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PCSIM: a parallel simulation environment for neural circuits 
fully integrated with Python
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The Parallel Circuit SIMulator (PCSIM) is a software package for simulation of neural circuits. It 
is primarily designed for distributed simulation of large scale networks of spiking point neurons. 
Although its computational core is written in C++, PCSIM’s primary interface is implemented in 
the Python programming language, which is a powerful programming environment and allows 
the user to easily integrate the neural circuit simulator with data analysis and visualization 
tools to manage the full neural modeling life cycle. The main focus of this paper is to describe 
PCSIM’s full integration into Python and the benefi ts thereof. In particular we will investigate 
how the automatically generated bidirectional interface and PCSIM’s object-oriented modular 
framework enable the user to adopt a hybrid modeling approach: using and extending PCSIM’s 
functionality either employing pure Python or C++ and thus combining the advantages of both 
worlds. Furthermore, we describe several supplementary PCSIM packages written in pure 
Python and tailored towards setting up and analyzing neural simulations.
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iNVT (iLab Neuromorphic Vision Toolkit)1 which is an example 
of a package specifi cally tailored for the domain of brain-inspired 
neuromorphic vision. All of the above simulation environments 
support parallel simulation of one model on multiple processing 
nodes by using commodity clusters and many of them can also be 
run on super-computers. The simulation tool PCSIM described 
in this paper is designed for simulating neural circuits with a sup-
port for distributed simulation of large scale neural networks. Its 
development started as an effort to redesign the previous CSIM 
simulator2 (Natschläger et al., 2003) and augment its capabilities, 
with the major extension being the implementation of a distributed 
simulation engine in C++ and a new convenient programming 
interface. The aim was to provide a general extensible framework for 
simulation of hybrid neural models that include both spiking and 
analog neural network components together with other abstract 
processing elements while making the setup and control of parallel 
simulations as convenient as possible for the user. Hence, given its 
current set of features, the PCSIM simulator is closest to the second 
group (NEST, NCS, SPLIT) of neural simulation environments 
mentioned above.

Performing a neural network simulation usually requires com-
bined usage of several additional software tools together with the 
simulator, for stimulus preparation, analysis of output data and 
visualization. Being able to steer all the necessary tools from one 
programming environment reduces the complexity of setting up 
simulation experiments since all development can be done in a 
single programming language and the burden of developing utili-
ties for conversion of data formats between heterogeneous tools is 
avoided. Given its object-oriented capabilities and its strong  support 

INTRODUCTION
Given the complex nonlinear nature of the dynamics of biological 
neural systems, many of their properties can be investigated only 
through computer simulations. The need of researchers to increase 
their productivity while implementing increasingly complex models 
without each time having to reinvent the wheel has become a driv-
ing force to develop simulators for neural systems that incorporate 
best known practices in simulation algorithms and technologies, 
and make it accessible to the user through a high-level user-friendly 
interface (Brette et al., 2007). It has also been brought to attention 
that it is of importance to use large neural networks with biologi-
cally realistic connectivity (on the order of 104 synapses per neuron) 
as simulation models of mammalian cortical networks (Morrison 
et al., 2005). Simulation of such large models can practically be 
done only by exploiting the computing power and the memory of 
multiple computers by means of a distributed simulation.

There are different neural simulation environments presently 
available and although many of them were initially envisioned for 
a specifi c purpose and domain of applicability, during continuing 
development their set of features expanded to improve general-
ity and support construction of a wide range of different neural 
models; see Brette et al. (2007) for a recent overview. The two most 
prominent tools are NEURON (Carnevale and Hines, 2006; Hines 
and Carnevale, 1997) and GENESIS (Bower and Beeman, 1998) 
which aim at simulation of detailed multi-compartmental neuron 
models and small networks of detailed neurons. Another class of 
quite general neural simulation environments which focus on the 
simulation of large-scale cortical network models and the improve-
ment of their simulation effi ciency through distributed computing 
include NEST (Gewaltig and Diesmann, 2007; Plesser et al., 2007), 
NCS (Brette et al., 2007) and SPLIT (Hammarlund and Ekeberg. 
1998). There are also more dedicated neural simulation tools like 

Edited by:

Rolf Kötter, Radboud University 
Nijmegen, The Netherlands

Reviewed by:

Ingo Bojak, Radboud University 
Nijmegen, The Netherlands
Abigail Morrison, RIKEN, Japan

*Correspondence:

Dejan Pecevski, Institute for Theoretical 
Computer Science, Graz University of 
Technology, Inffeldgasse 16b/1, A-8010 
Graz, Austria.
e-mail: dejan@igi.tugraz.at

1http://ilab.usc.edu/toolkit/home.shtml
2http://www.lsm.tugraz.at/csim

1

2

3
4
5

6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

http://ilab.usc.edu/toolkit/home.shtml
http://www.lsm.tugraz.at/csim


Pecevski et al. PCSIM

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 11 | 2

for  integration with other programming languages, the Python pro-
gramming language is a very promising candidate for providing 
such a unifying software environment for simultaneous use of vari-
ous scientifi c software libraries. As Python is becoming increasingly 
popular in the scientifi c community as an interpreting language of 
choice for scientifi c applications, the developers of many neural 
simulator tools decided to provide a Python interface for their simu-
lator in addition to its legacy interface in a custom scripting language. 
Moreover, a simulation tool called Brian which uses Python as an 
implementation language was recently developed to bring to the 
user the full fl exibility of an interpreting language in specifying and 
manipulating neural models (Goodman and Brette, 2008).

In spite of the evident practical advantages in using Python as the 
single programming language for all tasks during a neural modeling 
life cycle, there is the apparent discrepancy between the need for 
computational performance of the simulation and construction 
of the model on one hand, and rapid development of the model 
on the other. Using C++ can solve the performance issue, but will 
decrease the productivity of the modeler and requires higher level 
of programming skills and experience. In contrast Python is easy 
to learn, fl exible to use and signifi cantly increases the productivity 
of the modeler, however it lags far behind C++ in performance3. 
Hence, instead of adopting a single language, an alternative is to 
enable an easy mix and match of both languages during the devel-
opment of a model, i.e. to introduce a hybrid modeling approach 
(Abrahams and Grosse-Kunstleve, 2003).

In this paper we will describe how the modular object-oriented 
framework of PCSIM in combination with an automated interface 
generation supports such a hybrid modeling approach.

In particular, we briefl y review PCSIM’s main features (see 
Overview) before we describe the automated process to generate the 
Python interface (see Python Interface Generation). In the Section 
“Network Construction” we detail PCSIM’s network construction 
application programming interface (API), which is a central part 
of PCSIM’s object-oriented modular framework. In the Section 
“Custom Network Elements” we demonstrate another advantage 
of the hybrid modeling approach: we show how PCSIM’s concept 
of a general network element can be used as an interface to another 
simulation tool. While these examples concentrate on the Python 
aspect of the hybrid modeling, we show in the Section “Extending 
PCSIM Using C++” how the user can easily extend PCSIM’s func-
tionality using C++. Additional PCSIM packages implemented in 
Python are reviewed in the Section “PCSIM Add-Ons Implemented 
in Python”. In the Section “Discussion” we discuss and summarize 
the presented concepts and approaches.

We would like to note that it is outside the scope of this article 
to describe the algorithmic aspects of PCSIM’s computational C++ 
core (this will be reported elsewhere) and all the details of the full 
object-oriented modular framework.

OVERVIEW
ARCHITECTURE
The high-level architecture of PCSIM is depicted in Figure 1. The 
PCSIM library written in C++ (libpcsim) constitutes the core 

of the simulator. The API of the PCSIM library is exposed to the 
Python programming language by means of the Python extension 
module pypcsim (see Python Interface Generation for details). The 
library is made up of three main components: the simulation engine 
with its communication system, a pool of built-in network elements 
(i.e. neuron and synapse types) and the network construction layer. 
Before presenting the network construction layer in detail in the 
Section “Network Construction” we will briefl y describe in the next 
paragraphs the main features of the underlying simulation engine 
and its communication system.

