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A simple variation of the standard biased competition model is shown, via some trivial mathematical manipulations, to be identical to 
predictive coding. Specifi cally, it is shown that a particular implementation of the biased competition model, in which nodes compete via 
inhibition that targets the inputs to a cortical region, is mathematically equivalent to the linear predictive coding model. This observation 
demonstrates that these two important and infl uential rival theories of cortical function are minor variations on the same underlying 
mathematical model.
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INTRODUCTION
Predictive coding (Jehee et al., 2006; Rao and Ballard, 1999) and 
biased competition (Desimone and Duncan, 1995; Reynolds 
et al., 1999) are two highly infl uential theories of cortical visual 
information processing. Both theories propose that perception 
involves the interaction between top-down expectation and 
 sensory-driven analysis. However, predictive coding hypothesizes 
that cortical feedback connections act to suppress information 
predicted by higher-level cortical regions, so that only the resid-
ual error between the top-down prediction and the bottom-up 
input is propagated from one cortical region to the next along 
a processing pathway. In contrast, biased competition proposes 
that cortical feedback acts to enhance stimulus-driven neural 
activity that is consistent with top-down predictions in order 
to affect competition occurring between neural representations 
in each cortical area. These two theories are therefore presumed 
to be incompatible and to make a number of rival predictions. 
However, in this article it is demonstrated that predictive coding 
is mathematically equivalent to a particular form of biased com-
petition model in which the nodes compete via negative feed-
back (Harpur and Prager, 1994, 1996; Spratling and Johnson, 
2004). This equivalence between the two models diffuses most 
of the distinctions that are assumed to exist. The only endur-
ing difference concerns how the same underlying mathematical 
model is implemented in cortical hardware. In this respect, the 

neural architecture derived from the biased competition model 
seems most consistent with cortical physiology.

METHODS AND RESULTS
BIASED COMPETITION
The biased competition model (Desimone and Duncan, 1995; 
Reynolds et al., 1999) proposes that visual stimuli compete 
to be represented by cortical activity. Competition may occur 
at each stage along a cortical visual information processing 
pathway. The outcome of this competition is infl uenced not 
only by  bottom-up, sensory-driven, activity but also by top-
down,  attention- dependent, biases. These top-down infl uences 
increase the amplitude and duration of the neural activity gen-
erated in response to an attended stimulus and thus affects the 
ongoing competition between cells (Luck et al., 1997; Reynolds 
et al., 1999).

Attention operates via cortical feedback pathways (Desimone 
and Duncan, 1995; Mehta et al., 2000; Treue, 2001). These feed-
back connections convey a range of top-down and contextual 
information from different cortical areas. Hence top-down 
information, originating from a wide range of different sources, 
can potentially modulate neural activity and bias competition; 
resulting in effects similar to those observed during attentional 
tasks also being observed in non-attentional tasks (Galuske et al., 
2002; Hupé et al., 1998; Lamme et al., 1998; Lee et al., 1998; 
Zipser et al., 1996). The biased competition model can thus be 
extended to account for other contextual infl uences on percep-
tual processing (Bayerl and Neumann, 2004; Roelfsema, 2006; 
Spratling and Johnson, 2004; Vecera, 2000; Watling et al., 2007), 
with the same mechanism of feedback modulation, which infl u-
ences competition, proposed to account for contextual and top-
down effects in general and not just attentional biases.

A simple neural network implementation of the biased com-
petition model is shown in Figure 1A. The diagram shows a 

*Correspondence: Michael W. Spratling, Division of Engineering, King’s College London, 
Strand, London, WC2R 2LS, UK. e-mail: michael.spratling@kcl.ac.uk

Received: 23 June 2008; paper pending published: 10 September 2008; accepted: 
09 October 2008; published online: 21 October 2008.

Citation: Front. Comput. Neurosci. (2008) 2: 4. doi: 10.3389/neuro.10.004.2008

Copyright © 2008 Spratling. This is an open-access article subject to an exclusive license 
agreement between the authors and the Frontiers Research Foundation, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original 
authors and source are credited.



Frontiers in Computational Neuroscience | October 2008 | Volume 2 | Article 4

2

Spratling

two stage hierarchy, in which two neural populations represent 
neighboring cortical regions along an information processing 
pathway. The two populations are reciprocally connected by 
excitatory feedforward and feedback connections, and neurons 
within each population compete via lateral inhibitory connec-
tions. The lower region receives input from a more periph-
eral cortical or thalamic region, while the higher region sends 
feedforward connections to, and receives feedback connections 
from, subsequent stages in the cortical hierarchy. In a more 
complete model, each region might send feedforward connec-
tions to a number of higher-level regions and receive feedback 
from each of these regions. Furthermore, nodes in each higher 
level would receive convergent input from a population of nodes 
with spatially diverse receptive fi elds in the preceding level so 
that receptive fi eld sizes increase from one stage of the hierarchy 
to the next.

