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Topographica: building and analyzing map-level simulations 
from Python, C/C++, MATLAB, NEST, or NEURON components
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Many neural regions are arranged into two-dimensional topographic maps, such as the 
retinotopic maps in mammalian visual cortex. Computational simulations have led to valuable 
insights about how cortical topography develops and functions, but further progress has been 
hindered by the lack of appropriate tools. It has been particularly diffi cult to bridge across levels 
of detail, because simulators are typically geared to a specifi c level, while interfacing between 
simulators has been a major technical challenge. In this paper, we show that the Python-based 
Topographica simulator makes it straightforward to build systems that cross levels of analysis, 
as well as providing a common framework for evaluating and comparing models implemented 
in other simulators. These results rely on the general-purpose abstractions around which 
Topographica is designed, along with the Python interfaces becoming available for many 
simulators. In particular, we present a detailed, general-purpose example of how to wrap an 
external spiking PyNN/NEST simulation as a Topographica component using only a dozen lines 
of Python code, making it possible to use any of the extensive input presentation, analysis, and 
plotting tools of Topographica. Additional examples show how to interface easily with models in 
other types of simulators. Researchers simulating topographic maps externally should consider 
using Topographica’s analysis tools (such as preference map, receptive fi eld, or tuning curve 
measurement) to compare results consistently, and for connecting models at different levels. 
This seamless interoperability will help neuroscientists and computational scientists to work 
together to understand how neurons in topographic maps organize and operate.
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spiking neurons, while NEST provides only limited support for 
fi ring-rate neurons (necessary for the largest scale models) or for 
more detailed individual neuron models, and does not provide a 
GUI for large-scale visualizations. Combining multiple simulators 
to bridge between these levels of analysis could provide a complete, 
biologically grounded explanation of how single-neuron properties 
lead to large-scale topographic maps. Even for models at the same 
level, interfacing multiple simulators into a coherent framework can 
also help provide a uniform means for comparing and evaluating 
them. However, interconnecting simulators has previously been a 
signifi cant technical challenge (Cannon et al., 2007; Djurfeldt and 
Lansner, 2007).

This paper describes how the Topographica map-level simu-
lator can be used to achieve important types of interoperability 
between a very wide range of simulators with surprisingly little 
coding or development effort. One reason that interoperability is 
practical in Topographica is that Topographica is implemented in 
the Python scripting language, and many neural simulators now 
include Python interfaces. Another reason is that Python is a very 
high level language, known as a glue language (Ousterhout, 1998), 
that makes it easy to connect different interfaces for rapid software 
development. Even more important, however, is that Topographica 
is built around a high-level abstraction of the properties of topo-
graphic maps, which is relatively simple to adapt to components 
implemented in any particular simulator yet provides access to a 

INTRODUCTION
In mammals, much of the cortical surface (and many subcorti-
cal structures) can be partitioned into topographic maps (Kaas, 
1997; Van Essen et al., 2001). These maps contain systematic two-
dimensional representations of features relevant to sensory and 
motor processing, such as retinal position, sound frequency, line 
orientation, and motion direction (Blasdel, 1992; Merzenich et 
al., 1975; Ohki et al., 2005; Weliky et al., 1996; Xu et al., 2007). 
Figure 1 shows an example retinotopic and orientation map from 
the primary visual cortex (V1). Understanding the development 
and function of topographic maps is crucial for understanding 
brain function, and will require integrating large-scale experimental 
imaging results with single-unit studies of the individual neurons 
and their connections that make up these maps. In principle, com-
putational modeling can help make these links explicit, in order 
to explain how topographic maps can emerge from the behavior 
of single neurons.

However, existing simulators typically address only a small range 
of levels of analysis. For instance, NEURON (Hines and Carnevale, 
1997) and GENESIS (Bower and Beeman, 1998) primarily focus 
on detailed studies of individual neurons or very small networks 
of them, rather than enough neurons to form a meaningful topo-
graphic map. Topographica (Bednar, 2008) and NEST (Diesmann 
and Gewaltig, 2002) allow much larger scale simulations of sim-
pler neurons, but Topographica provides only limited support for 
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large range of useful tools. Simply put, if a simulation in any other 
simulator or language contains a large number of neurons (at any 
level of complexity) arranged into a two-dimensional sheet or array 
(or a three-dimensional stack of such two-dimensional arrays), 
then it will be practical to use that simulation or parts of it within 
Topographica.

