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γ oscillations: the perisomatic-targeting, fast-spiking interneurons 
(FSIs) that express the calcium-binding protein  parvalbumin (PV) 
(Bartos et al., 2007). This class includes chandelier and basket cells, 
which make γ-amino-butyric-acid type A (GABA

A
) synapses onto 

their targets, and also synchronize each other through gap junctions. 
In schizophrenia PV interneurons show evidence of decreased GABA 
synthesis, suggesting a specifi c link between this disorder and the 
neural/cognitive functions associated with γ  oscillations (Gonzalez-
Burgos and Lewis, 2008; Uhlhaas et al., 2008).

Supporting this hypothesis, reductions of γ oscillation power 
and/or phase synchronization in the scalp-recorded electroencepha-
logram (EEG) have been observed in schizophrenia patients, for 
example in the auditory (e.g., Light et al., 2006; Spencer et al., 2008b, 
2009) and visual (e.g., Spencer et al., 2008a) sensory modalities; in 
corollary-discharge processes in the motor system (Ford et al., 2008); 
and in the prefrontal cortex in association with  cognitive control 
processes (Cho et al., 2006). Furthermore, correlations have been 
found between oscillation measures and schizophrenia  symptoms 
such as hallucinations, disorganization, thought  disorder, and atten-
tion defi cits (Spencer et al., 2004, 2008b), avolition/apathy (Ford 
et al., 2008), and working memory (Light et al., 2006).

INTRODUCTION
A considerable body of evidence has been amassed from post- mortem 
brain samples that schizophrenia is associated with  particular abnor-
malities of neural microcircuits. At the same time, our knowledge 
of the abnormalities of brain function and  macroscopic anatomy 
in schizophrenia has expanded  considerably. What is needed now is 
an integration of fi ndings across these different domains. Towards 
this end, we constructed a simple  computational model of a small 
cortical area with which we could simulate γ-frequency (30–100 Hz) 
synchronization. We then  examined the effects of schizophrenic 
neural circuit  abnormalities on the γ oscillation and network excit-
ability. Our goal was to determine if reduced synaptic connectivity, 
reduced inhibitory neurotransmission, and NMDA receptor hypo-
function could be detectable with non-invasive measures, so that it 
might be possible to infer which types of neural circuit dysfunction 
might be present in schizophrenia patients.

Neural synchronization in the γ band has been proposed to  mediate 
the formation and selection of cell assemblies in local and distributed 
circuits (Singer, 1999). Synchronous γ oscillations emerge in a network 
from the interplay between pyramidal cells (PCs) and interneurons 
(Borgers and Kopell, 2005; Oren et al., 2006). One class of inhibi-
tory interneuron appears to be particularly important for mediating 
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As a complementary measure we examined network  excitability. 
Cortical excitability (commonly measured with transcranial 
 magnetic stimulation [TMS]) is increased in schizophrenia, most 
likely due to a defi cit in GABAergic neurotransmission (Hoffmann 
and Cavus, 2002; Daskalakis et al., 2007). Increased excitability in 
sensory and association cortex is associated with hallucinations 
(Hoffman et al., 2003; Merabet et al., 2003). A possible link to 
γ oscillation abnormalities in schizophrenia is suggested by the 
 observation that chandelier cells are involved in regulating PC 
 excitability (Zhu et al., 2004).

One of the most well-established fi ndings in post-mortem 
 studies of schizophrenia is of reduced synaptic connectivity in the 
cerebral cortex. Selemon and Goldman-Rakic (1999)  proposed 
that increases in neuronal density in particular regions of the 
cortex without cell loss (Pakkenberg, 1993) refl ect decreases in 
the neuropil due to the loss of dendritic and axonal processes. 
Supporting this proposal are fi ndings such as reduced somal 
size, spine density, and dendritic fi eld size of PCs (e.g., Garey 
et al., 1998; Glantz and Lewis, 2000; Pierri et al., 2001; Broadbelt 
et al., 2002; Chana et al., 2003; Black et al., 2004; Sweet et al., 
2009), reduced synaptophysin levels (Perrone-Bizzozero et al., 
1996; Glantz and Lewis, 1997), and decreased expression of genes 
encoding synaptic proteins (Mirnics et al., 2000; Torrey et al., 
2005). These studies point to region-specifi c reductions in  synaptic 
 connectivity in schizophrenia and provide a  microstructural basis 
for the regional cortical volume and thickness reductions found 
with magnetic resonance imaging (MRI) (e.g., Shenton et al., 
2001; Kuperberg et al., 2003).