The simulation engine integrates all the network elements (typi-
cally neurons and synapses) and advances the simulation to the 
next time step, and uses its communication system to handle the 
routing and delivery of discrete and analog messages (i.e. spikes 
and e.g. fi ring rates or membrane voltages) between the connected 
network elements. PCSIM’s simulation engine is capable of running 
distributed simulations where the individual network elements 
are located at different computing nodes. Setting up a distributed 
simulation is handled easily from a users point of view: there are 
no (or very little) code changes necessary when switching from a 
non-distributed to a distributed simulation. The distributed simu-
lation mode is intended for employing a cluster of machines for 
simulation of one large network where each machine integrates 
the equations of a subset of neurons and synapses in the network. 
A distributed PCSIM simulation runs as an MPI4 based applica-
tion composed of multiple MPI processes located on different 
machines5. The implementation of the spike routing, transfer and 
delivery algorithm between the nodes in a distributed simulation is 
based on the ideas presented in Morrison et al. (2005). In addition 
PCSIM offers the possibility to run a simulation as a multi-threaded 
application, both in a non-distributed and a  distributed setup. The 
multi-threaded mode is intended for performing simulations on 
one multi-processor machine when one wants to split the com-
putational workload among multiple threads in one process, each 
running on a different processor. However, we should note that 
the multi-threaded simulation engine is still undergoing optimi-
zation, as we are working on improvement of the scaling of the 

3The simulation tool Brian mentioned above, heavily uses the numerical Python 
package numpy (Oliphant, 2007) written in C to achieve reasonable performance.

FIGURE 1 | Architecture overview of PCSIM.

4http://www-unix.mcs.anl.gov/mpi/
5To be precise, we use the C++ bindings offered by the MPICH2 library, where cur-
rently none of the advanced features of the MPI-2 standard are used.
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multi-threaded simulation to match the scaling achieved with an 
equivalent distributed simulation.

SCALABILITY AND DOMAIN OF APPLICABILITY
One of the goals of the development of PCSIM was enabling simu-
lations of large neural networks on standard computer clusters 
through distributed computing. By utilizing the parallel capabilities 
of PCSIM the simulation time for a model can be reduced by using 
more processors (on multiple machines) as computing resources.

As a test of the scalability, we performed multiple simulations 
with the PCSIM implementation of the CUBA model described 
in Brette et al. (2007), with different number of leaky integrate-
and-fi re neurons (4000, 20000, 50000 and 100000) and distributed 
over a different number of processors (each processor on a different 
machine). We changed the resting potential in the neuron equa-
tions from −49 to −60 mV such that the network does not show 
any spontaneous activity. In order to elicit a spiking activity in the 
network, an input neuron population of 1000 neurons was con-
nected randomly to it with probability 0.1, i.e. each neuron in the 
network receives inputs from on average 100 input neurons. The 
input neurons fi red homogeneous Poisson spike trains at a rate of 
5 Hz. The simulation was performed for 1 s biological time with a 
time step of 0.1 ms. We have set the connection probability within 
the network to 0.1, in order to reach realistic number of 10000 
synapses per neuron for the network size of 100000 neurons. The 
transmission delay of spikes was set to 1 ms. We scaled the weights 
of the network so that the mean fi ring rate of the neurons was 
between 2.4 and 2.7 Hz for all network sizes (more precisely 2.68, 
2.55, 2.52 and 2.45 Hz for the network with 4000, 20000, 50000 
and 10000 neurons, respectively).

The used machines had Intel® Xeon™64 bit CPUs with 2.66 GHz 
and 4 MB level-2 processor cache, and 8 GB of RAM. They were 
connected in a 1 Gbit/s Ethernet LAN.

If we assume ideal linear speed-up, then the expected simulation 
time of a model on N machines given the actual simulation time on 
K machines is equal to the simulation time on K machines times 
K divided by N. In the evaluation of the scaling, for the estimation 
of the expected simulation time (see Figure 2) we used the meas-
ured simulation time of the model on the minimum number of 
machines used for that particular network size. Namely, we used 
the actual simulation time on K = 1 machine for the network sizes 
of 4000 and 20000 neurons, and the simulation time on K = 4 
and K = 16 machines for the network sizes of 50000 and 100000 
neurons respectively.

Figure 2 shows that in the case of 4000 neurons the computa-
tional load on each node is quite low, hence the cost of the spike 
message passing dominates the simulation time which results in 
sub-linear scaling. For the networks with 20000 and 50000 neurons 
the actual simulation time is shorter than the expected simulation 
time indicating a supra-linear speed-up for up to 24 nodes. For 
more than 24 nodes the actual simulation time approaches the 
expected simulation time. The reason for the supra-linear speed-up 
is more effi cient usage of the processor cache when the network is 
distributed over larger number of nodes (Morrison et al., 2005). 
For the network with 100000 neurons the speed-up is not distin-
guishable from the expected linear speed-up (taking K = 16 nodes 
as the base measurement).

The combination of features that PCSIM supports makes it 
 suitable for various types of neural models. Its domain of appli-
cability can be considered across two complementary aspects: the 
size of networks that can be simulated, and the variety of differ-
ent models that can be constructed and simulated, determined 
by the available neuron and synapse models, plasticity mecha-
nisms, construction algorithms and similar. Concerning the size 
of models, because of its distributed capabilities PCSIM is mainly 
targeted towards large neural systems with realistic cortical con-
nectivity composed of 105 neurons and above. As the results from 
the scalability test show, a spiking network with 105 neurons and 
104 synapses per neuron can be simulated in a reasonable time on 
a commodity cluster with about 20 machines, and the speed-up 
is linear when more machines are employed for the simulation. 
Regarding the support for construction of various different models 
in PCSIM, the generality of the communication system and the 
extensibility with custom network elements enables simulation 
of hybrid models (spiking and analog networks) incorporating 
different levels of abstraction. By utilizing the construction frame-
work also structured models with diversity of neuron and synapse 
types and varying parameter values can be defi ned and simulated, 
and the built-in support for synaptic plasticity further expands 
the domain of usability towards models that investigate synaptic 
plasticity mechanisms.

PYTHON INTERFACE GENERATION
In order to enable a hybrid modeling approach we wanted to use 
a Python interface generation tool that was capable of wrapping 
PCSIM’s object-oriented and modular API such that the Python 

FIGURE 2 | Simulation times of the CUBA network distributed over 

different number of processing nodes, compared to the expected 

simulation time (dashed line) (see text for details). Four different sizes of 
networks were simulated: 4000 neurons with on average 1.6 × 106 synapses 
(squares), 20000 neurons with on average 40 × 106 synapses (circles), 50000 
neurons with on average 250 × 106 synapses (diamonds) and 100000 neurons 
with on average 1 × 109 synapses (crosses). The plotted simulation times are 
averages over 12 simulation runs. The variation of simulation time between 
different simulation runs was small, therefore we did not show it.
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API will be as close as possible to the C++ API. Our choice for this 
purpose was the Boost.Python6 library (Abrahams and Grosse-
Kunstleve, 2003). The strength of Boost.Python is that by using 
advanced C++ compile-time introspection and template meta-
programming techniques it provides comprehensive mappings 
between C++ and Python constructs and idioms. There is support, 
amongst others, for exception handling, iterators, operator over-
loading, standard template library (STL) containers and Python 
collections, smart pointers and virtual functions that can be over-
ridden in Python. The later feature makes the interface bidirec-
tional, meaning that in addition to the possibility of calling C++ 
code from Python, user extension classes implemented in Python 
can be called from within the C++ framework. This is an enabler 
for the targeted hybrid modeling approach; we will see examples 
for this later on in this article.

However, using Boost.Python without any additional tools does 
not lead to a solution where the interface can be generated in an 
automatic fashion since for each new class added to the library’s 
API one would have to write a substantial piece of Boost.Python 
code. As automatic Python wrapping of the C++ interface is one of 
the main prerequisites for leveraging a hybrid modeling approach, 
a solution is needed to automatically synchronize the Python and 
C++ API of a library like libpcsim. Fortunately, there exists the 
Py++ package7 which was developed to alleviate the repetitive proc-
ess of writing and maintaining Boost.Python code. Py++ by itself 
is an object-oriented framework for creating custom Boost.Python 
code generators for an application library written in C++. It builds 
on GCC-XML8, a C++ parser based on the GCC compiler that 
outputs an XML representation of the C++ code. Py++ uses this 
structured information together with some user input, in form of 
a Python program, and produces the necessary Boost.Python code, 
constituting the Python interface for a specifi ed set of C++ classes 
and functions (see Figure 3).