In turn, integrating such a simulation into Topographica will be 
useful if it can make use of analyses that rely primarily on an average 
(fi ring rate) activation level for each neuron, particularly if they 
are based on measuring responses to an input pattern. Many such 
routines are already implemented in Topographica, such as meas-
uring receptive fi elds, tuning curves, or feature preference maps of 
any type, decoding activity values, and 1D, 2D, or 3D plotting of 
these and other measurements. Other simulators implement some 
of these functions, but rarely in a fully general form that can be 
applied to any neural area and any type of input feature. To make 
the most use of these components, it is helpful if each sheet of 
neurons in the underlying model can be separated from the others 
with well-defi ned interfaces, but even relatively monolithic models 
can be analyzed if they include at least one sheet of neurons that can 
accept an external input, and at least one neuron or set of neurons 
whose fi ring-rate activity patterns are of interest. Any such model 
can then be compared and tested against any similar model, using a 
consistent analysis and visualization framework. Similar considera-
tions apply to using small parts of external models, such as a model 
retinal or cortical area, as part of a larger hierarchical or network 
model of a neural system connected in Topographica.

These features make it surprisingly straightforward to use 
Topographica for simulating and analyzing large-scale, detailed 
 models of topographic maps, using either native or externally imple-
mented components. Topographica is an open source project, and 
binaries and source code are freely available through the internet 
at topographica.org for interfacing to external code on Linux, 
Microsoft Windows, and Macintosh OS X platforms. In the sections 
below, we describe the main assumptions and abstractions used by 
Topographica, provide a detailed example of interfacing to an external 
spiking simulator, show how to interface to a wide variety of other 
external systems and simulators, and discuss in more detail which types 
of models are most suitable for interfacing with Topographica.

SOFTWARE DESCRIPTION AND METHODS
Models supported natively by Topographica typically consist of a 
collection of topographic maps in cortical or subcortical regions, 
such as an auditory or visual processing pathway. Figure 2 shows 
an example simulation along with various types of analysis and 
plotting. This simple model consists of four separate populations 
of neurons, called Sheets: one sheet of retinal photoreceptors 
(labeled Retina), a sheet of ON retinal ganglion cell (RGC)/lat-
eral geniculate nucleus (LGN) cells labeled LGNON, a sheet of OFF 
cells labeled LGNOFF, and a sheet of V1 pyramidal cells labeled V1. 
Neurons in each sheet are arranged topographically, with similar 
properties but at different spatial locations.

Topographica is a general-purpose discrete-event simulator, 
simulating a set of EventProcessors (any object in a Simulation 

FIGURE 1 | Retinotopic and orientation map in V1. Given a particular fi xation 
point (marked with a red + symbol above), the visual fi eld seen by an animal can 
be divided into a regular grid, with each square representing a 1° × 1° area of 
visual space. In cortical area V1 of mammals, neurons are arranged into a 
retinotopic map, with nearby neurons responding to nearby areas of the retina. 
As an example, the image on the right shows the retinotopic map on the surface 
of V1 of a tree shrew for an 8° × 7° area of visual space (adapted from 
Bosking et al., 2002 with permission; scale bar is 1 mm). A stimulus presented 
in a particular location in visual space (such as the thick black bar shown) evokes 
a response centered around the corresponding grid square in V1 (6°, 2°). Which 