To date, the preponderance of evidence for synaptic connectivity 
reductions comes from measures of excitatory inputs to PCs. It is 
not known whether inhibitory interneuron connectivity is affected 
as well. To our knowledge, the consequences of reduced synap-
tic connectivity for neurophysiological activity in schizophrenia 
have not been studied. Therefore, we examined the effects of three 
kinds of synaptic connectivity reductions: excitatory connections 
between PCs (recurrent excitatory connectivity), recurrent excita-
tory and inhibitory inputs to PCs (PC input connectivity), and 
connections between all cells (total connectivity).

We compared connectivity reductions to the well-studied 
consequences of reducing FSI output. It is likely that reduced 
GABA synthesis in PV interneurons in schizophrenia is one cause 
of γ defi cits, as GABA antagonism suppresses γ (Whittington 
et al., 1995), and decreasing the output from PV interneurons 
leads to decreased γ power in local circuits (Sohal et al., 2009). 
In modeling studies reducing the GABA output from FSIs to 
PCs decreased γ power (Traub et al., 2000; Vierling-Claassen 
et al., 2008).

Finally, a growing body of evidence links the hypofunction of 
N-methyl-D aspartate (NMDA) receptors in schizophrenia to PV 
interneuron abnormalities (e.g., Woo et al., 2004; Behrens et al., 
2007). NMDA receptor hypofunction has been proposed to be a 
core neural substrate of schizophrenia (Javitt and Zukin, 1991), as 
NMDA receptor antagonists elicit a profi le of positive and nega-
tive symptoms and cognitive defi cits in healthy individuals that 
bears a strong resemblance to schizophrenia (Krystal et al., 2003). 
Studies in animal models have found that γ power (Pinault, 2008) 
and network activity (Homayoun and Moghaddam, 2007) can be 

increased by NMDA receptor antagonism, presumably by reducing 
the excitatory drive to PV interneurons. Therefore, we simulated 
the antagonism of NMDA receptors on FSIs.

MATERIALS AND METHODS
NETWORK ARCHITECTURE
The model network was implemented in the IDL programming 
environment (ITT Visual Information Solutions, Boulder, CO, 
USA) and the code is available upon request. The network consisted 
of 1000 leaky integrate-and-fi re neurons (Burkitt, 2006), and was 
similar in design and behavior to other models of γ oscillations 
(e.g., Brunel and Wang, 2003; Borgers and Kopell, 2005). Eighty 
percent (800) of the cells were PCs and 20% (200) were inhibi-
tory interneurons. Of the latter, 75% (150) were regular-spiking 
interneurons (RSIs) and 25% (50) were FSIs (Condé et al., 1994; 
Gabbott and Bacon, 1996). The FSIs and RSIs were designed to 
emulate the fi ring behavior and connectivity of PV-expressing, 
perisomatic-targeting interneurons (basket and chandelier cells) 
and apical dendrite-targeting interneurons, respectively (Zaitsev 
et al., 2005). Cell parameters were: resting potential: −70 mV; fi ring 
threshold: −52 mV; after-spike reset potential: −59 mV; and mem-
brane time constant: 20 ms for PCs and RSIs, 10 ms for FSIs.

Connectivity was random. Connection probabilities were based 
upon the data of Gibson et al. (1999) (see Table 1). PCs were 
sparsely interconnected, while inhibitory interneurons made denser 
connections between themselves and PCs (particularly FSIs; Cobb 
et al., 1995). Synaptic weights between PCs and FSIs were stronger 
than other weights to simulate the faster and stronger excitation 
of PV interneurons than PCs (e.g., Povysheva et al., 2006), and the 
faster and stronger recurrent inhibition of PCs by PV interneurons 
than dendrite-targeting interneurons (e.g., Pouille and Scanziani, 
2004; Brill and Huguenard, 2009). The spike transmission time 
was fi xed at 2 ms.

Three synapses were modeled using differences-of-exponentials: 
fast excitatory [α-amino-3-hydroxy-5-methyl-4-isoxazole propi-
onic acid (AMPA)], slow excitatory (NMDA), and fast inhibitory 
(GABA

A
). The rise/decay time constants were: AMPA, 0.5/2 ms; 

NMDA, 2/100 ms; GABA
A
, 0.5/5 ms (Brunel and Wang, 2003). 

The voltage dependence of the NMDA current was modeled using 
Equation 5 of Jahr and Stevens (1990) (1 mM Mg+ concentration). 
The NMDA/AMPA receptor conductance strength ratio was 45% 
for PCs (Myme et al., 2003). For interneurons the NMDA/AMPA 
ratio was set to 10% as the evidence suggests that NMDA receptors 
on FSIs are sparse (e.g., Muñoz et al., 1999) and contribute very 
little excitation (e.g., Gonzalez-Burgos et al., 2005).

Table 1 | Probability/relative weight of each connection type in the 

model. The relative weight of the noise input to each cell was 2. Each weight 

was scaled by a factor of 0.825 × 10−3 mS.