In most neural implementations of the biased competition 
model, nodes within each processing stage compete by inhibiting 
the output activity generated by neighboring nodes (e.g., Bayerl 
and Neumann, 2007; Corchs and Deco, 2002; Deco and Rolls, 
2005; Deco et al., 2002; Hahnloser et al., 2002; Hamker, 2004, 
2005; Phaf et al., 1990; Usher and Niebur, 1996). This form of 
competition (see Figure 1B) is common to a large number of 
neural network algorithms (see Spratling and Johnson, 2002, for 
references). An alternative mechanism of competition is a form 
of lateral inhibition in which nodes suppress the inputs (rather 
than the outputs) of other nodes (Harpur and Prager, 1994, 1996; 
Spratling, 1999; Spratling and Johnson, 2002). In such a model 
(see Figure 1C), activation is fed-back from a population of 

 output nodes to subtractively inhibit the inputs to those nodes. 
For example, in Harpur’s “negative feedback network” (Harpur 
and Prager, 1994, 1996) the neural activity is determined using 
the following equations:

e x W y= − T

y y We← + μ

where y = [y
1
,…, y

n
]T is a vector of output activations, x = [x

1
,…, 

x
m
]T is a vector of input activations, e is a vector containing the 

inhibited values of the inputs, and W = [w
1
,…, w

n
]T is an n by m 

matrix of synaptic weight values, each row of which contains the 
weights received by a single node. Note that there is no restriction 
on the signs of either e or y and hence neurons in both popula-
tions can generate positive and negative responses. For each new 
input pattern, the output activations (y) are initialized to zero, 
and then the above equations are iterated (while x is held con-
stant) to fi nd the steady-state values for y and e. The parameter 
µ is a scale factor controlling the rate at which the output activa-
tions change during this iteration process. Although each output 
node inhibits its own inputs, this iterative process enables cer-
tain nodes to generate strong steady-state responses, while other 
nodes have their activations suppressed. In the steady-state, the 
output responses accurately reconstruct the inputs (i.e.,WTy = 
x), and hence e = 0 and the output responses stop changing. 
Prior to the steady-state, the elements of e are not all zero, and 
this causes the values of y to be adjusted up or down which 
will subsequently move the values of e closer to zero. A similar 
mechanism of inhibition, in which nodes suppress the inputs 

Figure 1 | (A) A common implementation of the biased competition model. Rectangles represent populations of neurons, open arrows signify excitatory con-
nections, fi lled arrows indicate inhibitory connections, and large shaded boxes, with rounded corners, indicate different cortical areas or processing stages. 
Within each processing stage nodes compete to be active in response to the current pattern of feedforward activity received from the sensory input or previous 
processing stage. The outcome of this competition can be infl uenced by feedback activation received from subsequent processing stages and/or attentional 
signals. Two possible mechanisms of competition within a processing stage are illustrated in (B) and (C). (B) Lateral inhibition suppressing node outputs. Direct 
inhibitory connections are shown between two nodes within a neural population, however, functionally equivalent behavior results from inhibition that is pooled 
via inhibitory interneurons, or from a non-neurally implemented selection mechanism that chooses the most active node(s). (C) Lateral inhibition suppressing 
node inputs. The bottom-up input to a processing stage is routed via an additional population of nodes. These nodes provide a mechanism through which the 
output nodes can compete, via feedback inhibition, for the right to respond to inputs. Each inhibitory weight from a node in population y to a node in population 
e has the same strength as the reciprocal excitatory weight between the same nodes in populations e and y. In both (B) and (C) nodes are shown as circles, 
thin arrows show connections between individual nodes, while thick arrows illustrate multiple connections between populations of nodes.
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to neighboring nodes, has been used to successfully implement 
a biased competition model (Spratling and Johnson, 2004). 
However in this previous model, the inhibition was proposed 
to take place within the dendrites of the output neurons rather 
than within a separate, error-detecting, neural population.