Finally the Boost.Python C++ code is compiled and linked together 
with the C++ library under consideration (libpcsim in our case) to 
produce the Python extension module containing the Python API of 
the library (pypcsim in our case). Thus, the work of the developer 
(and the user as we will see later on) reduces to a defi nition of high-
level rules to select which classes and methods should be exposed.

For the generation of the PCSIM Python interface pypcsim, we 
split the rules Py++ needs into two subsets, inclusion and exclusion 
rules (see Figure 3). The inclusion rules contain the rules that mark 
a selected set of classes to be exposed to Python. The exclusion 
rules contain the post-processing, where some of the methods of 
the classes that were included in the inclusion rules are marked to 
be excluded, and call policies are defi ned for the included methods 
that require them9. Py++ allows to specify the rules in a high-level, 
generic fashion, making them robust to changes in the interface of 
the PCSIM C++ library. Hence, in most cases changes in the PCSIM 
API did not require changes in the Python program that generates 
the wrapper code, which simplifi ed its maintenance. An example 
of such a high-level rule would be “In all classes that are derived 
from class A, do not expose the method that returns a pointer of 
type B”. Such a general rule will then be still valid if for example we 
introduce more classes derived from A, or add additional functions 
that return a pointer of type B in some of the classes.

To summarize, the Python integration of PCSIM using Boost.
Python together with the Py++ code generator allowed us to come 
up with a solution to automatically expose PCSIM’s object-oriented 
and modular API bidirectionally in Python. In the following sec-
tions we will show how such an bidirectional integration of PCSIM 
into Python can practically be used and which possibilities and 
advantages arise.

NETWORK CONSTRUCTION
A large portion of the Python PCSIM interface is devoted to the 
construction of neural circuits. At the lowest level PCSIM provides 
methods to create individual network elements (i.e. neurons and 
synapses) and to connect them together.

On top of these primitives a powerful and extensible frame-
work for circuit construction based on probabilistic rules is built. 
The source of inspiration for the interface of the framework was 
the Circuit Tool in the CSIM simulator10 and PyNN, an API for 
 simulator-independent procedural defi nition of spiking neural 
networks (Davison et al., 2008). We will use a concrete example11, 
described in more depth in the next subsection, to present the 

FIGURE 3 | The processing steps in the generation of the Python interface for PCSIM.

6http://www.boost.org/doc/libs/release/libs/python/doc/
7http://www.language-binding.net/
8http://www.gccxml.org

9Call policies defi ne the change of ownership of objects that cross the boundaries 
of the C++ library, i.e. the object passed from Python to the C++ library and from 
the C++ library to Python.
10http://www.lsm.tugraz.at/circuits
11The full source code of this example is available in the Supplementary Material.
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network construction framework and its typical use cases where 
emphasis is put on those features that were enabled by the bidi-
rectional Python interface generated by the approach described in 
the Section “Python Interface Generation”.

THE EXAMPLE MODEL
We selected the model to be simple enough for didactic reasons, but 
complete enough with all the elements necessary to explain the main 
novel concepts of the interface and its Python extensibility  features. 
The connectivity patterns are based on experimental data that we 
use in our current research work. The model consists of a spatial 
population of neurons located on a 3D grid with integer coordinates 
within a volume of 20 × 20 × 6. 80% of the neurons in the model 
are excitatory, and the rest are inhibitory. The excitatory neurons 
are modeled as regular spiking and the inhibitory neurons as fast 
spiking Izhikevich neurons (Izhikevich, 2004). The connections 
between excitatory neurons in the network are created according 
to the trivariate probabilistic model defi ned in Buzas et al. (2006). 
This connectivity model describes the distribution of the excitatory 
patchy long-range lateral connections found in the superfi cial lay-
ers of the primary visual cortex in cats that depends on the lateral 
distance of the cells and their orientation preference. Orientation 
preference is the affi nity of V1 cells to fi re more when a bar with 
a specifi c orientation angle is present in their receptive fi elds. The 
connectivity rule is defi ned by the following equations that express 
the connectivity probability between two excitatory cells.

P CG Vj i j( ) ( ) ( )l l l li j i j, , , ,φ φ φ φi = ,
 

(1)

G e( )l li j

li lj

, =
−

| − |2

2 2σ
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i
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j
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j
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j
) are the 2D locations and φ

i
 and φ

j
 are the 

orientation preferences of the pre- and post-synaptic neurons i and j. 
The function G introduces the dependence of the connectivity prob-
ability on the lateral distance between the neurons, and V models the 
dependency on the differences in the orientation preferences of the 
neurons. C, κ and σ are scaling coeffi cients. The values for the pre-
ferred orientation angles of the neurons in the example are generated 
by evolving a self-organizing map (SOM) (Obermayer and Blasdel, 
1993). Additionally the conduction delay of a connection between 

excitatory neurons is probabilistically dependent on the distance 
between the 3D locations of its pre- and post-synaptic neurons.
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y
j
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j
) denote the 3D locations of the pre- and post-synaptic neurons 

i and j. A random value from N(μ, σ, b
l
, b

u
) is sampled as follows: 

fi rst a random number from a normal distribution with mean µ and 
standard deviation σ is drawn and if that value is not within the range 
[b

l
, b

u
], then another value is drawn from an uniform distribution with 

that range. D
0
 represents a proper scaling factor in the formula.

THE FRAMEWORK: OBJECT-ORIENTED, MODULAR AND EXTENSIBLE
Figure 4 shows the basic concepts of PCSIM’s construction frame-
work together with their interactions during the construction 
process. This framework allows model specifi cation in terms of 
populations of neurons connected by probabilistically defi ned con-
nectivity patterns called projections.

A population of network elements utilizes several object factories 
to generate the network elements. A factory encapsulates the logic for 
the neuron and synapse generation decoupled from the other parts 
of the construction process. Every time a new neuron is to be created 
in a population the factory is used to generate the neuron object. The 
object factories can use either random distribution objects or value 
generators to generate values for the parameters and attributes of the 
network element instances. When we talk about a parameter we mean 
a parameter of the differential equations used to model a neuron or 
synapse. In contrast an attribute describes any other (more abstract) 
property of a network element. In our example the orientation prefer-
ence φ will be such an attribute of an excitatory neuron.

A projection manages connections between two populations. 
During the construction phase of a projection a connection decision 
predicate is used to determine whether a connection should be cre-
ated for a pair of neurons. A connector factory is then used to create 
instances of the connector elements like synapses (this is analo-
gous to the object factory for populations). The connector factory 
also uses random distributions or connector value generators for the 
parameter values of the connector elements. In order to implement 
a specifi c construction algorithm, the user typically just needs to 
implement custom value generator and connection decision predicate 
classes, as we will demonstrate in the following subsections.

FIGURE 4 | A diagram of the most important concepts within the network construction interface. The arrows indicate a “uses” relationship between the concepts.

329
330
331
332

333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

354

355

356

357
358
359
360
361
362
363
364
365

366
367

368

369
370
371
372
373
374
375

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404



Pecevski et al. PCSIM

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 11 | 6

FACTORIES: CREATING NETWORK ELEMENTS FROM MODELS
We will start constructing the network model by defi ning the classes 
(or families) of neuron models: inhibitory and excitatory neurons. 
This is accomplished by defi ning an element factory for each family. 
As explained in the defi nition of “The Example Model” the excita-
tory neurons have an orientation preference φ which depends on 
the location of the neuron in the population. For this reason we 
will associate the attribute phi with each excitatory neuron:

exc_factory =  Factory
(model  = IzhiNeuron ( type = "RS" ),

              Vinit   = UniformDistribution (−50e−3, −60e−3 ),
              attribs = dict( phi = OrientationPreferValGen())

The statement above creates a factory for the excitatory family of 
neurons based on a regular spiking (RS) Izhikevich neuron model 
(Izhikevich, 2004) where IzhiNeuron is a built-in network element 
class. The keyword argument Vinit = UniformDistribution(…) 
associates a uniform random number generator with the initial mem-
brane voltage Vinit. This has the effect that whenever the factory is 
used to generate an actual instance of an excitatory neuron, the param-
eter Vinit will be randomly chosen from the interval [−50, −60] mV. 
Finally the keyword argument attribs = dict( phi = ... ) 
has two effects: a) the attribute phi is attached to exc_factory and 
b) the custom value generator OrientationPreferValGen is used 
to generate a particular value for phi each time exc_factory is 
asked to generate an instance of an excitatory model neuron. The 
value of the phi attribute will be used afterwards for the creation of 
synaptic connections.