 Receiving cell

 PC RSI FSI

SENDING CELL

PC 0.10/1.0 0.40/0.8 0.40/1.9

RSI 0.50/0.8 0.15/0.8 0.50/0.8

FSI 0.50/1.9 0.35/1.0 0.60/1.0



Frontiers in Human Neuroscience www.frontiersin.org October 2009 | Volume 3 | Article 33 | 3

Spencer Modeling circuit abnormalities in schizophrenia

Each cell received a separate random spike input with a 
 frequency of 100 Hz (Poisson distribution). Noise spikes only 
occurred at excitatory synapses. The noise input weight was set at 
16 mS. Integration was performed with the Euler method using a 
0.001 ms time step (Hansel et al., 1998).

SIMULATIONS
In the connectivity experiments, connections were deleted at 
random from the network from 10–100% in steps of 10%. In 
the recurrent excitatory connectivity experiment, the  excitatory 
connections between PCs were subject to deletion. In the PC 
input connectivity experiment, both excitatory connections 
between PCs and inhibitory inputs to PCs were deleted. In the 
total connectivity experiment, all connections between all cells 
were deleted.

In the FSI output experiment, the synaptic weights from FSIs to 
PCs, RSIs, and FSIs were reduced from 10–100% (steps of 10%). 
And in the FSI NMDA input experiment, the NMDA input to FSIs 
was decreased from 10–100% (steps of 10%).

For each condition of the experiments the network was 
 initialized with the same random number generator seed so that the 
weight matrix and noise input were replicated. Thus, the  baseline 
state in each experiment was the same. Additional complete sets 
of  experiments were run with different initial conditions and the 
same general patterns of results were found.

ANALYSIS METHODS
Our measures were: (1) the power of the network oscillation (2) the 
phase synchrony between cell populations during the oscillation, 
and (3) the excitability of the network. The network settled into a 
γ oscillation by 500 ms after the start of the run (Figure 1), so the 
500–1000 ms period was used for analysis.

To compute oscillation power, for each cell population (PCs, 
RSIs, and FSIs), the membrane potential was averaged across all 
cells within that population. The power spectrum of the  average 
 membrane potential was then computed with a Fast Fourier 
Transform (FFT) (2-Hz frequency resolution). This measure 
refl ects synchronous population activity because non-synchronous 
activity is  averaged out.

For inter-population phase synchrony, the FFT was  computed 
on the membrane potential for each cell and converted into a phase 
spectrum. The phase difference was calculated for each pair of cells 
in comparisons between the populations (i.e., PC-RSI, PC-FSI, and 
RSI-FSI), and phase synchrony was computed as 1 minus the  circular 
variance of phases (Fisher, 1993) for each between- population 
 comparison. This measure yielded an inter- population phase syn-
chrony spectrum which ranged from 0  (random phase distribution) 
to 1 (perfect phase synchrony) (cf. Lachaux et al., 1999).

Excitability was measured as simply the number of spikes 
during the analysis window, averaged across all the cells for 
each population.

RESULTS
BASELINE “HEALTHY” ACTIVITY
In the baseline condition the cells in the network generated a 
 synchronous oscillation at 40 Hz (Figures 1 and 2). PC spiking 
was sparse, with ∼5% of PCs fi ring on each cycle of the γ oscillation. 
RSI spiking was less sparse, with 12–25% of the cells spiking per γ 
cycle, and FSIs spiked the most, with 20–50% of the cells spiking per 
cycle (Figure 2B). The baseline spike count values were: PCs: 14.0, 
RSIs: 32.1, and FSIs: 58.9 spikes/cell in the analysis window.

Oscillation power was strongest for FSIs (0.819 mV2), followed by 
RSIs (0.157 mV2) and PCs (0.177 mV2) (Figure 3A). As can be seen 
in the phase synchrony spectra (Figure 3A), the cell populations were 
closely synchronized with each other. The baseline phase synchrony 
values were: PC-RSI: 0.924, PC-FSI: 0.950, and RSI-FSI: 0.958.

RECURRENT EXCITATORY CONNECTIVITY
Reducing the number of connections between PCs had a dramatic 
effect on the network γ oscillation (Figures 3A,B). Power and inter-
population phase synchrony were sharply reduced by the 20% level 
of connectivity reduction. Past the 50% level, a dominant frequency 
was no longer present, and the network no longer generated a 
coherent population oscillation.

In the excitability data (Figure 3C) it can be seen that the spike 
count for each cell population declined as recurrent excitatory 
 connectivity was reduced. This drop-off was steepest for FSIs, which 
received proportionally much more excitation from PCs versus 

FIGURE 1 | Rastor plot of network spiking in the baseline condition. Pyramidal cells (PCs), regular-spiking interneurons (RSIs), and fast-spiking interneurons 
(FSIs) are indicated.
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FIGURE 2 | Activity of each cell population in the baseline condition during the 500–1000 ms analysis window. (A) Individual cell membrane potentials with 
spikes superimposed. (B) Population spiking activity for each cell type, in % of cells per population (bin width = 1 ms). (C) Membrane potential averaged across each 
cell population.