In order to employ negative feedback as the mechanism 
of competition in an implementation of the biased competi-
tion model, it is necessary to modify the equation for y above 
so that node activations in one cortical area are infl uenced by 
activity fed-back from higher areas. The simplest mechanism, 
which is used in many previous models of biased competition 
(e.g., Corchs and Deco, 2002; Deco and Rolls, 2005; Deco et al., 
2002; Hahnloser et al., 2002; Phaf et al., 1990; Usher and Niebur, 
1996), is to have the top-down bias add to the node activations. 
Hence, for an implementation of the biased competition model 
using negative feedback as the mechanism of competition, the 
network activity would be determined by the following equa-
tions applied to each stage of the hierarchy:

e y W ySi Si TSi Si= −− ⎛
⎝⎜

⎞
⎠⎟

1  (1)

y y W e W ySi Si Si Si TSi Si← + + +⎛
⎝⎜

⎞
⎠⎟

+μ ν 1 1 (2)

where superscripts of the form Si indicate processing stage i 
of the hierarchical neural network, yS0 = x, and ν is a constant 
scale factor controlling the strength of the top-down infl uence. 
The corresponding neural network architecture is illustrated in 
Figure 2A.

In order to learn the matrix of synaptic weight values (W), 
Harpur and Prager (1996) proposed the following learning 
rule:

W W y eSi Si Si TSi← + ⎛
⎝⎜

⎞
⎠⎟β  (3)

This learning rule is essentially a Hebbian rule driven by the 
activity of the output nodes and the error-detecting nodes.

PREDICTIVE CODING
Rather than passively responding to the output activity gener-
ated by preceding stages of cortical processing, the predictive 
coding model hypothesizes that higher levels of cortex actively 
predict the input they expect to receive (Jehee et al., 2006; Rao 
and Ballard, 1999). Hence, it is proposed that cortical feedback 
connections convey predictions (outputted by a population of 
prediction nodes) while cortical feedforward connections con-
vey residual errors between these top-down predictions and the 

Figure 2 | Neural network architectures which each implement the same mathematical model but which vary in the neural mechanisms used. (A) The 
biased competition model implemented using negative feedback as the mechanism for intra-cortical competition. (B) A simplifi ed diagram of the predictive cod-
ing model as implemented by Rao and Ballard (1999). (C) The reformulated predictive coding model [this architecture is identical to (A) except that the proposed 
mapping onto cortical areas – illustrated by the large shaded boxes with rounded corners – is shifted]. Note that although model (B) seems to differ from both 
(A) and (C) in not having excitatory feedback from one y population to the preceding y population, an identical effect is brought about by the negative weights 
from the e population to the preceding y population. This allows negative e values to have an excitatory effect on the y node activations. The symbols used are 
the same as in Figure 1A, additionally crossed connections signify a many-to-many connectivity pattern between nodes in two populations, and parallel con-
nections indicate a one-to-one mapping between the nodes in two populations.

x
WS1 WS2

(WS1)T

(W
S2 )T

S1 S2

eS1 yS1 eS2 yS2

A

B

C

x

(WS2)T(WS1)T

S1 S2

x

S1 S2

WS1 WS2

WS1 WS2

eS0 yS1 eS1 yS2

eS0 yS1 eS1 yS2

(W
S2 )T

(WS1)T



Frontiers in Computational Neuroscience | October 2008 | Volume 2 | Article 4

4

Spratling

bottom-up input (outputted by a population of error-detecting 
neurons).

Rao and Ballard (1999) implemented this idea using a model 
in which the responses (y) of the prediction nodes (at a par-
ticular stage of the hierarchy, i.e., Si) were calculated using the 
following equation:

y y W x W y y y ySi Si Si TSi Si td Si Sig← + − + − −⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡
⎣⎢

⎤
⎦⎥

ζ η ϑ ( )

where y W ytd TSi Si= +⎛
⎝⎜

⎞
⎠⎟

+1 1 is the top-down prediction from the 
next highest stage, ζ, η, and ϑ are constant scale factors, and 
g is a function of y that infl uences the sparsity of the output 
response (different functions were used in the different simula-
tions reported by Rao and Ballard, 1999). The above equation 
has been derived using Euler’s method to convert the differential 
equation actually proposed by Rao and Ballard (1999) into a dis-
crete time form suitable for numerical simulation and for com-
parison with the difference equation Harpur and Prager (1994, 
1996) used to defi ne their model. The dynamics of the original 
differential equation can be approximated to different degrees of 
precision by scaling parameters ζ, η, and ϑ to effectively modify 
the time step used.