In the example we implement the custom value generator 
OrientationPreferValGen in pure Python. This is enabled by 
the particular feature of Boost.Python which allows C++ virtual 
functions to be overridden from within Python.

class OrientationPreferValGen(
PyAttributePopObjectValueGenerator):

   def __init__(self):
       PyAttributePopObjectValueGenerator.__init__(self)
       self.map = som.OrientationMapSOM([20,20])

   def generate(self, rng):
       return self.map.pref( self.loc().x(), self.loc().y() )

Value generators (in this case to be derived from 
PyAttributePopObjectValueGenerator) have a simple inter-
face composed of the constructor __init__ and the method 
 generate which have to be implemented by the user. In our par-
ticular example we create the orientation map, that maps 2D coor-
dinates to an orientation preference angle in the constructor, and 
will use it in the method generate. The map is based on the SOM 
algorithm encapsulated in the Python class OrientationMapSOM 
(details not relevant here). The generate method is called to deter-
mine the value of the orientation angle attribute phi whenever 
a neuron instance from the factory has to be created. The value 
generator inherits several convenient methods from its base class 
that one can use for accessing properties of the neuron for which 
generate is called, like self.loc to get the 3D location of the 
neuron within a population (see next section). We then pass the x 
and y coordinates to the orientation map (method pref) in order 
to calculate the value of the orientation preference angle.

For the inhibitory neuron model we create a similar factory:

inh_factory =  Factory
( model   = IzhiNeuron( type = "FS" ),

                Vinit   = UniformDistribution(−50e−3, −60e−3),
                attribs = dict( ) )

The difference to the excitatory neuron model is that a fast spiking 
(FS) Izhikevich neuron model is used and the attribute dictionary 
attribs = dict( ) is empty. This is because there is no orienta-
tion preference of the inhibitory cells in the considered model.

NEURON POPULATIONS
A population in PCSIM represents an organized set of neurons 
that can be manipulated as one structural unit in the model. In the 
AugmentedSpatialPopulation that we will use in this example, 
the neurons have associated 3D coordinates, a family identifi er, 
and an extensible set of custom attributes that the user can attach 
to each of the neurons. We already encountered this in the previ-
ous section. The family identifi er allows the defi nition of multiple 
families/classes of neurons, i.e. subsets of neurons with similar 
properties, within a single population. Our population will have 
two families of neurons, the family of excitatory and the family 
of inhibitory neurons. For each of the two families of neurons we 
have specifi ed in the previous section a factory that will be used to 
generate the neuron instances within the population.

pop = AugmentedSpatialPopulation
      ( net, [ exc_factory(), inh_factory() ],
        RatioBasedFamilies( [ 4, 1 ] ),
        CuboidIntegerGrid3D( 20, 20, 6 ) )

exc_pop, inh_pop = pop.splitFamilies()

Note that the fi rst argument (net) specifi es the overall net-
work to which this population of neurons will belong. The class 
CuboidIntegerGrid3D, which is a built-in specialization of the 
more general concept of an arbitrary set of points in 3D, defi nes 
the possible locations for the neurons (integer coordinates within 
a volume of 20 × 20 × 6). The population is to be composed of two 
families of neurons (excitatory and inhibitory), created by the two 
given factories (exc_factory and inh_factory). To accomplish 
this we use a RatioBasedFamilies object which randomly chooses 
for each 3D location from which family of neurons the particular 
instance will be created. Specifying the ratio 4:1 for excitatory to inhib-
itory neurons yields the desired 80% excitatory neurons. The class 
RatioBasedFamilies is a built-in specialization of the general con-
cept of a spatial family identifi er generator which encapsulates the logic 
for deciding which factory to use depending on the 3D location.

For the purpose of more convenient setup of connections later 
on, the created population is split into two sub-populations, one 
for each family.

PROJECTIONS: MANAGING SYNAPTIC CONNECTIONS
The synaptic connections in the network construction interface 
are created by means of projections. A projection is a construct 
that represents a set of synaptic connections originating from one 
population of neurons and terminating at another population12. 

12The source and destination populations can be the same if the goal is to create 
recurrent connections in one population.
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PCSIM has built-in construction algorithms for creating various 
types of connection projections, like constant probability random 
connectivity or random connectivity with probability dependent 
on the distance (or lateral distance) between the neurons.

However, to create a projection with a specifi c connectivity pat-
tern, one usually defi nes a custom connection decision predicate. A 
decision predicate decides for an individual pair of neurons whether 
to form a connection based on the parameters and attributes of 
those neurons. In our example we implemented the connection 
decision predicate OrientationSpecificConnPredicate in 
pure Python, encapsulating the probabilistic rule for connection 
making from Eq. 1, which states that the connection probability 
depends on the distance between, and the orientation preferences 
of the pre- and post-synaptic neurons.

class OrientationSpecificConnPredicate
  (PyAugmentedConnectionDecisionPredicate):

  def __init__(self, C):
     PyAugmentedConnectionDecisionPredicate.__init__(self)
     self.orient_conn_prob = OrientationSpecConnProbability(C)
     self.unidist = UniformDistribution(0.0, 1.0)

  def decide(self, src, dst, rnd ):
     prob = self.orient_conn_prob(self.src_attr(src, ’phi’),
                                  self.dest_attr(dst, ’phi’),
                                  self.dist_2d( src, dst ) )
     return self.unidist(rnd) < prob

The PyAugmentedConnectionDecisionPredicate base class 
is used when one has to defi ne a custom connection decision predi-
cate that uses the neuron attributes and connects neurons from popu-
lations of type AugmentedSpatialPopulation. To complete the 
implementation of the predicate, it is required to override the decide 
method and fi ll the constructor with the necessary initializations. The 
method decide is called within the connection construction process 
for each candidate pair of neurons that could be connected and is 
expected to output true (make a connection) or false (no connec-
tion). In our example, we create an instance (orient_conn_prob) 
of the OrientationSpecConnProbability class to calculate 
the probability according to the Eq. 1 (the full implementation of 
the class is available in the Supplementary Material). This instance 
is called in the decide method with the orientation preferences 
of the candidate source and destination neurons and their lateral 
distance as arguments. The orientation preferences are obtained via 
the src_attr and dest_attr methods (inherited from the base 
class), and the lateral distance via the dist_2d method. By com-
paring a uniformly distributed random number to the calculated 
probability a Bernoulli distribution with the desired probability for 
the outcome true is generated.

Before we can create the projection we have to defi ne a con-
nector factory (class ConnFactory) that will be used to generate 
the synapse objects within the projection.

ee_syn_factory = ConnFactory
                  ( model = StaticSpikingSynapse(W = 1e−4),
                   delay = DelayCond(v_mean = 2e2, v_SH = 0.2,
                               v_min = 0.1e−3, v_max = 5e−3) )

The connector factory differs from the element factory objects 
used in conjunction with neuron populations, in that the parame-
ters of the created objects (typically synapses) can depend on the 
 attributes of the source and destination network elements they are 

connecting. In our example, the connector factory for the connec-
tions between excitatory neurons is based on a current-based synapse 
model with exponentially decaying post-synaptic response (class 
StaticSpikingSynapse in PCSIM). Additionally, the DelayCond 
value generator is associated to the delay parameter of the synapse, 
which produces distance dependent delay values according to Eq. 4. 
The DelayCond is a built-in value generator in PCSIM.

Now we can create the projection that will generate all recurrent 
connections between the excitatory neurons.

ee_proj = ConnectionsProjection
          ( exc_pop, exc_pop, ee_syn_factory(),
             PredicateBasedConnections

( OrientationSpecificConnPredicate( 1.0 ) ) )

We specify in the constructor of the projection the con-
nectorfactory for generation of the synapses and the 
PredicateBasedConnections class instance that iterates over 
all candidate pre- and post-synaptic neurons and delegates the 
decision whether to make a connection to the connection deci-
sion predicate OrientationSpecificConnPredicate given as 
an argument.