specifi c neurons respond within that general area, however, depends on the 
orientation of the stimulus. The V1 map is color coded with the preferred 
orientation of neurons in each location; e.g. the black bar shown at left will 
primarily activate neurons colored in purple in the corresponding V1 grid 
squares. Similar maps could be plotted for this same area showing preference 
for other visual features, such as motion direction, spatial frequency, color, 
disparity, and eye preference (depending on species). Other cortical areas are 
arranged into topographic maps for other sensory modalities, such as touch and 
audition, and for motor outputs. Topographica is designed to simulate any of 
these cortical or subcortical areas.
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capable of receiving and sending Events) connected into a graph 
by EPConnections. An EPConnection ensures that Events are 
delivered to the appropriate target after a specifi ed delay. The pat-
tern of connections and delays in a certain network determines 
how a simulation will progress, with events being generated at a 
certain EventProcessor, processed by the target EventProcessor, 
and potentially leading to additional Events delivered to other 
EventProcessors. Of course, any pattern of connection is allowed, 
including lateral and feedback connections. This approach is gen-
eral enough to simulate any physical system as a collection of inter-
connected entities that can interact and change over time.

To make it practical to model large-scale topographic maps, the 
most common type of EventProcessor in Topographica is a two-
dimensional Sheet of neurons as in the example above, rather than 
a neuron or a part of a neuron. Each Sheet is typically a population 
of similar neurons, and multiple Sheets can be used for each neural 
area, e.g. to represent different laminae or qualitatively different cell 

classes. Conceptually, a sheet is a continuous, two-dimensional area 
(as in Amari, 1980; Roque Da Silva Filho, 1992), which is typically 
approximated by a fi nite array of neurons. This approach is crucial 
to the simulator design, because it allows user parameters, model 
specifi cations, and interfaces to be independent of the details of 
how each Sheet is implemented.

Apart from accepting and generating Events, all a Sheet is required 
to do is to have a fi xed area and density of neurons, and to be able 
to generate a fl oating-point array of the appropriate size when 
asked for its current pattern of activity. Once this activity matrix 
is available for a new Sheet type, then nearly all of Topographica’s 
analysis and plotting code can be used with the new Sheet type, 
e.g. to decode neural responses from the fi ring rate, or to measure 
a topographic map. This general-purpose interface is what makes it 
practical to wrap around a wide variety of external simulations, as 
long as they can be interpreted as a two-dimensional array whose 
elements can have some average fi ring-rate activity value.

FIGURE 2 | Topographica software screenshot. This image shows a sample 
session from Topographica version 0.9.3, available freely at topographica.
org. Here the user is studying the behavior of an orientation map in the primary 
visual cortex (V1), using a model of photoreceptors as the input to the Retina, 
ON and OFF RGC/LGN cells, and a simple V1 model. The window at the left 
labeled “Orientation Preference” shows a self-organized orientation map in V1. 
The window labeled “Activity” shows (from left to right) a sample visual image 
input to the retina, the ON and OFF channel responses to that input, and (on the 
right) an orientation-color-coded representation of activity in the V1 Sheet of 
neurons. The input patterns were generated using the Test Pattern “Preview” 

dialog at the right. The window labeled “Connection Fields” shows the 
strengths of the connections to one neuron in V1. The lateral weights for a 9 × 9 
sampling of the V1 neurons are shown in the “Weights Array” window in the 
center; neurons tend to connect to their immediate neighbors and to distant 
neurons of the same orientation. The “Topographic Mapping” window shows 
how retinotopy has been distorted by the orientation map, and the “FFT Plot” 
shows that the orientation map repeats regularly in all dimensions, as in animals. 
This type of large-scale analysis is diffi cult with other simulators, but typically 
requires no new coding or software development once a network simulation has 
a basic connection to Topographica.
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Topographica comes with a variety of Sheet types, plus a 
large library of other simulation objects, such as projections 
(EPConnections between Sheets), activation functions, learning 
rules, analysis routines, and visualizations. The most extensive sup-
port is for models of the visual system, and Topographica includes 
fl exible components for generating visual inputs (based on geomet-
ric patterns, mathematical functions, and photographic images), 
plus general-purpose mechanisms for measuring maps of visual 
stimulus preference, such as orientation, ocular dominance, motion 
direction, and spatial frequency maps. But many of the primitives 
are usable for any topographically organized system, and there are 
already Topographica models of somatosensory areas (e.g. monkey 
skin and rat whisker barrel areas), auditory inputs, and motor areas 
(e.g. for driving visual saccades). Moreover, additional components 
can be added easily to make external simulations visible from within 
Topographica, or to implement new functionality in general.