FIGURE 3 | Recurrent excitatory connectivity experiment. Measures 
are given as a function of % connectivity reduction. (A) Power and phase 
synchrony spectra in the γ oscillation simulation. Power (mV2, log10 
transformed) is scaled between the minimum and maximum for each plot. 

Phase synchrony is scaled from 0 to 1. (B) Change in peak oscillation
 power (mV2) expressed as percentage of baseline. (C) Excitability of 
each cell population measured as the mean spike count, expressed as 
percentage of baseline.
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the noise drive than PCs and RSIs, due to the stronger weights of 
the PC- > FSI connections (see Table 1). At the 20% level the FSI 
spike count was reduced by 50%, and approached the asymptotic 
value of 0 by the 70% level. PC and RSI spike counts declined to 
46.3 and 14.0%, respectively, at the 100% level.

Thus, reducing PC recurrent excitation led to a decreased 
 excitatory drive not only to the PCs but to the interneurons as 
well. This decrease in excitation abolished the γ oscillation and 
reduced network excitability.

PC INPUT CONNECTIVITY
Reducing the number of excitatory and inhibitory inputs to 
PCs also had a potent effect on the γ oscillation. The power 
and phase synchrony of the network oscillation dropped off 
sharply from the 0% to the 20% connectivity reduction level 
(Figures 4A,B). Past the 40% level the network ceased its 
 synchronized oscillation.

In contrast, the effects on excitability of the cell  populations 
(Figure 4C) were milder than in the recurrent excitatory 
 connectivity experiment. The FSI spike count did not decline 
as steeply, instead showing an almost linear decrease to 0%. The 
PC spike count increased to 104.4% of baseline at the 20% level 
before declining, settling to a higher count than in the  previous 
 experiment (54.3% at the 100% level). The RSI spike count 
decreased slightly at the 10% level (98.6%) before returning to 
baseline at the 20% level (100.3%), and then declining to 21.6% 
at the 100% level.

As in the recurrent excitatory connectivity experiment, a small 
reduction in the number of recurrent excitatory and  inhibitory 
inputs to PCs was suffi cient to produce a robust  defi cit in the γ 
oscillation. Since phasic inhibition from interneurons to PCs is 
 necessary for γ generation, the impairment of γ in this  experiment 
was expected. In contrast, the concurrent loss of  excitatory 
and  inhibitory inputs to the PCs led to a different  pattern in 
the  excitability data. The loss of inhibitory inputs to the PCs 
 counteracted the loss of excitatory inputs, and in fact led to a small 
disinhibitory effect in the 10–30% range of connectivity  reduction. 
Thus, the loss of  inhibitory as well as recurrent  excitatory inputs to 
PCs  partially alleviated the reduction of excitability in the  network. 
(We note that a similar but weaker disinhibitory effect was  probably 
present in the recurrent excitatory  connectivity experiment, since 
a  reduction in interneuron excitation would have decreased the 
inhibitory inputs to PCs.)

TOTAL CONNECTIVITY
Reducing the total number of connections in the network again 
produced a strong reduction in power and inter- population 
phase synchrony by the 20% connectivity reduction level 
(Figures 5A,B), although the drop-off was not as steep as in 
the other two experiments. The network lost coherence past 
the 40% level. At the 70% level the network re-synchronized 
in a 2 Hz oscillation that was driven by RSI-FSI synchroniza-
tion, but this oscillation was not maintained at higher levels of 
connectivity reduction.

FIGURE 4 | PC input connectivity experiment. See Figure 3 for details.
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The excitability data (Figure 5C) show that the PC spike count 
increased linearly from the 0% to the 60% connectivity reduction 
level, reaching 228% before declining to 54% at the 100% level. 
Between the 0% and 50% levels the RSI spike count increased from 
baseline, peaking at 120% at the 40% level before declining to ∼0% 
at the 80% level. The FSI spike count stayed close to baseline from 
the 0% to the 50% levels before declining to 0% at the 80% level. 
(The preservation of PC spiking but not interneuron spiking from 
noise inputs at the 100% level was due to the larger NMDA/AMPA 
ratio in PCs.)

As in the other connectivity experiments, the γ oscillation 
was nearly abolished with small levels of connectivity reduc-
tion. Similar to the PC connectivity experiment, at lower levels of 
 connectivity  reduction (<60%), the loss of inhibitory connections 
in the  network had stronger effects on excitability than the loss of 
excitatory  connections. The loss of inhibitory connections led to 
an overall  disinhibition that caused a large increase in PC spiking 
and  balanced the loss of excitation in the interneurons. The disin-
hibitory effects were larger in this experiment because inhibitory 
connections between interneurons were eliminated, in addition to 
inhibitory inputs to PCs.