Rao and Ballard (1999) employed both a linear and a non-
linear version of the predictive coding model. In the linear 
model, g Si Si( )y y= . Only this linear version of predictive cod-
ing will be considered further in this article. Hence, replacing 
g(ySi) with ySi, and substituting for ytd, the above equation can 
be re-written as:

y y W x W y y WSi Si Si TSi Si Si TSi← − + − − −⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+⎛
⎝⎜

⎞
⎠⎟( )1 1ϑ ζ η yySi+⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

If we defi ne:

e y W y

e y W

Si Si TSi Si

Si Si TSi

− − ⎛
⎝⎜

⎞
⎠⎟

+⎛

= −

= −

1 1

1

 and (equivalently)

⎝⎝⎜
⎞
⎠⎟

+ySi 1  (4)

and set ySi−1 = x when i = 1, then the responses of the prediction 
nodes are given by:

y y W e eSi Si Si Si Si← − + −−( )1 1ϑ ζ η  (5)

As with Harpur’s negative feedback algorithm, the values of 
y and e need to be iteratively updated (while the input, x, is held 
constant) in order to fi nd the steady-state values for the node 
activations. Also, in common with Harpur’s algorithm, the acti-
vations of nodes in both the e and y populations can take both 
positive and negative values.

An illustration of a hierarchical neural network implementa-
tion of Eqs 4 and 5 is shown in Figure 2B. As in the previous 
fi gures, only a simple hierarchy is shown for clarity, but a prac-
tical model would include a convergence of connections from 
nodes with smaller non-overlapping receptive fi elds in lower 
levels in order to provide nodes in higher levels with larger 
receptive fi elds. The neural implementation of the predictive 
coding model employed by Rao and Ballard (1999) was more 
complicated than that shown in Figure 2B. In their implemen-
tation each processing stage contained four separate popula-
tions of neurons. However, the network shown in Figure 2B is 
equivalent to their model and retains its essential features such 
as feedforward excitation and feedback inhibition between the 
y and e populations within each processing stage and excitatory 
feedforward connections, and inhibitory feedback connections, 
between different processing stages. This network is also very 

similar to the architecture proposed by Friston (2005). Note that 
the error-detecting units can convey negative (as well as positive) 
values in order to enable feedback from prediction nodes at one 
stage to enhance (via negative feedback weights) the responses 
of prediction nodes at the preceding stage of the hierarchy.

We can reformulate the linear predictive coding model by 
substituting the defi nition of eSi from Eq. 4 into the third term on 
the right-hand-side of Eq. 5 to yield the following description:

e y W ySi Si TSi Si− − ⎛
⎝⎜

⎞
⎠⎟= −1 1

 (6)

y y W e W ySi Si Si Si TSi Si← − − + +− +⎛
⎝⎜

⎞
⎠⎟

+( )1 1 1 1η ϑ ζ η  (7)

with an appropriate choice of parameters (i.e., ζ = μ, η = ν, and 
ϑ = −ν) the reformulated linear predictive coding model (Eqs 6 
and 7) can be seen to be mathematically identical to the biased 
competition model implemented using negative feedback as the 
mechanism of competition (Eqs 1 and 2). The only difference 
is the assignment of neural populations to processing stages 
(denoted by the superscripts). It should be noted that the differ-
ent populations of error-detecting nodes can be re-labeled, by 
adding 1 to the processing stage each e population is assigned to, 
without having any effect on functionality.

A neural network implementing Eqs 6 and 7 is shown in 
Figure 2C. This has an identical architecture to the biased com-
petition model depicted in Figure 2A except that the grouping 
of neural populations into cortical regions (illustrated in the fi g-
ure by the large shaded boxes with rounded corners) is shifted 
to the right.

The learning rule proposed by Rao and Ballard (1999) was:

TSi TSi TSi Si TSiW W x W y y⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛
⎝⎜

⎞
⎠⎟← + − −κ λ

TTSiW⎛
⎝⎜

⎞
⎠⎟

Substituting Eq. 6 for the term in square brackets, and taking 
the transpose of each side, gives:

W W y e WSi Si Si TSi Si← + −−⎛
⎝⎜

⎞
⎠⎟κ λ1  (8)

with the appropriate choice of parameter values (i.e., κ = β and 
λ = 0), this rule is identical to that used by Harpur and Prager 
(1996) (see Eq. 3). While it is clear that there is a strong similar-
ity between the learning rules proposed for the predictive cod-
ing model and for the biased competition model implemented 
as a hierarchy of negative feedback networks, exact equivalence 
between these rules is only obtained when one parameter in 
the predictive coding model takes a fi xed value (i.e., for a special 
case of predictive coding). In contrast, the equations for updat-
ing the node activations are equivalent for any parameter val-
ues as long as corresponding parameter values in the two sets 
of equations are equated (as described earlier in this section). 
The following discussion only assumes equivalence between the 
equations for calculating node activations.