INTEROPERABILITY
To demonstrate concretely the procedure for connecting external 
simulations to Topographica, in this section we present a detailed 
example of wrapping an external NEST simulation using the 
Topographica Sheet interface. Shorter examples of how to interface 
with a variety of other simulators follow.

INTERFACING TO PERRINET RETINAL MODEL IN PyNN
For this example, we wrapped a spiking retinal ganglion cell model 
that is being developed by Laurent Perrinet (INCM/CNRS) as part 
of the FACETS project1 and being used in a large-scale spiking 
model of cortical columns in V1 (Kremkow et al., 2007). Writing 
this interface was surprisingly simple, taking about 2 h to adapt 
one of the example Topographica simulations to send output to 
an external simulator and retrieve input from it, and we expect 
interfacing to other models to be similarly straightforward if they 
meet the assumptions laid out in the “Discussion” section.

The Perrinet retina model is specifi ed in PyNN (Davison et al., 
2007)2, a Python wrapper that sets up and runs simulations of 
neural models relatively independently of the underlying simula-
tion engine. This particular script calls the NEST simulator, which 
is well adapted for large-scale spiking neural networks (Diesmann 
and Gewaltig, 2002), but it could also be run under NEURON by 
changing one line of declaration.

The model contains two populations of spiking retinal ganglion 
cells, a 32 × 32 array of ON cells and a 32 × 32 array of OFF cells, 
receiving input from a 32 × 32 array of photoreceptors whose acti-
vation level can be controlled externally. The code can be obtained 
and run by downloading Topographica release 0.9.6 (or SVN ver-
sion 9857 or later) of Topographica, and installing PyNN, NEST, 
and PyNEST using Topographica’s copy of Python (as described 
in examples/perrinet_retina.ty in the distribution).

Figure 3 shows the Python code for wrapping this network as a 
Photoreceptor Sheet (Photoreceptors), a connection to PyNN 
(PyNNR), and two ganglion cell Sheets (ON_RGC and OFF_RGC), and 
Figure 4 shows the resulting simulation running in Topographica. 
The example code would be nearly the same for interfacing to any 

other external simulation that consists of two-dimensional arrays 
of neurons, and so we will step through each part of this code to 
show how the interface is achieved. In each case, the relevant line of 
code is marked with a circled number, which can be found on the 
code listing. Note that this code constitutes the complete, runnable 
model specifi cation for Topographica; it is not a code excerpt or a 
high-level interface to some underlying, complicated interfacing 
code, but instead it is all that was required to connect to and run 
the external simulation within Topographica.

1 First, the external simulation is imported, making anything 
available to Python from that simulation also available to 
Topographica. For this import to succeed, PyNN, NEST, and 
PyNEST need to be installed, and each need to have been 
given Topographica’s copy of Python during installation so 
that they will be available to Topographica.

2 Next, we defi ne a new type of Topographica EventProcessor 
PyNNRetina to handle communication between Topographica 
and the external simulator. This class simply accepts an inco-
ming event from Topographica that contains a matrix of pho-
toreceptor activity, passes the matrix to the external spiking 
simulator, collects the fi ring-rate-averaged results, and sends 
them out to any Topographica sheets that may be connected.

3 More specifi cally, the class fi rst declares that it can accept an 
incoming event on a port labeled Activity, and that it will 
generate two separate types of output data to be made avai-
lable on the ONActivity and OFFActivity dest_ports. 
It also declares that it has two user-controlled parameters, N 
(size of array of neurons) and simtime (duration to run the 
simulation for each input). (Additional parameters from the 
underlying simulator can be declared similarly, or all of the 
underlying parameters could be exposed as a batch using sui-
table gluing code.)

4 The constructor (__init__) does any initialization that 
should be done once per run, here consisting only of defi ning 
some parameters, but potentially including launching an 
external simulator, making a connection to a remote simula-
tor already running, etc.