FSI OUTPUT
Reducing the weights of the connections from FSIs to other 
cells resulted in a different pattern of effects on network  activity 
compared to reducing synaptic connectivity. As FSI inhibition 
decreased, the power and phase synchrony of the γ oscillation 

decreased also (Figures 6A,B), but to a lesser degree than in the 
connectivity experiments. Inter-population phase synchrony did 
not decrease to a large degree (under 0.5) until the 80% level of 
FSI output reduction. The oscillation persisted to a small degree 
past this level, likely mediated by the RSIs and by the high PC spike 
count (see below).

As FSI output decreased the excitability of all the cell populations 
increased due to disinhibition (Figure 6C). The PC spike count 
reached 238% and interneuron spike counts reaching ∼500% at 
the 100% connectivity reduction level.

These results show confi rm the important role that FSIs 
play in both network γ synchronization and in controlling 
cortical excitability.

FSI NMDA INPUT
Reducing the NMDA input to FSIs led to an initial decrease in γ 
power at the 10% level, followed by increased power from the 
20–100% levels for FSIs and from the 30–80% levels for PCs and RSIs 
(Figures 7A,B). At 90–100%, γ power decreased, returning to baseline 
for PCs and decreasing to ∼50% of baseline for RSIs. Phase synchrony 
of the γ oscillation showed little change, varying within a range of 
+/−0.05 and not dropping below 0.84 (for PC-RSI synchrony). These 
effects were accompanied by increased excitability for PCs and RSIs, 
and a slight decrease in excitability for FSIs (Figure 7C).

Thus, reducing the NMDA input to FSIs paradoxically resulted 
in a general increase in γ power and network excitability. The 
NMDA portion of the total excitatory input to FSIs was small, 

FIGURE 5 | Total connectivity experiment. See Figure 3 for details.
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FIGURE 6 | FSI output experiment. See Figure 3 for details.

FIGURE 7 | FSI NMDA input experiment. See Figure 3 for details.
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being 10% of the AMPA contribution. Reducing the NMDA input 
decreased an approximately tonic source of excitation to FSIs, 
 initially causing a drop in γ power but then resulting in increased 
power and PC  excitability via disinhibition. In fact, removal of the 
tonic  component of the excitatory drive to FSIs may have improved 
the ability of these cells to synchronize, keeping network phase 
synchrony from changing signifi cantly.

DISCUSSION
SUMMARY
We examined the effects of reductions in synaptic connectivity, FSI 
output, and NMDA input to FSIs on γ generation and  excitability 
in a model cortical network. Generally, small reductions of synaptic 
connectivity (10–20%) produced large decreases in the power and 
inter-population phase synchrony of the γ oscillation, regardless of 
the kind of connections that were affected. In  contrast, the kind of 
connectivity reduction infl uenced the  patterns of cell  excitability: 
deleting only recurrent excitatory connections decreased the 
 excitability of all three cell populations, while  additionally 
 deleting inhibitory connections resulted in increased excitability 
due to  disinhibition at lower levels of connectivity reduction. At 
higher levels of connectivity reduction, excitability decreased. In 
 comparison, reducing FSI output decreased γ power and synchrony 
to a lesser degree, and increased network  excitability through 
 disinhibition. Reducing the NMDA input to FSIs also increased 
network  excitability, and γ power increased while phase synchrony 
was relatively unaffected.

VALIDITY OF THE MODEL
Our model of cortical circuitry produced a population oscillation 
in the γ frequency range when driven by noise inputs at excitatory 
synapses. The noise input functions in roughly the same manner 
as a constant current input: it provides an approximately tonic 
 excitatory drive to the cells through the NMDA receptors. As a result 
of this drive, a fast oscillation emerges in the network from the 
interplay between PCs and inhibitory interneurons. (In pilot work 
we found that the frequency of the oscillation depended  partially on 
the strength of the noise input, increasing for stronger inputs above 
a particular threshold.) The γ oscillation produced by this kind of 
model resembles the oscillations seen in vivo in the  hippocampus 
and neocortex (e.g., Oren et al., 2006; Roopun et al., 2008; Sohal 
et al., 2009).

In other pilot experiments the network could generate an 
“evoked” γ oscillation when given a transient, rather than tonic, 
stimulus. This effect resembles the EEG pattern evoked by TMS 
(e.g., Ferrarelli et al., 2008), and might serve as a model for 
TMS-EEG phenomena. When the network was given steady-state 
stimulation in addition to noise input, it produced a steady-state 
response at the stimulation frequency, with an enhancement of 
this response at the resonant frequency of the network (40 Hz in 
this case). So this seems to be a reasonable if simplifi ed model of 
“real” γ rhythms.