DISCUSSION
The preceding analysis has demonstrated that the linear predic-
tive coding model and a particular implementation of biased 
competition are functionally equivalent. In other words, they 
are different implementations of the same mathematical model. 
Three different implementations of this mathematical model 
have been derived (Eqs 1 and 2, Eqs 4 and 5, and Eqs 6 and 
7) which differ in the neural architectures they propose for 
their implementation. These three architectures are shown in 
Figures 2A–C and will be referred to as the biased  competition 
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network, the predictive coding network, and the reformulated 
predictive coding network respectively. The underlying mathe-
matical model will be referred to as the linear predictive  coding/
biased competition (linear PC/BC) model.

Demonstrating that a particular implementation of predic-
tive coding (the linear model proposed by Rao and Ballard, 
1999) is mathematically identical to a particular implementa-
tion of biased competition (using the method of competition 
proposed by Harpur and Prager, 1994, 1996) highlights the 
similarity between predictive coding and biased competition in 
general, and enables analogies to be drawn between these two 
theories. However, it should be noted that other implementa-
tions of these two theories (or even two implementations of one 
of these theories) will differ mathematically, and are thus also 
likely to differ in the detailed behavior they produce. The degree 
of correspondence between other implementations would need 
to be investigated empirically through simulation.

IMPLEMENTATIONAL SIMILARITIES
Since each network implements the same mathematical model 
it is not surprising that they all share many features in com-
mon. Specifi cally, all three of the possible neural implemen-
tations propose alternate populations of error-detecting and 
prediction/representation nodes. Within this hierarchy all the 
networks employ one-to-one excitatory connections between 
one population of y units and the subsequent population of 
e units. Furthermore, the proposed connectivity between one 
population of prediction nodes and the previous population 
of error-detecting nodes is identical: all the networks use feed-
forward excitation and feedback inhibition with reciprocal 
strengths between populations of y and e units. In the biased 
competition network, this subtractive feedback is viewed as a 
method for providing competition between the nodes gener-
ating the y values. Whereas in the predictive coding network, 
this inhibitory feedback is viewed as a method for predic-
tion-error correction. However, the proposed mechanisms 
are mathematically equivalent so the only difference is one of 
interpretation. This correspondence between lateral inhibition 
and predictive coding has been noted previously (Koch and 
Poggio, 1999; Lee, 2003).

IMPLEMENTATIONAL DIFFERENCES
The three different implementations of the linear PC/BC model 
differ only in terms of the neural architecture that is required 
to implement them (as illustrated in Figures 2A–C). These 
networks thus make different predictions about how the same 
underlying mathematical model could be implemented in cor-
tical circuitry. This in turn has implications for the biological 
plausibility of each possible implementation.

The biased competition network and the reformulated pre-
dictive coding network differ from the predictive coding net-
work in terms of the mechanism used to enable the activity in 
one population of y units to enhance the activity of nodes in the 
preceding population of y units. In the biased competition net-
work, and the reformulated predictive coding network, strong 
activation of a particular prediction node at one stage in the 
hierarchy (e.g., y j

Si) will cause excitatory feedback that directly 
enhances the responses of those nodes in the lower-level popula-
tion (ySi −1) which, in turn, send feedforward excitation (via the 
eSi neurons) to that prediction node (y j

Si). In the predictive cod-
ing network, the same effect is brought about indirectly through 
inhibitory feedback projections: high activity in node y j

Si results 

in strong negative feedback to all the error-detecting nodes in 
the preceding level from which node y j

Si receives excitation. This 
results in negative activity values for a subset of error-detecting 
nodes, and hence, via the negative feedback connections to the 
preceding prediction nodes, will excite all the ySi −1 nodes which 
indirectly excite node y j

Si. Hence, the biased competition net-
work, and the reformulated predictive coding network, propose 
direct excitatory feedback from one population of prediction 
nodes to the preceding one. In contrast, the predictive coding 
network generates a mathematically identical result via a two 
stage inhibitory feedback pathway (via the e neurons) from the 
y population in one stage to that in the preceding stage.

The predictive coding network and the reformulated predic-
tive coding network differ from the biased competition network 
in terms of how they group the error-detecting and prediction 
node populations into processing stages. In the biased competi-
tion network each processing stage consist of an e population 
followed by a y population (as shown in Figure 2A). In con-
trast, in the predictive coding network each processing stage 
consists of a y population followed by a e population (as shown 
in Figure 2B). The reformulated predictive coding network 
(Figure 2C) proposes the same grouping of neural populations 
into processing stages as the predictive coding network from 
which it was derived (the manipulation carried out to derive 
Eq. 7 from Eq. 5 has the effect of replacing the two-stage nega-
tive feedback pathway described in the preceding paragraph 
with direct excitatory feedback from one population of predic-
tion nodes to the preceding one, but has no effect on the assign-
ment of neural populations to processing stages).

