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Upon this gifted age, in its dark hour,
Rains from the sky a meteoric shower
Of facts…they lie unquestioned, uncombined.
Wisdom enough to leech of our ill
Is daily spun; but there exists no loom
To weave it into fabric;
—Edna St. Vincent Millay (from Huntsman, What Quarry? 1939)

The challenge of prediction
The age of personalized medicine and genomics is upon us and we 
are facing a grand challenge – or a brick wall. Once we have finally 
gained a near complete compendium of fundamental mechanisms, 
connections, and developmental sequences – an encyclopedia of 
biology, bodies, brains, and behavior – can we achieve the data 
density and integration needed to develop holistic and robust 
models that generate useful predictions? Will we be able to distin-
guish between personalized genomics and a horoscope? What new 
types of resources, data sets, and synthetic frameworks are needed 
to make correct prognoses and recommend actions? What is my 
personal risk for Alzheimer’s disease, and what should I do about 
it today?

The complexity of biological systems implies that a parts list of 
mechanisms and processes, however complete, will not be up to 
the task of making good predictions. We need a way to test drive 
our models using a system that has the same level of complexity 
as human populations. I will describe an effective approach that 

relies on genetic reference panels (GRPs) that can be used to make 
and test predictions from base pair to behavior. I will describe how 
scientists can retain their independence while explicitly contribu-
ting to a fabric of tightly woven quantitative data.

The collective cost of scientific independence
Scientists are trained to think independently and critically. It is 
inevitable that we like to do things our own way, generating and 
using data from experiments we designed ourselves. This appro-
ach is not a self-indulgent luxury – it is an essential attribute of 
innovative science, enshrined in the ways we evaluate and fund 
new and ongoing research. Independence contributes to the stir-
ring cacophony of competing ideas that moves us toward a deeper 
understanding of biological processes.

Yet, independence has a cost. The scope of studies from single 
groups is limited by their technical and analytic proficiency and by 
modest budgets. The collective result is a fragmented, half-hidden 
literature and a fragmentary and rapidly evaporating collection 
of raw data, generated using different species and strains raised 
under different conditions, treated using varied paradigms, and 
measured using different equipment. Of course the pieces do 
not fit together! They were never intended to fit into any unified 
design. It is no surprise that integration of data sets and of key 
results is difficult; sometimes impossible. Ronald Fisher pointed 
out that “a competent overhauling of the process of collection, 
or of experimental design, may often increase the yield (preci-
sion of results) ten or twelve fold, for the same cost in time and 
labour” (Rao, 1992). Fisher meant this in the context of a single 
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lab, but his observation applies with equal or greater force across 
the research efforts of entire communities. The sad truth is that the 
whole is less than the sum of its parts. The poet Edna St. Vincent 
Millay summarizes our plight; we are both blessed and cursed with 
“a meteoric shower/Of facts… they lie unquestioned, uncombi-
ned.” Our collective consolation is that crucial discoveries and 
methods thrive and catalyze new generations of more advanced 
research. From this point of view, progress is inexorable and – who 
can deny it – rapid. The optimist’s view is that everything lost in 
the process was mere scientific chaff.

The hidden cost of this fragmented style of biological research 
is that current models of complex biological processes are ad hoc 
and underpowered, and they will remain so until we develop new 
paradigms and looms that allow us to weave together massive data 
sets across all levels of biological organization – from base pair to 
social behavior. Our current models are mannequins we dress up 
with sparse data from a few experiments and send down a publi-
cation catwalk, praying they don’t toddle and trip. What we need 
are powerful, diverse, and well dressed models that can navigate a 
landscape, not a catwalk. As a community we have not begun to 
grapple with this issue, but one certainty is that we will require 
extraordinarily well structured data sets for humans and for expe-
rimental models, to make accurate predictions.

In the case of our massive neuroscience community, there 
have rarely been grand multi-lab meta-experimental designs that 
recognize this requirement. There have been far too few efforts 
to systematically generate large volumes of data to support com-
munity efforts to generate and test hypotheses. Some feel that 
such efforts violate our pioneering spirit and invite the derision 
of critics who see big science as big boondoggle. The almost 
visceral – and in retrospect, clearly wrong-headed – response to 
the Human Genome Project as an egregious waste of money is 
the most obvious example of this cultural aversion to top-down 
science. One of the single largest projects in neuroscience, the 
Allen Brain Atlas, a free and complete compendium of data on 
gene expression in the mouse central nervous system, came in for 
more than its fair share of criticism, even though it was a gift to the 
research community that did not expropriate funds intended for 
individual investigators. Both, the Human Genome Project and the 
Allen Brain Atlas, are large projects, but they are not multiscalar – 
they focus on the analysis of DNA and RNA expression, respecti-
vely. Neither program gets us to the point of predicting relations 
between genes and behavior. We have fabulous tools now, but we 
apparently have neither the appetite nor the vision to apply them 
on an appropriate scale and in a systematic way across multiple 
levels of organization. This needs to change.

The consequence of failing to develop more robust quantitative 
models is about to become very painful. To give this assertion 
some teeth, consider how well we can predict outcomes of sim-
ple single gene deletions and mutations in any organism. The 
answer is extremely poorly, even when using fully inbred and 
isogenic lines reared in tightly controlled environments (e.g., 
Crabbe et al., 1999; van Swinderen and Greenspan, 2005). We 
need to understand why this is the case, what we need to do 
to specify the problems, and how to devise solutions. In an era 
in which many of us will soon be sequenced, it is essential to 
develop models of causal relations between genes, environments, 

and neuronal phenotypes. Neuroscientists must answer questions 
of this type: where are the promised cures and treatments for 
neurodegenerative diseases, autism, and a host of ills for which 
genes and mechanisms are now well known? Long term support 
for neuroscience and genomics depends on proving the personal 
and social utility of the results.