REDUCED SYNAPTIC CONNECTIVITY
Spine density measurements offer the closest comparable data to 
the synaptic connectivity reductions simulated here. Spines are 
the principal site of glutamatergic synapses on PCs (Nimchinsky 

et al., 2002), but a small portion of spines also includes GABAergic 
synapses (∼3%; Kubota et al., 2007). Therefore, spine density 
 measurements in schizophrenia refl ect predominantly excitatory 
inputs to PCs. Since the abnormalities that have been observed 
have been found mainly in layers 3 and 5, they are likely to involve 
primarily intracortical circuits, and thus recurrent excitation.

Deleting just recurrent excitatory connections was suffi cient to 
abolish the network γ oscillation. This fi nding suggests that the 
excitatory drive to the network furnished by recurrent excitation 
was necessary for γ generation. However, the additional deletion of 
inhibitory connections increased PC spiking via disinhibition while 
reducing the γ oscillation to a similar degree. Thus, the impairment 
of γ generation by reduced synaptic connectivity was not tied to the 
specifi c type of connection deleted. Rather, it refl ected the altered 
structure of the network. This result is consistent with fi ndings from 
other modeling studies that a minimum number of connections 
is necessary for γ synchronization (e.g., Wang and Buzsaki, 1996; 
Borgers and Kopell, 2003), although the precise number varies due 
to differences in the models.

Another potential factor that could result in a reduction of the 
power of the network oscillation is an increase in the  variance 
of the number of inputs per cell (Borgers and Kopell, 2003). We 
 investigated this possibility, but the variance in inputs per cell 
decreased as connectivity was reduced, so the disruption of γ 
 synchronization was not caused by increased input variance.

PC spine density in post-mortem samples has been studied in 
several brain areas, and signifi cant reductions in schizophrenia 
patients have ranged from 15% to 55% (Garey et al., 1998; Glantz 
and Lewis, 2000; Broadbelt et al., 2002; Sweet et al., 2009). In all 
of our synaptic connectivity experiments this range of  reduction 
was suffi cient to produce a large defi cit in γ. Thus, a γ defi cit in 
 schizophrenia patients could be a marker of reduced synaptic 
 connectivity in the underlying cortical network. However, it is 
unknown to what extent inhibitory connectivity might also be 
affected in schizophrenia. Our simulations suggest that a γ defi cit 
would not be indicative of the type of the underlying synaptic 
connectivity abnormality.

The degree to which cortical volume/thickness reductions 
in schizophrenia refl ect synaptic connectivity reductions at 
the  circuit level is not presently known. Regional reductions of 
 cortical volume range up to 15% at the group level (Shenton et al., 
2001). The present data suggest that γ may be a more  sensitive 
indicator of circuit integrity than MRI measures, as only a 10% 
decrease in synaptic connectivity was suffi cient to produce a 
 sizable γ defi cit.

REDUCED FSI OUTPUT
In post-mortem schizophrenia samples, the expression of GAD67, 
an enzyme required for GABA synthesis, has been reported to be 
reduced to undetectable levels in PV-expressing interneurons (e.g., 
Hashimoto et al., 2003). Hence, the upper levels of FSI output 
reduction in our model are probably the most relevant. At these 
levels γ generation was impaired, although not as severely as when 
synaptic connectivity was reduced. Sohal et al. (2009) used optoge-
netic techniques to inhibit the fi ring of PV-expressing interneurons 
in vivo and also found a modest reduction of γ. These relatively 
smaller impairments could be due to the participation of other 
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interneuron classes in the γ oscillation (e.g., Oren et al., 2006). The 
increase in network excitability due to FSI output reduction was 
consistent with experimental evidence (Zhu et al., 2004).

REDUCED NMDA INPUT TO FSIs
Reduced NMDA input to FSIs produced a clear signature: an 
increase in γ power, along with increased network  excitability. 
These effects are consistent with those of NMDA  receptor 
 antagonism reported respectively by Pinault (2008) and 
Homayoun and Moghaddam (2007). These fi ndings suggest that 
the  administration of NMDA receptor antagonists at subanesthetic 
doses preferentially affects NMDA receptors on PV interneurons. 
However, it should be noted that this effect is regionally specifi c, 
as γ increases and decreases due to NMDA receptor antagonism 
have been reported in various brain regions (Roopun et al., 2008). 
Modeling may prove useful in understanding the basis of these 
regional variations.