5 The input_event method is called by Topographica whe-
never an Event delivers data to this object’s src_port 
(Activity). In this case, the method adds the incoming acti-
vity matrix into its parameters data structure (ps), and then 
calls the external function run_retina to run the underlying 
simulation. When the external simulator completes, two lists 
of spikes are returned, one for ON and one for OFF, and these 
are processed using the helper function process_spike-
list. For each list, process_spikelist computes the 
fi ring rate of each neuron and sends the resulting fl oating-
point arrays out the appropriate port.

6 The remainder of the code instantiates a model network to 
display the results from this class, defi ning one PyNNR object, 
a Photoreceptors Sheet to generate input patterns, two 
RGC Sheets to display the resulting activity patterns, and con-
nections between them.

Running this model (or other Python-based simulations) within 
Topographica adds only a tiny amount of computational cost. 
For this example running on a 3GHz Intel Core 2 Duo machine, 

1http://facets.kip.uni-heidelberg.de.
2http://neuralensemble.org/trac/PyNN.

http://facets.kip.uni-heidelberg.de
http://neuralensemble.org/trac/PyNN
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 simulating in batch mode with N=8 and simtime=4 s takes 16.07 s 
in Topographica, versus 15.88 s using the native PyNN version 
(averages of 5 trials; variance negligible). This 0.2-s time  difference 

consists mainly of libraries that Topographica imports when it starts 
up, and the ongoing cost is normally negligible for a non-trivial 
external Python model.

FIGURE 3 | Sample Topographica interface code. This Python code shows a 
complete, runnable Topographica 0.9.6 simulation interfacing with an external 
PyNN/PyNEST spiking simulation of ON and OFF retinal ganglion cells. The text 
in bold starts the PyNN simulation and retrieves the results, and would need to 

be changed for interfacing to a new external simulation. The other text sets up 
an appropriate Topographica simulation framework, and only needs changing to 
e.g. match the number and type of sheets that you want to expose from the 
underlying external simulation.

    import numpy
    from topo import sheet, numbergen, pattern, param, projection 
    from topo.base.simulation import EventProcessor 
1  import perrinet_retina_pynest as pynr

2   class PyNNRetina(EventProcessor):
3       dest_ports=["Activity"]
         src_ports=["ONActivity","OFFActivity"]
         N = param.Number(default=8,bounds=(0,None), doc="Network width")
         simtime = param.Number(default=4000*0.1,bounds=(0,None),
             doc="Duration to simulate for each input")

         def__init__(self,**params):
             super(PyNNRetina,self).__init__(**params)
4           self.ps=pynr.retina_default()
             self.ps.update("N":self.N)
           self.dt=self.ps["dt"]

5       def input_event(self, conn, data):
             self.ps.update("simtime":self.simtime
           self.ps.update("amplitude":.10*data)
           on_list,off_list=pynr.run_retina(self.ps)
           self.process_spikelist(on_list,"ONActivity")
           self.process_spikelist(off_list,"OFFActivity")

         def process_spikelist(self,spikelist,port):
             spikes=numpy.array(spikelist)
           spike_time=numpy.cumsum(spikes[:,0]) * self.dt
           spike_out=pynr.spikelist2spikematrix(
               spikes,self.N,self.simtime/self.dt,self.dt)
             self.send_output(src_port=port,data=spike_out)

6   N=32
    topo.sim["PyNNR"]=PyNNRetina(N=N)

    topo.sim["Photoreceptors"]=sheet.GeneratorSheet(
         nominal_density=N, period=1.0, phase=0.05,
         input_generator=pattern.Gaussian(
             orientation=numbergen.UniformRandom(lbound=-pi,ubound=pi,seed=l)))

    topo.sim["ON_RGC"] =sheet.ActivityCopy(nominal_density=N, precedence=0.7)
    topo.sim["OFF_RGC"]=sheet.ActivityCopy(nominal_density=N, precedence=0.7)