To reframe the challenge, can neuroscientists retain the real 
benefits of independence while working together within an inte-
grated framework that gives us an increased yield of multiscale 
data sets that we can use to generate and test models? The answer 
is yes; the more systematic exploitation of GRPs retains the best 
elements of both approaches.

Genetic reference panels  
as platforms for predictive biology
In order to make strong predictions that can be refuted, refined, and 
verified, we need a test bed that has a level of genetic, molecular, and 
cellular complexity that matches that of human populations, but 
over which we have precise genetic and experimental control. The 
solution to this problem, the GRP, consists of a large set of isogenic 
strains of animals that can be used by a community of researchers 
to study an almost unlimited range of phenotypes (Chesler et al., 
2003). Each member of a GRP is an inexhaustible and stable “clone” 
of animals, members of which can be studied at different stages of 
life, in different environments, using any number of techniques. 
Harvesting data across a large GRP can give us the right material 
to develop sophisticated models that account for genetic and envi-
ronmental complexity.

Using a GRP, data from different labs can be readily compared 
and combined without the need to explicitly collaborate. Work 
separated by decades can be compared at the level of an entire GRP. 
The only modest concession that scientists need make is to use a 
GRP in the first place. The enticing compensation is access to an 
open and massive collection of highly useful data on all members 
of a GRP (e.g., Mozhui et al., 2008; www.genenetwork.org).

Each GRP needs to be large enough so that correlations and 
causes that link genotypes, phenotypes, and environmental per-
turbations can be quantified, modeled, and used to generate pre-
dictions. The most widely used GRP consists of a set of 80 BXD 
mouse strains (Peirce et al., 2004). Strains in this panel all trace 
back to matings between two of the most venerable inbred strains 
of mice – C57BL/6J and DBA/2J. Both parent strains have been 
sequenced. They differ at ∼4 million sites scattered across the 
genome (Frazer et al., 2007; Roberts et al., 2007; Williams et al., 
unpublished sequence data), close to the number of single nucle-
otide polymorphisms (SNPs) segregating in human populations 
(www.hapmap.org). Members of this BXD family are genetically 
stable – all can be rederived from cryopreserved stock and all are 
available from the Jackson Laboratory. Much larger GRPs are on 
the horizon, with a set of up to 1,000 strains now in development 
(Chesler et al., 2008; Threadgill et al., 2002).

What makes a GRP truly a reference set is that each member 
of the panel can be replicated as an inbred and isogenic strain. 
We can accumulate massive multiscalar databases of phenotypes 
using precise instruments, and we can study many individuals 
from each of the GRP’s strains at different stages of development, 
in different environments, and following different treatments. 
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What makes a GRP a genetic panel is that it is an extended family 
we can use to track down gene variants that influence phenotypes 
of almost any kind, from retinal ganglion cell number to ocular 
dominance plasticity (Heimel et al., 2008; Williams, 2000). Once 
all members of a GRP have been genotyped (the 80 BXD strains 
have been typed at 580,000 SNPs), the panel becomes a valuable 
platform for genetic prediction. And once the parents of a GRP 
have been sequenced, we can also use reverse genetic methods 
(going from gene variant to phenotype variant) similar to those 
used to study gene function in knockouts and mutants. However, 
unlike a study of knockouts, we do not study a gene variant on 
a single genetic background, but rather across an entire panel 
of strains – approximately half of which will have one allele or 
the other (Carneiro et al., 2009). The comparison amounts to 
a high power t-test between two genotype groups (in the BXD, 
between the parental B and D alleles). Many thousands of genetic 
differences can be studied in this way using a single GRP. In other 
words, GRPs scale well to study gene function in a more realistic 
and complex genetic context.

Extracting causal relations between DNA differences, mRNA 
expression, cellular physiology, and behavioral differences is a 
demanding genetic, biological, statistical, and computational pro-
blem. But our collective ability to develop and test hypotheses will 
continue to improve as we accumulate deeper and more diverse 
phenotype data across GRPs, at many levels of CNS structure and 
function, and from different labs and environments.

Lab-to-lab variation, once thought of as a major problem, can 
actually be turned to our advantage when studying a common 
GRP. For example, we can expose and measure the critical effects 
that experimental perturbations have on neuronal development 
and physiological responses (Heimel et al., 2008). We can do this 
because the entire panel is a stable platform upon which we build 
and test models. Each GRP can be its own control. We can think 

of this approach as a merging of systems neuroscience and systems 
neurogenetics – in which the term system is defined both classically, 
as the complex of neural networks that generates behavior, and as 
the multiscalar system that extends from variation in sequence to 
variation in behavior.

The primacy of data
Should we be optimistic about the near-term prospects for gene-
rating efficient and effective models that make helpful predic-
tions? Without data of the right type and scale, we will not get far. 
I can say with confidence that we will have the raw computational 
power to handle data and models. With encouragement, we can 
generate a social compact among scientists to make it possible 
to generate the massive multiscalar data sets we need to build 
and test models.

It is relatively easy to build a raft to float across a wide river; 
once on the other side, a small band can make important disco-
veries, often with simple tools. It is far more complex to build a 
permanent bridge to transport large volumes of goods and people 
across the river to allow a new economy to flourish. Building a 
bridge requires the output of industries, the work of many spe-
cialists, and a collective sense of delayed gratification. Building 
infrastructure at this level also requires leadership and superb 
management. It is time to begin building massive data bridges that 
will enable predictive biology to thrive. Perhaps the real challenge 
will be convincing both the community and its leaders that it is 
doable today.
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