IMPLICATIONS
The main goal of this study was to determine if different kinds 
of neural circuitry abnormalities associated with  schizophrenia – 
 synaptic connectivity reductions, reduced FSI output, and reduced 
NMDA input to FSIs – would produce distinct patterns of effects 
that might be make them detectable with non-invasive measures 
such as EEG and MRI. We found that reductions of synaptic 
 connectivity and FSI output produced γ defi cits, while reduced 
NMDA input to FSIs produced γ increases. Network excitability 
changes demonstrated a different pattern: excitability decreased 
when recurrent excitation was reduced, while excitability increased 
when the FSI contribution to network activity was reduced, either 
by deleting inhibitory inputs to PCs, reducing FSI outputs, or 
decreasing the NMDA-mediated depolarization of FSIs. Therefore, 
the identifi cation of microcircuit abnormalities in schizophrenia 
patients with non-invasive methods is likely to require a multimo-
dal approach that combines  neurophysiological and neuroanatomi-
cal methodologies.

Most reports to date of γ oscillation abnormalities in 
 schizophrenia have found that the power and/or phase synchro-
nization of γ oscillations are reduced in schizophrenia patients 
relative to healthy individuals (see Introduction). Here we found 
that γ  defi cits could be ascribed to both synaptic connectivity 
and FSI output  reductions. In principle, these causes could be 
distinguished by localizing the neuroanatomical source of an 
oscillation, then measuring the volume and/or thickness of 
the generating cortical region with MRI techniques. A γ defi cit 
with normal structural measurements of the generating cortex 
would point to a defi cit in GABAergic transmission, whereas a 
γ defi cit with reduced cortical volume would suggest reduced 
synaptic connectivity as a cause (not excluding the possibility 
of a GABAergic defi cit).

TMS would add a complementary dimension to this approach. 
By measuring the excitability of the generating region of a γ 
 oscillation it would be possible to determine whether a defi cit 
in  inhibitory function was present. TMS would be sensitive to 
reduced FSI output, reduced NMDA input to FSIs, and presum-
ably reduced inhibitory connectivity, as all three of these abnor-
malities lead to increased network excitability. If structural MRI 

analysis found evidence of reduced synaptic connectivity in the 
region, normal excitability measures would indicate that this 
abnormality involved only recurrent excitation. On the other 
hand, if increased  excitability was present, this would indicate that 
inhibitory  function was also affected. Standard cortical excitability 
measurements with TMS are limited by the necessity of having an 
output measure such as motor evoked potentials, which are not 
available in most cortical areas, but TMS-evoked EEG oscillations 
may provide a new tool with which to assess circuit integrity (e.g., 
Ferrarelli et al., 2008).

Not all γ abnormalities in schizophrenia are defi cits. A few 
studies have reported that across patients, the power and/or 
phase synchronization of certain γ/β oscillations are positively 
 correlated with symptom measures (Spencer et al., 2004, 2008b, 
2009). It is noteworthy that these positive correlations have been 
found mainly for psychotic symptoms, especially hallucinations. 
These fi ndings imply that psychosis may be associated in some 
 circumstances with an excessive degree of oscillatory synchro-
nization. Since the only known circuit abnormality in schizo-
phrenia that can  produce increased γ power is NMDA receptor 
 hypofunction,  positive  correlations between γ/β oscillations and 
psychotic symptoms may refl ect dysfunctional NMDA input to 
FSIs. This hypothesis,  however, is complicated by the co-occurrence 
of  positive  correlations within patient groups with overall γ defi cits 
at the group level (Spencer et al., 2008b, 2009).

For instance, Spencer et al. (2009) found that the phase  locking 
aspect of the 40 Hz auditory steady-state response (ASSR) in the 
left auditory cortex of schizophrenia patients was decreased  relative 
to control subjects. Within the patient group, though, there was 
a  positive correlation between auditory hallucination  symptom 
scores and phase locking, such that the most  symptomatic patients 
had nearly normal phase locking values. This pattern suggests 
the  presence of multiple neural circuitry abnormalities within 
the generating region, and a multimodal imaging approach 
would be necessary to identify these abnormalities. Combining 
EEG source localization with structural MRI, we would predict 
that the overall ASSR defi cit in patients would be accounted for 
by a reduction of primary auditory cortex volume (the main ASSR 
generator; e.g., Hirayasu et al., 2000), while NMDA receptor hypo-
function in patients with hallucinations would explain the positive 
γ/ hallucination correlation.

While we did not attempt to simulate the blood oxygenation 
level-dependent (BOLD) response here, a number of studies 
have found that the BOLD response measured with functional 
MRI is correlated with local fi eld potentials in the γ band (e.g., 
Logothetis et al., 2001; Niessing et al., 2005), as well as intracra-
nial (Mukamel et al., 2005; Lachaux et al., 2007) and non-invasive 
recordings of γ oscillations in humans (e.g., Brookes et al., 2005; 
Martuzzi et al., 2009; Zaehle et al., 2009; but see Winterer et al., 
2007; Muthukumaraswamy and Singh, 2009; Muthukumaraswamy 
et al., 2009). Thus, it might be reasonable to predict that micro-
circuit abnormalities that cause decreases or increases in γ power 
would produce similar changes in the BOLD response. This rela-
tionship should be particularly expected for synaptic connectiv-
ity  reductions, since it is thought that the BOLD response mainly 
refl ects the metabolic demand of the synaptic input to a cortical 
area, rather than its spiking output (e.g., Viswanathan and Freeman, 
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2007). With reduced synaptic  connectivity in a cortical area there 
would be fewer synaptic inputs, the change in metabolism in 
response to changing inputs would be reduced, and the BOLD 
response would thus be decreased.