    topo.sim.connect("Photoreceptors","PyNNR",name='.',
        delay=0.05,src_port="Activity",dest_port="Activity")
    topo.sim.connect("PyNNR","ON_RGC",name='..',
        delay=0.05,src_port="ONActivity",dest_port="Activity")
    topo.sim.connect("PyNNR","OFF_RGC",name='...',
        delay=0.05,src_port="OFFActivity",dest_port="Activity")
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With this interface in place, the external simulation can be used 
with nearly all of Topographica’s features. For instance, Figure 4 
shows one example input pattern and the resulting pattern of ON 
and OFF RGC activity. For this example, the main benefi t to having 
the Topographica wrapper is to be able to present any of the types 
of input patterns in Topographica’s large library of input patterns, 
using either the GUI so that the results can be seen interactively, or 
systematically using Python code. For other simulations, e.g. those 
including cortical areas such as V1, Topographica can compute tun-
ing curves, receptive fi elds, many types of preference maps, and other 
analyses and plots for any of the neurons and Sheets available to 
Topographica, with no coding required. As long as the computa-
tion only requires average fi ring rates, no special-purpose code or 
additional interface will be needed beyond what is shown in this 
example. Thus Topographica can be used to provide a consistent set 
of analyses and plots for a wide variety of underlying simulations.

INTERFACING TO OTHER PYTHON CODE (E.G., PyNEST, NEURON)
The general approach outlined in the section “Interfacing to Perrinet 
Retinal Model in PyNN” can be used for any other model running in 
an external simulator that has a Python interface or is written directly 
in Python. In each case, a new Topographica EventProcessor class can 
be created to accept incoming events, process them somehow, and 
generate appropriate output. For instance, similar steps would have 
been used if the retina model had been written in PyNEST directly 
rather than PyNN, or in NEURON’s own Python interface. As long 
as the external simulator can be told to use Topographica’s copy 
of Python, then Topographica can import the required functions, 
execute them as part of such a class, and thus control its input and 
output. As a result, the main issues with interfacing to other Python-
based simulators are not so much technical as conceptual; these 
conceptual issues will be reviewed in the “Discussion” section.

INTERFACING TO MATLAB
Topographica can also connect easily to external simulations 
 running in Matlab, using the Python ↔ Matlab interface package 
mlabwrap3 that is supplied with Topographica.

For instance, the following complete, runnable Topographica 
script defi nes a Python/numpy array a and then calls a Matlab 
function “nestedsum” on it:

     from mlabwrap import mlab
     import numpy
     len=100000
     a=numpy.array(range(len))
     print mlab.nestedsum(a, len)

Here nestedsum.m is an arbitrary example of a Matlab function 
placed somewhere in Matlab’s path, containing:

     function s = nestedsum(a,len)
     s=0.0;
     for i=1:len
       s=s+sum(a);
     end

(This code prints 5.0000e+14 when run from Matlab, and 
4.99995000e+14 when run from Topographica/Python.) Any 
built-in or user-supplied Matlab function can be called similarly 
(including plotting code like mlab.plot(a)), with nearly seam-
less interchange of scalar and array data between the two systems. 
This capability makes it simple to develop interfaces like that in 
the section “Interfacing to Perrinet Retinal Model in PyNN”, 
or just to use small bits of Matlab code or visualizations when 
appropriate.

The mlabwrap package performs some data conversion behind 
the scenes, but the overhead is still usually negligible. The exam-
ple above run on the same machine as for PyNN takes 12.27 s in 
Topographica, versus 11.57 s for a pure Matlab version. Again, this 
0.7 s difference includes the entire startup time, and increases little 
with simulation size (e.g. 0.8 s out of 44 for len=200000).

The main technical limitation of the mlabwrap Matlab 
 interface is that at present it only supports 1D and 2D arrays, 
because the mlabwrap author has not yet added n-dimensional 
array  support. More importantly, interfacing to external Matlab 
models can be diffi cult because of the monolithic (as opposed to 
object-oriented) programming style typically used for Matlab pro-
gramming. For instance, the Olshausen and Field (1996) model 

FIGURE 4 | Example architecture. This fi gure shows the simulation from 
Figure 3 running in Topographica. On the input sheet is a 2D Gaussian pattern 
generated by Topographica and presented to the underlying spiking network, 

with the resulting spike count responses shown on the ON and OFF RGC 
sheets. The type of input pattern and its parameters can be manipulated as 
shown.