In Eqs 1–8 superscripts of the form Si have been used to 
denote the processing stage to which each neural population 
belongs. Hence, in the biased competition network the y val-
ues in stage Si are driven by the e values calculated in stage Si, 
whereas for the predictive coding network and reformulated 
predictive coding network the y values in stage Si are driven by 
the e values calculated in the preceding processing stage. The 
use of the superscripts to denote processing stages rather than 
the position of a population in the hierarchy irrespective of the 
proposed grouping, leads to the difference in the superscripts 
values of the e populations in the equations describing the refor-
mulated predictive coding network (Eqs 6 and 7) compared to 
the equations describing the biased competition network (Eqs 1 
and 2).

In previous work on the predictive coding network, process-
ing stages have been equated with cortical regions (Friston, 
2005; Rao and Ballard, 1999). Under such a literal interpreta-
tion, each of the three networks make distinct predictions about 
the cortical circuitry that would be required to implement the 
same mathematical model in neural hardware. In terms of the 
plausibility of each implementation, one notable way in which 
these predictions differ is in terms of the required functional 
role of cortical feedback connections. The biased competition 
network requires feedback from one cortical area to the pre-
ceding area to be excitatory. In contrast, the predictive coding 
network requires cortical feedback to be inhibitory. The refor-
mulated predictive coding network requires both inhibitory 
feedback (targeting the e units), and excitatory feedback (tar-
geting the y units). Cortical feedback connections are the axon 
projections of pyramidal cells and are therefore exclusively exci-
tatory. The targets for these connections are also predominately 
pyramidal cells (Budd, 1998; Johnson and Burkhalter, 1996). 
It is possible that these top-down signals are “inverted” by the 
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action  inhibitory interneurons within the cortical area receiving 
the feedback. This could either occur via the small proportion 
of direct inhibitory contacts made by the feedback connections 
themselves, or via the pyramidal cells targeted by the feedback 
subsequently activating inhibitory interneurons (e.g., as pro-
posed by Schwabe et al., 2006 to model surround suppression). 
However, the post-synaptic potentials generated by the activa-
tion of feedback connections are predominantly excitatory 
(Johnson and Burkhalter, 1997; Shao and Burkhalter, 1996). 
Hence, cortical feedback causes strong excitation and only weak 
inhibition, and this is incompatible with both the predictive 
coding network and reformulated predictive coding network. 
Hence, in this regard, the biased competition network appears 
to suggest the most biologically plausible neural architecture.

Based on the anatomy of cortical feedforward and feedback 
connections (Barbas and Rempel-Clower, 1997; Barone et al., 
2000; Felleman and Van Essen, 1991; Johnson and Burkhalter, 
1997) it is possible to propose a mapping of the biased compe-
tition network onto the cortical circuitry. Cortical feedforward 
connections originate from pyramidal cells in layers II and III 
and feedback connections terminate outside layer IV. This sug-
gests that the prediction/representation units map to pyramidal 
cells in the superfi cial layers of cortex. Similarly, since cortical 
feedforward connections predominantly target the spiny- stellate 
cells in layer IV, it is possible to equate the error-detecting popu-
lation of nodes with this cortical layer. However, it is also possi-
ble that the error-detection is performed in the dendrites of the 
supra-granular pyramidal cells (Spratling and Johnson, 2002) 
rather than in a separate neural population.

RECONCILING PREDICTIONS
The previous section has discussed differences between imple-
mentations of the linear PC/BC model at the hardware or imple-
mentation level of analysis. However, at the algorithmic level all 
the implementations are identical (they all implement the same 
mathematical model) and hence the behavior of these networks 
and the predictions they make about cortical function are the 
same. It should be emphasized that no new model has been pro-
posed in this article: the model described is mathematically the 
same as the linear model proposed by Rao and Ballard (1999) 
and hence makes all the same predictions as that model. What 
this article does contribute is a new perspective on that existing 
algorithm which shows how biased competition and predictive 
coding theories can be unifi ed.

From the perspective of predictive coding, reconciliation 
involves rearranging the equations describing the linear pre-
dictive coding model and changing the way in which the neu-
ral populations are grouped into processing stages. It is then 
possible to derive a mathematically equivalent implementa-
tion that can be interpreted as a form of biased competition 
model. By doing so, predictive coding can be seen to inherit 
the predictions made by biased competition and to benefi t 
from a more intuitively appealing and biologically plausible 
interpretation.