In contrast, since NMDA receptor antagonism increases  neural 
activity through disinhibition (Homayoun and Moghaddam, 
2007), the BOLD response would be expected to increase for 
 circuits affected by reduced NMDA input to FSIs. Studies of 
non-schizophrenic visual hallucinators have reported increased 
baseline activity as measured by BOLD (ffytche et al., 1998) and 
increased excitability as measured by TMS (Merabet et al., 2003) 
in visual cortex, which would both be consistent with NMDA 
 receptor hypofunction.

It is not as clear what effects reduced FSI output due to reduced 
GABA synthesis would have on the BOLD response. A  moderate 
reduction might be expected, given that there was a moderate 
 reduction in γ power. However, Muthukumaraswamy et al. (2009) 
found that the BOLD response to visual stimulation in primary 
visual cortex was negatively correlated with the  concentration 
of GABA in the same area, as measured by magnetic resonance 
spectroscopy, so that as GABA concentration increased, the BOLD 
response decreased. The power of a γ oscillation  generated in the 
same area of visual cortex was not correlated with the BOLD 
response, but the frequency of the oscillation was positively 
 correlated with GABA concentration. As it is not presently known 
how resting GABA concentration is functionally related to network 
activity (BOLD and γ) during stimulation, more data are needed 
to understand how these fi ndings might pertain to schizophrenia, 
but the multimodal approach these authors employed can clearly 
provide new insights into cortical physiology.

LIMITATIONS OF THE PRESENT STUDY AND FUTURE DIRECTIONS
This study had several limitations. While we attempted to make 
the connectivity parameters as close as possible to published 
 observations, laminar connectivity was not modeled. Furthermore, 
the neuron dynamics were very simple (for instance, there was no 
spike adaptation or bursting) and were much less heterogeneous 
than in real cortical circuits. Also, the spike transmission time was 
fi xed rather than variable. Nevertheless, these factors should not 
make our results less valid. Rather, γ synchronization might be 
even more susceptible to disruption by reducing connectivity in 
models with more complex dynamics and heterogeneous cell types 
(Santhakumar and Soltesz, 2004).

In future studies it will be important to examine  synaptic 
 connectivity in networks that incorporate laminar  connectivity 
patterns, as synaptic connectivity reductions have been  localized 
to particular layers. For instance, Sweet and colleagues have 
found  evidence that intrinsic processing within the primary 
auditory  cortex, and feedforward but not feedback circuits from 
primary to associational auditory cortex, are dysfunctional in 
 schizophrenia (e.g., Sweet et al., 2004, 2007). We will also examine 
how  abnormalities in the circuitry of one cortical region may affect 
γ synchronization and network excitability in a distant area.

We note that one major question that has not yet been  examined 
in post-mortem studies is whether inhibitory connectivity is 
impaired in schizophrenia. Furthermore, it would be useful to 
understand the degree to which GAD67 expression correlates with 
the functional output of inhibitory interneurons.

CONCLUSIONS
Computational modeling may help to bridge the gaps between 
post-mortem studies, animal models, and experimental data in 
humans. The strength of this approach is that it affords the  ability 
to completely control and measure all aspects of the system under 
study. By simulating the neural circuit abnormalities found in 
schizophrenia, it is in principle possible to study the responses of 
these altered neural circuits in a potentially more realistic manner 
than by using animal models which approximate certain aspects 
of the disorder.

One use of computational modeling in schizophrenia research is 
to test hypotheses about the functional consequences of  particular 
neural circuit abnormalities, as was done here. Another use of 
 computational modeling is to explore the effi cacy of different 
drugs on various aspects of neural circuit function that would be 
diffi cult to measure collectively in vivo. For instance, the actions 
of GABA- vs. glutamate-targeting drugs could be compared on 
biomarkers such as γ oscillations, cortical excitability, sustained 
activity, and plasticity. Both types of medications are designed 
to improve the function of FSIs but in different ways. A GABA 
 agonist might reduce cortical excitability but not improve  working 
memory-related sustained activity, while an NMDA agonist might 
improve both biomarkers. Exploring drug effects on neural circuits 
via modeling could provide clues as to how these drugs might 
work and reveal which biomarkers might be most sensitive to their 
effects. In this manner, the precision of drug development might 
be enhanced and the discovery process facilitated.
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