3http://mlabwrap.sourceforge.net.

http://mlabwrap.sourceforge.net
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available from4 is a good match to Topographica conceptually, but 
running it within Topographica in a useful way requires splitting 
up the Matlab code into three components to handle the input 
pattern generation, response to the input, and the weights update 
separately. These functions were originally controlled by a single 
Matlab script. Thus in practice how diffi cult it would be to interface 
to Matlab code depends on the programming style and complexity, 
with simple functions being simple to access but complicated mod-
els potentially requiring prior reorganization on the Matlab side.

INTERFACING TO C/C++
Python offers a wide variety of methods for interfacing to C or C++ 
code, any of which could be used with Topographica. The specifi c 
interface currently used for the performance-critical portions of 
Topographica is Weave5, which allows snippets of C or C++ code 
to be called easily from within Python code. A sample complete, 
runnable Topographica/Python script with C code is:

     import weave,numpy
      len=100000
      sum=0.0
      a=numpy.array(range(len))
      code = """
          int i,j;
          for (i=0; i<len; i++)
            for (j=0; j<len; j++)
              sum+=a[i];
          return_val=sum;
      """
      print weave.inline(code,["a","len","sum"])

Here the C code in the string named code is computing the same 
function as the Matlab code above; it will print 4.99995e+14 when 
run. The fi rst time it is run the C compiler will be called automati-
cally to compile that code fragment, and then the saved object fi le 
will be reused in subsequent calls and on subsequent runs, unless 
the C code string is changed. This approach makes it simple to 
include bits of existing C code to optimize specifi c functions, or 
to make calls to C libraries.

The C interface adds very little overhead, in part because it 
uses numpy arrays in place. The example above takes 10.34 s in 
Topographica, versus 10.07 for a pure C equivalent. This 0.3-s dif-
ference is primarily due to the Topographica startup time, because 
it does not increase with simulation size or length. Also note that 
the full C version must be recompiled for any change, even trivial 
ones, while the Topographica/Python version only recompiles when 
the code string changes (which is typically rare if C is used only for 
performance-critical sections; recompilation adds about 1 s to the 
runtime in this example).

Using weave in this way makes it simple to add small bits 
of C code, but other approaches such as ctypes (included in 
Python 2.5) can be more suitable for interfacing to large external 
C packages. Again, how diffi cult the interface will be depends 
on whether the external code is arranged into entities that 
can be called directly from Topographica; as discussed below, 

 reorganizing the code in this way is usually straightforward but 
can take some effort.

DISCUSSION
As the examples above show, very little coding is required to wrap 
even complex simulations into the basic Sheet and EventProcessor 
components used in Topographica. A large class of models across 
different modelling and analysis levels (e.g., fi ring-rate, integrate-
and-fi re, and compartmental neuron models) can fi t into this struc-
ture, allowing all of them to be analyzed and compared consistently, 
interconnected where appropriate, and explored visually even if 
the underlying simulator has no graphical interface (as for NEST). 
Although the general problem of simulator interoperatibility is 
diffi cult to address, in this specifi c case it is relatively easy to get 
practical benefi ts from combining simulators.

Although the approach outlined above is general purpose, it 
does require coding a new Topographica component to match each 
specifi c model implemented externally. A useful but more complex 
alternative would be to provide a detailed mapping between object 
types in an external simulator. For instance, one could provide 
a Topographica Sheet object that instantiates a corresponding 
NEST layer object, and similarly for a Topographica Projection 
object and a NEST connection object. In this way NEST or other 
simulators could be used to provide specifi c functionality missing 
from Topographica, rather than to implement complete models. 
However, developing such interfaces is much more involved than 
the simple wrapping described here.