A connection decision predicate is typically used when in the 
probabilistic connectivity defi nition the probability that two neurons 
are connected depends on the attributes and parameters of the two 
neurons and is independent from the other created connections. In 
the general case, with such a connectivity, a separate decision whether 
to make a connection has to be made at each candidate neuron pair, 
yielding a complexity of the wiring algorithm that is quadratic with 
respect to the number of neurons. In a distributed scenario, a speed-
up of the construction is possible by splitting the wiring workload 
among the multiple machines the model is simulated on. If the num-
ber of machines is increased with the number of neurons, keeping 
the number of neurons per node fi xed, and if we assume that the 
number of input synapses per neuron does not increase, then the 
wiring time will scale linearly with the number of neurons.

For other connectivity schemes where further optimizations 
are possible, a faster wiring algorithm can be implemented directly 
in the class that iterates over the neuron pairs. For example, for 
the case of constant probability random connections, a special 
RandomConnections class that implements faster wiring can 
be used instead of PredicateBasedConnections. When using 
the RandomConnections, the wiring time is proportional to the 
number of created connections if the network is constructed on a 
single machine, and remains constant in the distributed case with 
the assumption that the number of machines is increased propor-
tionally with the number of neurons13.

CUSTOM NETWORK ELEMENTS
The PCSIM communication system is general in a sense that it 
supports spiking and analog messages as communication between 
network elements. The network elements are not restricted to one 
type of message and can have multiple input and output ports, each 
of them capable of either receiving or sending spiking or analog 
messages (see Figures 5A,B).

13It is out of scope of this article to detail the algorithms behind the effi cient imple-
mentation of the network construction framework in the distributed simulation 
scenario; this will be reported elsewhere.
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The generality of the framework allows the user to implement 
custom processing elements that map multiple inputs to multiple 
outputs and plug them in a network model inter-connected together 
with spiking or analog neural networks. Such custom network ele-
ments can either be implemented in C++ (see Extending PCSIM 
Using C++) or in pure Python. This feature of PCSIM has various 
potential uses. For example the user can implement new neuron 
types for a preliminary experiment in Python fi rst, instead of directly 
implementing them in C++. Another possible usage is to imple-
ment more abstract or complex elements like a whole population 
of spiking neurons in Python by using vectors from the numerical 
Python package numpy14 (Oliphant, 2007) for step-by-step integra-
tion of the equations. This approach has been shown to have good 
performance, and is applicable for homogeneous neuron popula-
tions, where all neuron instances have the same neuron model (Brian 
simulator, Goodman and Brette, 2008).

We detail such an example in this section, where the Brian simu-
lator is used to implement a population of spiking neurons as a 
single network element, and then plug it into a PCSIM simulation 
together with other built-in network elements.

The spiking neural network model we will simulate with Brian 
is the modifi ed version of the CUBA benchmark model described 
in the Section “Overview”, with a network size of 4000 neurons. We 
have used the same connectivity probability of 0.02 and the same 
weights as in Brette et al. (2007), instead of the modifi ed 0.1 con-
nectivity probability and scaled weights in the Section “Overview”. 
The PCSIM network element that we will create to encapsulate 
the Brain network has 1000 spiking input ports and 4000 spiking 
output ports (see Figure 5C). Each of the output ports is associated 
to one neuron.

To implement this model as a PCSIM network element, one 
has to implement a Python class BrianCircuit derived from 
PySimObject. In the constructor of this class the Brian spiking 
network is created and initialized.

class BrianCircuit(PySimObject):

    def __init__( self ):
        PySimObject.__init__( self )

        self.registerSpikingOutputPorts(arange(4000))
        self.registerSpikingInputPorts(arange(1000))
        input = PCSIMInputNeuronGroup(1000, self)
        self.P = P = brian.NeuronGroup(4000, model = eqs,
                           threshold = −50*mV, reset = −60*mV)
        Pe = P.subgroup(3200)
        Pi = P.subgroup(800)
        Ce = brian.Connection(Pe, P, ’ge’ )
        Ci = brian.Connection(Pi, P, ’gi’ )
        Ce.connect_random( Pe, P, p = 0.02, weight = 1.62*mV )
        Ci.connect_random( Pi, P, p = 0.02, weight = −9*mV )
        Cinp = brian.Connection( input, P, ’ge’ )
        Cinp.connect_random( input, P, p = 0.1,
                             weight = 3.5*mV)
        self.brian = brian.Network(input, P, Ce, Ci, Cinp )
        self.brian.prepare()
        self.brian.clock.set_duration(2.0*second)

The mapping of the PCSIM input ports to a Brian neuron 
group is managed by the simple auxiliary neuron group named 
PCSIMInputNeuronGroup (see the Supplementary Material 
for the implementation). The reset method resets the state of 
the network to time step t = 0, which is achieved by calling the 
reinit method of the Brian network, and initializing the mem-
brane potential vector P.V to random values from an uniform 
distribution.

def reset(self, dt):
    self.brian.reinit()
    self.P.V = −60*mV + 10*mV*rand(len(self.P))
    return 0

The step-by-step iteration of the network is done in the over-
ridden advance method which performs one time-step update of 
the Brian network with the update method and the tick method 
of the associated Brian clock object. At the end of each time step 
the generated spikes of the population are gathered and delivered 
to the output ports of the PCSIM network element.

def advance(self, ai):
    self.brian.update()
    self.brian.clock.tick()
    self.setOutputSpikes( ai, self.P.get_spikes() )
    self.clearSpikeBuf()
    return 0

A C

B

FIGURE 5 | (A) Network elements of different type (with different arrangement 
of input and output ports) interconnected together in a PCSIM network. 
Different colors of ports, gray or white, mark their different types, spiking or 

analog. (B) Neurons and synapses are specifi c subtypes of the more general 
concept of an network element. (C) Schematic diagram of the embedding of a 
network simulated with the Brian simulator into a PCSIM network element.

14http://numpy.scipy.org
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Note that no Python loops are present, the setOutputSpikes 
method that transfers the spikes is implemented in C++ in the base 
class PySimObject, so there is no performance loss caused by the 
transfer of spikes from Brian to PCSIM and vice versa.

The new BrianCircuit network element class can then be 
instantiated and added to a PCSIM simulation. The following code 
segment creates an instance of the Brian spiking network, adds it 
as a network element, sets up the input and runs the simulation 
for 2.0 s [1000 neurons that emit Poisson spike trains at rate 5 Hz 
(PoissonInputNeuron) are connected to the 1000 input ports of 
the Brian network element]15.

net = SingleThreadNetwork()
inpNrnPop = SimObjectPopulation
            ( net, PoissonInputNeuron( rate = 5,
              duration = 1000 ), 1000 )

pycirc    = BrianCircuit()
pycirc_id = net.add(pycirc)

for i in range(inpNrnPop.size()):
    net.connect(inpNrnPop[i], 0, pycirc_id, i)

net.reset()
net.simulate( 2.0 )

EXTENDING PCSIM USING C++
The object-oriented framework of PCSIM can be extended by the 
user at many different levels. Typical extensions of PCSIM include 
either implementations of new neuron and synapse types, or imple-
mentations of classes encapsulating custom construction rules in 
the network construction interface, as we have illustrated in the 
previous sections. By utilizing the features of the Boost.Python 
library and Py++, the extensions can be implemented either in 
pure Python as already shown or in C++.

For creating C++ extensions, PCSIM provides a tool that com-
piles the custom C++ classes, automatically generates the Python 
wrapper interface for these and packs everything into a separate 
Python extension module. In order to simplify the procedure of 
creating a custom extension, the user starts the implementation 
from an extension template contained in the PCSIM distribution. 
Let us assume that we want to implement two classes: a new neuron 
type MyNeuron and a new synapse type MySynapse. Once the C++ 
implementation is fi nished, there are three additional steps that 
have to be done to produce the PCSIM extension module.

First, the C++ source fi les of the extension have to be enlisted 
in the fi le module_recipe.cmake. This fi le is read by PCSIM’s 
C++ build tool CMake16.