Correspondingly, from the perspective of biased competition, 
reconciliation involves modifying a standard implementation of 
the biased competition model to use the method of competi-
tion proposed by Harpur and Prager (1994, 1996). This yields a 
form of biased competition that is mathematically equivalent to 
the original linear predictive coding model proposed by Rao and 
Ballard (1999). Hence, this particular implementation of biased 
competition inherits all the predictions of the linear  predictive 

coding model and benefi ts from the information-theoretic 
 elegance of the predictive coding theory.

The suggestion that predictive coding and biased competi-
tion actually make the same predictions may be controversial 
given the widespread belief that they are distinct, rival, theories. 
However, all three neural implementations of the linear PC/BC 
model propose that there is a population of error-detecting 
nodes and a population of representational nodes in each corti-
cal region, and each network predicts that top-down knowledge 
can make the responses of the representational population more 
selective and also reduce the response of the error- detecting pop-
ulation by subtracting the top-down prediction from them. The 
linear PC/BC model thus predicts that when top-down knowl-
edge accurately predicts the bottom-up inputs to a processing 
stage a sub-population of cells (the error-detecting neurons) in 
that cortical region will show suppression, while another sub-
population (a specifi c subset of prediction neurons) will show 
an enhancement of response. The enhanced response of the 
subset of prediction nodes which encode information consist-
ent with the top-down prediction is compatible with single-
cell electrophysiological data showing enhanced neural activity 
resulting from attentional and contextual infl uences (Galuske 
et al., 2002; Hupé et al., 1998; Lamme et al., 1998; Lee et al., 
1998; Luck et al., 1997; McAdams and Maunsell, 2000; Reynolds 
et al., 1999; Zipser et al., 1996).

Similarly, the model’s behavior is consistent with fMRI data 
showing a reduction in response of primary visual areas (cor-
related with an increase in response of higher-level areas) when 
visual information is coherent rather than incoherent (Harrison 
et al., 2007; Murray et al., 2002). The model proposes that 
neurons with larger receptive fi elds in higher cortical regions 
would be sensitive to coherent information and be able to feed-
back accurate predictions to cells with smaller receptive fi elds 
in the more peripheral region. This, in turn, would reduce the 
response of the error-detecting nodes in the lower-level area 
(Harrison et al., 2007; Murray et al., 2002; Olshausen, 2003). It 
would also lead to a refi nement in the representation formed 
by the prediction nodes in the lower-region due to excitatory 
feedback enhancing those few responses consistent with the top-
down percept and suppressing, through competition, inconsist-
ent representations (Kersten et al., 2004; Murray et al., 2004; 
Olshausen and Field, 2005).

Previously, the predictive coding model has been criticized for 
being inconsistent with single-cell electrophysiology experiments 
showing top-down enhancement to neural responses (Hamker, 
2006; Koch and Poggio, 1999). This is a mis-interpretation of 
the model, that may have resulted from the strong emphasis the 
predictive coding hypothesis places on the importance of the 
error-detecting nodes, and the corresponding under-emphasis on 
the role of the prediction nodes in maintaining an active repre-
sentation of the stimulus. It may also result from the top-down 
excitation received by the prediction nodes in the original imple-
mentation of predictive coding being “disguised” as inhibition 
through the use of a two stage inhibitory feedback pathway. From 
the current analysis it is clear that predictive coding is consistent 
with cortical physiology and would predict that attention causes 
enhanced activity of neural responses consistent with the attended 
location or feature and that, furthermore, this enhanced activity 
will act to infl uence the outcome of the competition occurring 
between the prediction nodes within a cortical region.

Previously, the predictive coding model has been considered 
to be compatible with the fMRI data showing suppression of 
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responses in early visual processing stages due to the  mechanism 
of error-detection node suppression (Harrison et al., 2007; 
Murray et al., 2002; Olshausen, 2003). The current analysis 
makes it clear that predictive coding is also compatible with 
suppression of the fMRI signal due to refi nement of the repre-
sentation formed in the prediction nodes (as previously noted 
by Friston, 2005). Similarly, the biased competition model has 
previously been considered to be compatible with the fMRI data 
due to the mechanism of response refi nement (Kersten et al., 
2004; Murray et al., 2004; Olshausen and Field, 2005). However, 
biased competition (when implemented using negative feedback 
as the mechanism of competition between the prediction nodes) 
is also compatible with an explanation in terms of a reduction 
in prediction error.