Even though the Topographica Sheet interface is general enough 
to fi t a wide range of current models, there are some models that do 
not fi t within its assumptions. In particular, a Sheet usually needs to 
have an underlying grid shape to the population of neurons, though 
individual neurons can be absent or at jittered spatial locations, as 
long as no more than one neuron is present in any grid cell. (Strictly 
speaking, it need only be possible to visualize the model in this 
way; the actual organization is arbitrary.) Also, only Cartesian grids 
are currently supported, though hexagonal grids could be added 
in the future. Arbitrary 3D locations will be diffi cult to support, 
except by imposing a 3D grid. Note that nonlinear spacings are 
supported, using arbitrary coordinate mapping between Sheets, 
e.g. for foveated retinotopic mappings, as long as there is still an 
underlying grid of neurons.

Apart from operating loosely on a grid, Topographica assumes 
that models will have regions that are separable from each other, 
communicating only over well defi ned channels, and usually incre-
mentally processing some sort of external stimuli that change over 
time. Although these assumptions are extremely general, and can 
apply to any physical system, many models do not satisfy them 
fully. For instance, models that represent inputs not as individual 
patterns but as correlation functions (e.g. Miller, 1994) are diffi cult 
to connect to Topographica, because most of the functionality of 
Topographica requires testing the response to specifi c external stim-
uli (e.g. for measuring maps, tuning curves, and receptive fi elds). 
Other types of models that operate in a “batch” mode rather than 
one pattern at a time (e.g. Olshausen and Field, 1996) can usually be 
adapted to work in incremental mode as required by Topographica, 
but they may then run much more slowly.4https://redwood.berkeley.edu/bruno/sparsenet/

5www.scipy.org/Weave.

www.scipy.org/Weave
https://redwood.berkeley.edu/bruno/sparsenet/
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Given the ease with which many models can be wrapped, an 
intermediate-term goal will be to provide example code for wrap-
ping as many current V1 models as possible into Topographica, 
to establish for the fi rst time a platform for evaluating their 
behavior and functionality consistently. At present, each model 
is implemented independently, with different analysis routines 
and types of visualization, and thus it is extremely diffi cult to 
determine if apparent differences in behavior are signifi cant. As 
long as runnable code is available for each model, wrapping it 
into Topographica should be straightforward and should provide 
immediate benefi ts.

In addition to interfacing with external model components, any 
of the mechanisms outlined above can be used to call externally 
defi ned general-purpose analysis or visualization functions. For 
instance, the NeuroTools package6 defi nes an object-based Python 
representation of spike trains, such as those used in the spiking 
retina model above. A native spiking Topographica model can 
then use these functions rather than reimplementing them within 
Topographica.

This paper focuses on making external simulations available 
within Topographica, to allow simulations at the topographic map 
level or at lower levels to be brought into a common analysis and 
testing framework. It is also straightforward to interface in the 
opposite direction, running a Topographica simulation from 
within an external system or simulators. The Topographica User 
Guide7 provides detailed examples of running models from the 
Python command line or Python scripts, and the same interface 
can be used from within any simulator that has Python bind-
ings. Moreover, Topographica has a highly modular design with 
few dependencies between components, and there are many 
Topographica objects that are useful on their own and can be 

used just as any other Python object from within an external 
program.

At present, Topographica is primarily useful for doing analy-
ses based on fi ring rates, because of its extensive fi ring-rate based 
libraries. Spiking simulations are also possible in Topographica, 
but they are currently quite limited, and will require additional 
work to establish general-purpose abstractions that can be used 
to integrate data across models and simulators. In the long run, 
we intend Topographica to be useful as a high-level platform for 
analyzing spiking output as well as fi ring-rate output, and would 
welcome collaborations with people interested in that topic or in 
other aspects of Topographica or interoperability development.

In summary, working at the topographic map level makes it 
practical to provide interconnections between models and simula-
tors working at the same or different levels of detail. As long as the 
neurons are grouped into two-dimensional sheets of related units, 
they will be able to interface easily with Topographica’s tools and 
components. The result provides a shared platform for evaluating 
models from different sources, allowing consistent analysis and 
testing even for very different implementations. We believe this 
shared, extensible tool will be highly useful for the community of 
researchers working to understand the large-scale structure and 
function of the nervous system.
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