED THERAPY 
FOR PARKINSON’S DISEASE?
One of the major limitations in the development of 
a cell therapy for PD is that dopaminergic neurons 
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survive poorly when transplanted (Ben-Hur et al., 
2004; Brederlau et al., 2006; Park et al., 2005; Zeng 
et al., 2004). Therefore, the high yield of dopamin-
ergic neurons obtained from hESCs in the pres-
ence of FGF-20 might provide a direct advantage 
for neural transplantation in PD. Previous studies 
showed that treatment of intrastriatal implants of 
embryonic mesencephalic tissue with neurotrophic 
factors, such as GDNF, BDNF, neurotrophin 
(NT)-4/5, NT-3, NTN, nerve growth factor (NGF), 
growth/differentiation factor (GDF)-5, insulin-like 
growth factor (IGF)-1, TGF-β, acidic FGF (aFGF) 
and basic FGF (bFGF), increases the survival rates 
of TH-positive neurons to approximately 30–35% 
(Brundin et al., 2000; Sortwell, 2003). Additionally, 
it affects the functional capacity of grafted dopamin-
ergic neurons (Brundin et al., 2000; Giacobini et al., 
1993; Haque et al., 1996; Rosenblad et al., 1996, 
1999; Sortwell, 2003; Sullivan et al., 1998; Yurek 
et al., 1996). In future studies we intend to inves-
tigate if FGF-20 can enhance neuronal survival of 
hESC-derived TH-positive neurons after grafting.

Numerous factors have been claimed to compro-
mise the survival of mesencephalic dopaminergic 
neurons from human embryos during transplanta-
tion. Those factors include hypoxia, oxidative stress 
and trophic factor withdrawal. Similar factors are 
also likely to affect the survival of dopaminergic neu-
rons derived from hESCs. Treatment with, e.g., anti-
oxidants and trophic factors is benefi cial to grafts 

of  primary mesencephalic neurons (Brundin et al., 
2000; Sortwell, 2003). Similar treatments may increase 
the survival of grafted hESC-derived dopamine neu-
rons. Based on the published reports and on our own 
data (Correia et al., 2007; Murase and McKay, 2006; 
Ohmachi et al., 2000, 2003), we hypothesize that 
FGF-20 could be used to improve graft survival by 
treating cells during/after implantation. In addition 
to the effects on hESC differentiation, it may also 
be added to the cell suspension during transplan-
tation, improving the survival of the dopaminergic 
neuros in vivo (Figure 3). Another option would 
be to  generate a viral vector expressing FGF-20 and 
co-injecting it with the transplant cells. It is also con-
ceivable that a viral vector expressing FGF-20 could 
be tested in animal models of PD, with the ultimate 
aim of translating the technique to the clinic and 
reducing the progressive degeneration of dopamine 
neurons in PD. Obviously, safety aspects and poten-
tially undesirable effects (e.g. infl ammation, pro-
liferation of mesenchymal cells etc) of long-term 
administration of FGF-20 to the brain must fi rst be 
carefully explored.

CONCLUSIONS
We believe that in the future FGF-20 supplemen-
tation should be incorporated in the hESC-based 
in vitro differentiation protocols intent to derive 
the dopaminergic neurons. This adaptation will 

Figure 3 | Possible applications of FGF-20 in a cell-based therapy for Parkinson’s disease.

Correia et al.
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increase yield of large quantities of dopaminergic 
neurons with a classical substantia nigra phenotype 
from hESCs. In order to improve the survival of 
the hESC-derived dopaminergic neurons during 
transplantation, FGF-20 could also be added to the 
cell suspension during implantation. Further stud-
ies are needed to examine the survivability and 
functionality of the dopaminergic neurons derived 
from the hESCs in the presence of FGF-20, and also 
the trophic effect of FGF-20 in the implanted cells.
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