SET( MODULE_SOURCES
   src/MySynapse.cpp
   src/MyNeuron.cpp
)

As the second step, we have to specify the names of the classes 
we want to include in the Python interface in the fi le python_
interface_specification.py which holds the extension 

module interface specifi cation. For our example the inserted 
lines should look like:

def specify( M, options ):
    M.class_( ’MySynapse’ ).include()
    M.class_( ’MyNeuron’ ).include()
    return M

Note that the argument M in the code above denotes the Py++ 
representation of the C++ code of the custom PCSIM extension 
to be built, with its rather intuitive query interface.

The name of the extension module (in our example my_pcsim_
module) is specifi ed in both module_recipe.cmake and python_
interface_specification.py fi les. Finally, the compilation is 
done using the special purpose command-line compilation tool 
for PCSIM extensions:

> python pcsim_extension.py build

The compiled extension module then can be imported and used 
within Python as any other module.

import pypcsim
import my_pcsim_module

The main pypcsim module should always be imported before 
any PCSIM extension modules, because the classes in the extension 
are derived from classes in pypcsim and these classes should be 
already in the Python namespace. The user can develop multiple 
PCSIM extension modules that can be used simultaneously in one 
simulation.

The creation of a PCSIM extension as a separate Python exten-
sion module relies on the support of Boost.Python and Py++ 
for component-based development, so that C++ types from one 
Python extension module can be passed to functions from another 
extension module while still preserving the information about the 
cross-module C++ inheritance relationships. This enables object 
instances from the classes in the extension module to be used within 
the PCSIM object-oriented framework in the main pypcsim mod-
ule. The component-based development has also the advantage that 
during the development of new custom classes only the extension 
module has to be recompiled, not the whole pypcsim library.

During the compilation of the PCSIM extension module the 
same processing steps happen as for the main pypcsim module (see 
Figure 3). We use the same scripts both for generation of the Python 
interface of the main PCSIM package and for the Python integration 
of PCSIM extension modules. Since the post-processing exclusion 
rules are expressed with the Py++ query interface in a generic way, 
they are applicable also to the wrapping of the extension classes. This 
is due to the fact that extension classes are derived from base classes in 
the PCSIM object-oriented framework and as such share their com-
mon properties on which the rules are based. Hence, the interaction 
of the user with the interface generation and the module compilation 
reduces to specifying a list of the C++ source fi les, and a list of classes 
to be exposed in Python. The rest of the process is automatized and 
the details are hidden behind the command-line interface of the 
special compilation tool for PCSIM extensions.

PCSIM ADD-ONS IMPLEMENTED IN PYTHON
On top of the main PCSIM Python API (encapsulated in 
pypcsim) several additional packages have been developed. They are 

15The net.connect(src_id, src_port, dest_id, dest_port) method 
connects the port number src_port of the element with id src_id, to the port 
number dest_port of the element with id dest_id.
16http://www.cmake.org
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implemented in pure Python and heavily rely on many third party 
scientifi c Python packages. The purpose of these packages is either 
to augment the capabilities of PCSIM, or add additional separate 
functionalities that are suitable to be used together with PCSIM.

PyNN.PCSIM
The objective of the PCSIM development to adopt ongoing initiatives 
to defi ne standards for model specifi cation of neural networks that 
would foster interoperability between different simulators is refl ected 
in the support of the PyNN project17 (Davison et al., 2008). The PyNN 
project is an effort to create a standardized, unifi ed Python-based 
API for procedural specifi cation of neural network models aiming 
at easier exchange of models between simulators. The user interface 
of PCSIM has been augmented with an additional software layer to 
support the PyNN API making it possible to use models specifi ed 
in PyNN within PCSIM. Due to the fact that PyNN was one of the 
sources for inspiration of the PCSIM interface, the concepts between 
the two interfaces match closely, so the translation of the PyNN state-
ments in corresponding PCSIM statements was straightforward and 
did not require substantial programming logic that could have hin-
dered the performance of the interface. The pyNN.pcsim package 
is an integral part of the PyNN distribution.

PYPCSIMPLUS
After we started to use PCSIM for our simulation purposes, it was 
becoming apparent that adding another layer above the interface of 
the pypcsim module can greatly simplify the routine tasks that are 
usually performed while setting up and running simulations. The 
pypcsimplus package was created with the intention to fi ll this gap. 
Note that the pypcsimplus package is dependent on PCSIM. For 
a more comprehensive, simulator independent tool-set for neural 
simulations, we refer the reader to the NeuroTools package18. In the 
following paragraphs we will describe two main components of the 
pypcsimplus package and give a demonstration of its use19.

Recordings
In PCSIM the value of a parameter or output port is recorded dur-
ing a simulation by connecting it to a proper recording network 
element. The purpose of the Recordings class is to provide simpler 
means to set up recorders and saving the recorded data during a 
PCSIM simulation. For example it allows to create a population of 
recorders that record the activity of a population of elements with 
each recorder connected to one of the elements (e.g. the spiking 
output of a population of neurons). For example

r = Recordings(net)

r.spikes  = nrn_popul.record( SpikeTimeRecorder() )
r.Vm      = net.record( my_nrn, ‘‘Vm’’, AnalogRecorder() )
r.weights = synapses.record(  AnalogRecorder

( samplingTime ), ‘‘W’’ )

schedules the recording of all spikes in the population nrn_popul, 
the membrane potential Vm of a single neuron (my_nrn), and the 
weights of a group of plastic synapses. To save that data to an HDF5 
fi le20 one would use the command

r.saveInOneH5File(f)

At any time later on, the saved data can be loaded from the fi le 
in a new Recordings object.

r = constructRecordingsFromH5File(f)
plot(r.Vm)

The members and attributes of the newly created Recordings 
object r are numpy arrays or Python lists holding the recorded 
data. For example r.Vm and r.W will be numpy arrays with the 
recorded values of the membrane potential of the neuron and with 
the evolution of the recorded synaptic weights during the simula-
tion, respectively. Note that if the user switches to a distributed 
simulation the same code, without any changes, can be used.

To summarize, the Recordings class simplifi es the specifi ca-
tion, storage and retrieval of recorded data by

• providing automatic detection of the type of the recorded data 
based on the recorder classes, and conversion of the recorded 
data to appropriate HDF5 data structures.

• implementing automatic gathering and sorting of recorded 
data from all processing nodes in a distributed simulation, and 
saving it in HDF5 in the same format as if the simulation was 
executed on a single node.

These functionalities are hidden behind a convenient user inter-
face and are manipulated in the same manner in both single-node 
and distributed simulation modes. For the implementation of the 
Recordings class, the mpi4py21 (Dalcín et al., 2008) and pytables22 
packages were used.

Experiment-model framework
Simulation, modeling and development environments in various 
fi elds (e.g. electronic circuit design, software engineering, signal 
processing, mechanical engineering) usually include a library of 
already developed reusable components that are readily available 
to the modeler. In the area of computational neuroscience, there is 
a similar effort to provide resources for easier reusability of models, 
e.g. online databases of already published models (Hines et al., 
2004), or constructs within the simulator that allow encapsulation 
of a simpler model as a well-defi ned component that can be used 
as a building block at a higher-level of abstraction. As a fi rst step 
towards a component-based modeling with PCSIM, we have set 
up a light-weight framework that could leverage and encourage 
encapsulation of some generic parts of a model as reusable com-
ponents, which can be exchanged among modelers.

The basis of the framework is composed of three classes: Model, 
Experiment and Parameters. The Model is a base class which the 
user inherits from when he wants to develop a model component. 
Several model components can be combined together to create a 17http://neuralensemble.org/trac/PyNN 

18http://neuralensemble.org/trac/NeuroTools
19There are other miscellaneous utilities present within the pypcsimplus package, 
as for example tools for easier management of IPython parallel computing cluster 
instances, routines for inspection of the structure of an already created networks in 
PCSIM and routines for processing and analysis of spike train data.