CONCLUSIONS
At fi rst sight the biased competition and predictive coding 
theories seem to be diametrically opposed: one requires cor-
tical feedback to be excitatory while the other proposes that 
feedback is suppressive. The predictive coding and biased 
competition models have therefore been considered as distinct 
theories of cortical function. However, a simple variation on 
the conventional neural network implementation of the biased 
competition model has been shown to be identical to the lin-
ear predictive coding model. Hence, a particular implementa-
tion of the biased competition model, in which nodes compete 
via inhibition that targets the inputs to a cortical region, is 
mathematically equivalent to linear predictive coding. These 
 previously distinct, rival, theories of cortical function can thus 
be united.

The unifi ed PC/BC model proposes that each cortical region 
along an information processing pathway represents hypoth-
eses. These hypotheses might be either endogenously generated 
through expectation, priming, attention, etc., or exogenously 
generated through larger scale, contextual, information being 
integrated across the larger receptive fi elds of higher-level neu-
rons. These hypotheses are continuously feeding-back to more 
peripheral cortical regions to bias the ongoing processing occur-
ring in those areas. This will result in nodes representing infor-
mation consistent with the higher-level hypotheses receiving 
top-down excitation. Such top-down bias may infl uence the 
outcome of competition occurring between nodes in the lower 
region so that the neural representations at each stage of the 
hierarchy refl ect the integration of both bottom-up analyses and 
top-down hypotheses. When the top-down hypothesis is accu-
rate, this will lead to a reduction in the error between the rep-
resentation formed and the bottom-up input received. Hence, 
bottom-up information is combined with top-down priors in 
order to compute the most likely interpretation of ambiguous 
sensory data.

The need for top-down, contextual, biases for the processing 
of ambiguous visual information does not exclude the possibil-
ity that unambiguous data can be analyzed rapidly via the fi rst 
feedforward wave of activity (Roelfsema, 2006). It is also possi-
ble that, as has been observed psychophysically (Hochstein and 
Ahissar, 2002; Oliva and Torralba, 2006; VanRullen and Thorpe, 
2001), a neural representation encoding the gist of a scene, or a 
previously learned object category, might be suffi ciently strongly 
activated via feedforward connections to allow it to be distin-
guished at short latencies. At longer latencies the model would 
predict that the initial representation becomes more refi ned 
through the infl uence of lateral and feedback  connections, and 

that these effects would become apparent in the later, sustained, 
responses of neurons, as is observed in cortex (Hegdé and Van 
Essen, 2006; Hochstein and Ahissar, 2002; Hupé et al., 1998; 
Lamme et al., 1998; Lee et al., 1998; Roelfsema, 2006; Zipser 
et al., 1996).

The PC/BC model described here is purely linear. A more 
powerful model might include nonlinearities and Rao and 
Ballard (1999) proposes a nonlinear version of their imple-
mentation. Two other possible forms of nonlinearity could 
be introduced into the effects of higher-level predictions on 
lower-level predictions (i.e., the inter-regional feedback in the 
biased competition network) and into the effects of predic-
tions on error-detecting nodes (i.e., the effects of competition 
in the biased competition network). For the former, top-down 
feedback might be allowed to multiplicatively modulate the 
bottom-up driven activation of lower-level nodes (Spratling 
and Johnson, 2004). Such gain modulation is observed in 
cortex and there are plausible physiological mechanisms for 
its implementation (Friston, 2005; Larkum et al., 2004). The 
other possibility might be to employ a mechanism of compe-
tition in which nodes divisively modulate their inputs. This 
is the method used in the non-negative matrix factorization 
algorithm (Lee and Seung, 1999) and has been shown to gen-
erate more accurate parsings of images into their elementary 
components than the subtractive feedback mechanism used 
in the current model (Spratling et al., sub). An additional 
advantage of this mechanism is that it avoids the need for 
the error-detecting nodes to encode negative activity values, 
and hence overcomes a biological implausibility in the cur-
rent model. Another direction for future development is the 
learning mechanism. The current learning rules proposed by 
both Rao and Ballard (1999) and Harpur and Prager (1996) 
attempt to adjust synaptic weights in order to minimize the 
error between the input stimulus and the predicted input. 
Hence, in common with many other algorithms (e.g., Friston, 
2005; Lee and Seung, 1999), both short-term responses and 
long-term weight changes are driven by the objective of error 
reduction. However, this form of error-driven learning fails to 
form meaningful representations of overlapping image com-
ponents in the face of occlusion (Spratling et al., sub) and, 
hence, fails to accurately encode the causal structure of the 
visual environment.
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