20http://www.hdfgroup.org/HDF5/
21http://mpi4py.scipy.org
22http://www.pytables.org/moin
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new model component. The Experiment class provides means to 
perform a controlled simulation with an already developed cus-
tom Model class. It encapsulates different facilities regarding saving 
output data to fi les, confi guration of models, saving the current 
version of the scripts, naming of different runs of experiments 
etc. The confi guration of the models is done with a Parameters 
class holding the model parameters in a hierarchical structure. For 
creating instances of the Experiment and Model classes remotely 
within the IPython parallel computing framework23 (Pérez and 
Granger, 2007) there are RemoteExperiment and RemoteModel 
proxy classes, which can be used to manipulate remote experiment 
and model instances in the same way as if they were local.

Pypcsimplus in action
We will demonstrate in the following paragraphs how pypcsimplus, 
together with other general scientifi c and computational neuro-
science Python packages, can be utilized to perform an analysis of 
the activity of the Brian spiking network example from the Section 
“Custom Network Elements”. In particular we will investigate what 
effect a change in the injected input in the network will have on 
the cross-correlogram of its spike response.

At the beginning we will set up the recording of the spiking out-
put of all 4000 neurons in the network. After creating a Recordings 

object, we create a population of recorders to record the spikes from 
the 4000 output ports of the BrianCircuit network element.

r = Recordings()
r.spikes = record_ports(net, pycirc_id, range(4000),
                        SpikeTimeRecorder())

net.simulate(2.0)

r.saveInOneH5File(’results.h5’)

We have accomplished this by using the record_ports func-
tion from the pypcsimplus package, used to specify recording of 
a set of output ports. After the simulation is performed, the record-
ings are saved in a HDF5 fi le for subsequent retrieval.

In another script we setup the analysis of the output data and the 
plotting. After the creation of the Recordings object by loading 
the recorded data from the saved HDF5 fi le, we plot the spiking 
activity of the network for the fi rst 0.4 s of the simulation with the 
plot_raster function in pypcsimplus (see Figure 6A).

r = constructRecordingsFromH5File(’results.h5’)

figure(1)
plot_raster(r.spikes, time_range = (0,0.4), fmt = ’,’)

plot_raster uses the plotting routines from the matplotlib24 
package (Hunter, 2007) to realize the plotting.

23http://ipython.scipy.org

A B

C D

FIGURE 6 | Plots from the output analysis example with the 

pypcsimplus package. (A) Spike response of the spiking network 
implemented in the Section “Custom Network Elements”, with input neurons 
emitting spikes generated from a homogeneous Poisson process with a rate of 
5 Hz, for the fi rst 0.4 s of the simulation. (B) Cross-correlogram of the spike 

response of the network model from (A). (C) Spike response of the spiking 
network implemented in the Section “Custom Network Elements”, when the 
input neurons emit spikes generated from an inhomogeneous Poisson process 
with a rate changing according to a sinusoidal function (see text for details). (D) 
Cross-correlogram of the spike response of the network model from (C).

24http://matplotlib.sourceforge.net
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Additionally we will calculate and plot the cross-correlogram 
of the spiking activity, defi ned as the histogram of time differences 
between the spike times from two different spike trains, calculated 
and summed over a set of randomly chosen pairs of neurons from 
the network. To achieve this, we utilize the pypcsimplus function 
avg_cross_correlate_spikes.

corr = avg_cross_correlate_spikes(r.spikes, num_pairs = 2000,
                                              binsize = 1e−3,
                                corr_range = (−200e−3,200e−3))

figure(2)
bar(arange(−200e−3,201e−3, 1e−3), corr, width  = 1e−3,
                                         color = ’k’)

In our case the cross-correlogram is calculated from the spike 
times of 2000 randomly chosen pairs of neurons from the network, 
for time lags within the range [−200 ms, 200 ms] and a bin size of 
1 ms. We then plot the cross-correlogram values with the bar func-
tion from matplotlib (the plot is shown in Figure 6B)25.

In the example in the Section “Custom Network Elements”, the 
input neurons were setup to generate a homogeneous Poisson spike 
trains with 5 Hz rate. Now we will modify the input generation so 
that the input neurons will emit inhomogeneous Poisson spike 
trains, with a fi ring rate r(t) = 5(1 + sin(2π 10t)). First we create a 
population of input neurons of type SpikingInputNeuron that 
emit an explicitly given sequence of spike times.

inpNrnPop = SimObjectPopulation
            (net, SpikingInputNeuron(), 1000)

Then we iterate through all the input neurons and set the 
spike sequence of each input neuron according to the previously 
defi ned inhomogeneous Poisson process. For the generation of 
the inhomogeneous Poisson spike time sequences we invoke the 
inh_poisson_generator method of an instance of the StGen 
(stimulus generator) class available in the NeuroTools Python 
package for computational neuroscience. The method accepts 
three parameters, a sequence specifying the time moments where 
the rate changes (parameter t), the sequence of the new fi ring rate 
values at these time moments (parameter rate) and the duration 
of the spiking process (parameter t_stop)26.

time_steps = arange(0,2000,1); stgen = StGen()
for i in range(inpNrnPop.size()):
     spikelist = stgen.inh_poisson_generator
                  (rate = 5*(1 + sin(time_steps/1000.0*20*pi)),
                  t = time_steps, t_stop = 2000.0)
     inpNrnPop.object(i).setSpikes(spikelist.spike_times/1000)

The spike raster and the cross-correlogram obtained after rerun-
ning the simulation with the newly defi ned input are shown in 
Figures 6C,D, respectively.

Through this demo we have elucidated to the reader how a 
typical PCSIM simulation run is performed in Python, and the 
benefi ts that come from the utilization of Python as a unifying 

scripting environment within which PCSIM is used together with 
its add-on pypcsimplus and other scientifi c and computational 
neuroscience Python packages. Additionally to their side-by-side 
usage with PCSIM, the Python scientifi c packages are harnessed also 
in the bundling of common recipes and reoccurring usage patterns 
in the PCSIM extra add-on packages, as in the case of pypcsimplus. 
The collection of Python scientifi c packages presently available 
cover a broad enough range of functionalities to enable, in almost 
all cases, handling all of the steps of a modeling effort in Python (e.g. 
stimulus preparation, response analysis and plotting as shown in the 
demo). The data communication between the different packages 
and PCSIM typically reduces to passing Python sequences (lists or 
numpy arrays) from one package to another.

PYLSM
The pylsm package is aimed to support the analysis of the compu-
tational properties of cortical microcircuits within the liquid state 
machine (LSM) approach (Maass et al., 2002). In this approach 
multiple simulation trials are performed where input spike trains, 
drawn from a defi ned input distribution, are injected in the cortical 
circuit, and a readout which reads the spiking activity of the circuit 
is trained by a supervised learning algorithm to approximate some 
function of these inputs.

The framework contains all the necessary machinery for per-
forming the simulations and the training of the readout27. In a 
typical task the user defi nes the neural circuit to be used as a liquid, 
chooses the desired input distribution, the input-output mapping 
function, and the learning algorithm for the readout from the ones 
available in the package, and then performs the LSM training and 
testing procedures. For example, the user can defi ne a distribution 
of inputs which consist of different time segments, and each of 
these time segments contains a jittered version of some predefi ned 
spike train template. In the available learning algorithms for the 
readout a least-square algorithm with non-negative constraints is 
also included. It can be used to train a linear readout with the 
biologically more realistic constraint that all the weights originat-
ing from excitatory (inhibitory) neurons are positive (negative) 
(Haeusler and Maass, 2007).

DISCUSSION
The application programming interface of PCSIM is an object-
oriented framework composed of many classes interacting together 
to achieve the desired operation. Within this framework we intro-
duced several novel concepts like element and connector factories, 
value generators and connection decision predicates. The user can 
customize and extend this framework by deriving from the interface 
classes of the API to implement his own specifi c network elements 
or network construction algorithms.

THE WRAPPING APPROACH
There exist several possible approaches for implementing a Python 
interface of a simulation software library implemented in C/C++. 
An extension to the NCS software called Brainlab (Drewes, 2005) 
uses generation of a fi le from Python with declarative specifi cation 

25For clarity reasons, we only give the main matplotlib plotting command in the 
example code blocks, and omit the additional formatting commands used for 
 Figure 6.
26Time in neurotoools is specifi ed in milliseconds, hence the division by 1000 when 
we need to convert the spike time sequence in seconds before inserting it in a PC-
SIM neuron.

27It has similar features as the package described in Natschläger et al. (2003), which 
was implemented in Matlab and was part of the CSIM package.
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techniques employing the highly effi cient numerical Python package 
numpy (which is implemented in C). This adds fl exibility, since the 
equations describing the element can be changed quickly without 
any necessary compilation while not sacrifi cing performance, since 
by using numpy vectors, the integration algorithm is broken down 
in elementary vector operations thus avoiding any loops within 
Python that could be detrimental for the performance.

This approach seems also to be advantageous when one wants 
to implement network elements that have some abstract processing 
logic, e.g. signal processing fi lters, machine learning algorithms or 
similar. In this case one can utilize a large set of available C++ librar-
ies that have Python bindings, for an effi cient implementation, and 
handle in Python the transfer of data from the input ports of the 
network element to the input methods of the library, and from the 
output of the library to the output ports of the network element.

The possibility to implement PCSIM network elements in pure 
Python offers a convenient way to achieve run-time interoperabil-
ity between PCSIM and other neural network simulators (Cannon 
et al., 2007), provided that the simulator has a Python interface, 
allows control of the simulation process at individual time steps, and 
has the possibility to write input and read output data during the 
simulation at each time step. As shown in the example in the Section 
“Custom Network Elements”, we have successfully implemented 
interoperability with the Brian simulator, which possesses the afore-
mentioned capabilities. One interesting further application of this 
interoperability could be a distributed simulation of a large neural 
network where the sub-networks on each node are implemented 
with the Brian simulator, and the parallel communication is handled 
by PCSIM’s communication system. Another possible approach of 
using Python as a glue language to achieve simulator interoperability 
is to setup a Python script as a top-level coordinator of a step-by-step 
simultaneous execution of two simulators, where the necessary data 
transfer between the simulators is realized through intermediate 
Python data structures (Ray and Bhalla, 2008).

HIGH-LEVEL WRAPPING SPECIFICATION AND EXTENSIBILITY
Since the interface of PCSIM has a fi ne granular structure, com-
posed of many decoupled classes (≈300) this implies that there are 
many classes to be wrapped and exposed to Python. It would simply 
be impossible to manually manage all the necessary Boost.Python 
wrapper code. Furthermore, the possibility of adding extensions to 
the interface puts additional constraints to the wrapping approach 
to be robust enough to work for the extension classes too, without 
any signifi cant intervention from the user. Nevertheless, by exploit-
ing the powerful interface generator tool Py++ the wrapping of 
such a large number of classes is rendered feasible31. We were able 
to specify high-level generic rules within Py++ for the defi nition of 
the wrapping of all the classes in the PCSIM API and their sensible 
extensions. To be precise, the Python program that specifi es the 
rules for the Python interface generation for ≈300 classes is about 
400 lines of Python code. As these rules apply for the extensions too, 
the user can easily extend the PCSIM simulator with its own cus-
tom C++ classes and compile them in a separate Python  extension 

of the model which is then loaded in the simulator. Another com-
mon method is to use interpreter-to-interpreter interaction with 
the conversion of data structures between Python and C++ handled 
by means of the Python/C API, an approach adopted by NEURON 
(Hines et al., 2009) and NEST (Eppler et al., 2008). This method is 
applicable only if the simulator already has an interpreting interface. 
For the creation of PyMoose (Ray and Bhalla, 2008), the Python 
interface of MOOSE28, the developers applied the interface genera-
tor tool SWIG29 (Beazley, 2003). Certainly, one can also implement 
a Python interface by using solely the Python/C API.

Since PCSIM’s Python interface was to be newly developed, only 
the later two options were applicable. We opted for the interface 
generator tool approach combined with automatic wrapper code 
generation, since from the available options it seemed to us the fast-
est way, in terms of the amount of development effort required, to 
achieve the desired Python wrapping of the PCSIM object-oriented 
framework. One of our goals for the integration of PCSIM with 
Python was to simplify and support a hybrid modeling approach 
by enabling the user to implement extensions of the PCSIM object-
oriented framework in Python and/or C++, while not having to 
bother with details regarding the interoperability between these 
two programming languages.

The excellent support of Boost.Python for advanced C++ con-
cepts and appropriate mapping of corresponding idioms between 
the two languages allowed us to expose the complete PCSIM API, 
currently ≈300 classes, to Python in a non-intrusive way. This means 
that the fact that the PCSIM API is to be exposed to Python does not 
impose any changes at the C++ level nor does it put any constraints 
on its design. Furthermore the compilation of the libpcsim library 
itself does not depend on any Python library or wrapping code.

BIDIRECTIONAL INTERFACE AND HYBRID MODEL DEFINITION
One of the features of Boost.Python enabling the hybrid approach is 
the ability to derive Python classes from the wrapped interface classes, 
and override the virtual functions. Hence, such custom Python class 
methods can be called from within C++ and thus allow an integration 
of Python code into the PCSIM C++ code. A similar bidirectional 
interface has been implemented between Python and NEURON 
(Hines et al., 2009), where Python can issue commands towards 
NEURON, but also Python code can be called and executed from 
within NEURON in an active Hoc session30. In PCSIM the two-way 
interaction between Python and C++ enables user customizations 
to be coded in pure Python, and then plugged into the PCSIM C++ 
framework. This brings additional fl exibility and freedom to the 
user, meaning that he can fi rst do fast implementations in Python, 
e.g. extensions to the network construction interface (see Network 
Construction), in the prototyping phase, and afterwards the imple-
mentation can be ported to C++ to gain maximum performance.

The ability to defi ne PCSIM network elements in Python opens 
a possibility for a seamless Python-C++ integration also during the 
simulation, not only in the network construction stage. The example 
described in the Section “Custom Network Elements” shows that net-
work elements can be implemented in Python, by using  vectorized 

31The only drawback we encounter is the rather long compile time when recompi-
ling the whole Python interface. This is due to the fact that Boost.Python heavily 
uses C++ templates.

28http://moose.sourceforge.net/
29http://www.swig.org
30Hoc is the native NEURON interpreting language.
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 package, which can be used together with the main pypcsim pack-
age (the tool support for this is included in PCSIM). This was made 
possible by the Boost.Python and Py++ support for cross-module 
inheritance relationships and component-based development (see 
“Extending PCSIM Using C++”).

To summarize, by the easy extensibility of its interface both 
in Python and C++, PCSIM enables the modelers to think hybrid 
when developing their models (Abrahams and Grosse-Kunstleve, 
2003).

PYTHON AS A SCRIPTING ENVIRONMENT
Providing a Python interface to a neural simulator increases its 
versatility and consequently the productivity of the modelers in 
many ways. The object oriented design of the language, its expres-
sive and clean syntax, allows the modeler to focus on the high-level 
logic of the model instead of struggling with the intricacies and the 
nuts and bolts of the programming language. Furthermore, there 
is a growing number of general scientifi c and specifi c computa-
tional neuroscience software tools available as Python packages, for 
numerical calculations, scientifi c functions, plotting, saving data to 
fi les, parallel computing etc. We have used several scientifi c Python 
packages to enhance PCSIM with useful utilities on top of its basic 
interface. As we have illustrated through a simple example in the 
Section “PCSIM Add-Ons Implemented in Python”, in combina-
tion with such Python packages PCSIM can be used as the main 
component of a Python-based neural simulation environment 
where all steps within a neural model development life-cycle, from 
the specifi cation of the model and performing the simulations, to 
storage of simulation output data, data analysis and visualization 
can be performed. Overall, the integration of PCSIM with Python 

added additional valuable facilities to the user, turning PCSIM into 
a full-fl edged neural simulation environment.

PCSIM RESOURCES
Many resources for PCSIM can be found at its web page32. The web 
page contains a user manual, examples, installation instructions, 
complete class reference documentation and the complete material 
for the tutorial that was given at the FIAS Theoretical Neuroscience 
and Complex Systems summer school held in Frankfurt, Germany 
in August, 2008. The users can discuss topics and pose questions 
concerning usage and installation of PCSIM on the pcsim-users 
mailing list on Sourceforge®33 where the PCSIM development 
project is hosted. In the future, the user manual will continuously 
undergo extensions and revisions to better organize the content 
and to include additional topics and more elaborate information 
about the PCSIM concepts and constructs. Additional examples 
covering various PCSIM features will also be made available on 
the web site.
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