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for  processing, analysis, or simulation of brain data. Additionally 
the Clinical Data Interchange Standards Consortium (CDISC) 
(Souza et al., 2007) strives to improve data exchange across mul-
tiple domains and platforms for medical research as well as health 
care initiatives.

Notably, the LONI Image Data Archive (IDA) contains neuro-
anatomical data from nearly 30 research projects and serves as the 
primary repository for large studies such as the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI). Data sharing has also indirectly 
benefi tted and affected computational neuroscientifi c tool devel-
opment. As algorithms get tested on more and more diverse data-
sets, they evolve to become more general and robust. Data sharing 
has been the fi rst step in neuroinformatics research efforts and 
has largely been the focus of the past decade, and will continue 
to be so. The neuroscientifi c community is now getting ready to 
prepare for the next logical step – database integration (Forsberg 
and Roland, 2008). Most data storage facilities like the ones above, 
have implemented centralized repositories in proprietary formats. 
The challenge that the informatics community faces in the near 
future is the unifi cation of existing large, heterogeneous neuroda-
tabases in a user-transparent manner. This goes above and beyond 

INTRODUCTION
The past decade has seen an explosive rise in the volume of brain 
image scans for clinical, diagnostic as well as research purposes. 
Fortunately, the neuroimaging research community recognized 
early on that facilitating data sharing among collaborative research 
centers is the key to boosting neuroscientifi c knowledge and dis-
covery. Drawing a parallel with genomics research which has 
immensely benefi tted with such data sharing strategies, a position 
paper (Eckersley et al., 2003) even goes far to suggest the use of 
public domain licensing policies, not unlike the GNU public license, 
for neuroscience data. The consensus on the archiving and shar-
ing of primary neuroimaging data has fostered several large-scale 
initiatives: The Biomedical Informatics Resource Network (BIRN), 
the Morphometry and Function BIRN testbed projects (Grethe 
et al., 2005); The NIH MRI Study of Normal Brain Development 
(Pediatric MRI Study) and resulting Pediatric MRI Data Repository 
(Evans, 2006); and The fMRI Data Center (fMRIDC) (Van Horn 
et al., 2001; Van Horn and Gazzaniga, 2002). Much recently, the 
Neuroscience Information Framework (NIF) (Hurd, 2005) has 
initiated the development of a comprehensive experimental, 
clinical and translational databases, knowledge bases, atlases etc 
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data sharing, where the user can not only access a single database, 
but can sift through multiple repositories at once without having 
the database to be localized in a central place. This is very much 
like the WWW, where there is an interconnection of data process-
ing and storage nodes in a decentralized network. An important 
step towards this goal will be designing and standardizing robust 
database exchange protocols, while maintaining compatibility with 
privacy regulations and laws.

However, an alternate parallel goal complementing these 
efforts is the ability to graphically navigate, browse and query 
such aggregations of repositories. With the increasing progress in 
computational processing, and visualization, textual queries and 
interactions continue to be a severe drawback in future database 
access, especially with the enormity of the data involved. Recently, 
Herskovits et al. (Herskovits and Chen, 2008) have developed an 
open source implementation for a database system with data min-
ing capabilities for managing, querying, analyzing and visualizing 
brain-MR images. We anticipate a compelling need for similar tools 
in the neuroscience community that facilitate informatics-driven 
approaches for users to better examine databases and explore the 
inter- relatedness of subjects in the population. Our goal then is to 
facilitate the large-scale informatics, mining, and visualization of 
the contents of existing neuroimaging data repositories by devel-
oping streamlined data processing workfl ows to decompose the 
contents of an archive, compare each image volume against all oth-
ers in the archive, and visually display the results in a user friendly 
client application. We claim that the neuroimaging data itself can 
form the basis for such mining, that visualization of how brains 
relate to one another carries essential information, and that well-
designed tools can permit data from outside the archive to be used 
as the basis for similarity-based searching.

This paper is organized as follows: the Section “Introduction” 
makes an argument for visual explorative interfaces for large-scale 
neuroimaging databases. The Section “Materials and Methods” 
outlines the main idea of this paper. It proposes neuroimaging 
workfl ows (see Introduction) focusing towards discriminative 
analysis for visualization. The Section “Materials and Methods” 
introduces the concept of a neuroanatomical meta-space built 
on top of the dissimilarity measures generated by the workfl ows. 
A meta-space is constructed in a case study (see Introduction) on 
a sample dataset of 400 subjects from the ADNI dataset. Finally 
Section “Discussion” proposes a 3D visualization environment 
for interactively navigating through this meta-space followed 
by a discussion.

NEED FOR VISUAL MINING OF NEURODATABASES
There is a growing interest in content-based searches for neuroim-
aging because of the limitations inherent in meta-data-based sys-
tems (Nielsen et al., 2006), as well as the large range of possible uses 
for effi cient image retrieval. Without the ability to examine image 
content, searches currently rely on meta-data such as captions or 
keywords, which may be laborious or expensive to produce manu-
ally. While textual information about images can be easily searched 
using existing technology, it requires humans to personally tag and 
annotate every image in the database. This can be impractical for 
very large databases. Similarly, there are added benefi ts for manipu-
lating the search criteria and results visually. A visual interface will 

present an opportunity to cluster, classify, and graphically represent 
data in ways not possible based on textual meta-data alone. We 
identify the following scenarios where such a graphical navigation 
system can be applied.

Visualizing anatomical differences and relatedness simultaneously
A single brain image scan may give rise to a variety of anatomies. 
Pertaining to a specifi c neuroscientifi c study, researchers may 
choose to directly work with MRI images, or work with suitable 
anatomical representations deconstructed from an MRI image. 
For e.g. the boundary of the volume, the cerebral cortex can be 
 represented by a topographic two-dimensional geometrical struc-
ture (Thompson et al., 2001; Hinds et al., 2008). This structure can 
be further differentiated by the anatomical folds also known as the 
sulci and the gyri. One can further descend beneath the cortex 
to delineate various other structures such as the limbic system, 
thalamus, hypothalamus, corpus callosum (Narr et al., 2005) etc. 
Existing neuroimaging analysis and visualization tools restrict 
users to a single, individual brain image or surface for anatomical 
studies. While this is useful for structural analysis or evaluation of 
pertinent anatomies, neuroimaging studies often consist of large 
population of subjects and resulting brain images. Especially for 
large-scale statistical or discriminative analyses focusing on dis-
ease, genetic, or heritable effects and changes according to neuro-
morphology, it would be useful to simultaneously visualize the 
morphology in an appropriate metric space resulting from the 
analysis. Currently most neurodatabases are accessible solely by 
textual queries. Furthermore there is no existing application or 
workfl ow that enables the neuroscientist to manipulate neuroin-
formatics search criteria, and the resulting queries and outputs 
in a visual manner.

Educational resource or a training environment for neuroscientists
Developments in the area of content representation, interaction, 
and search has been employed for graphical data with the notable 
example of Microsoft’s Photosynth that been used to mine the 
Flickr1 photo sharing site to then graphically depict a collection of 
images from a spatial reconstruction of their taken vantage point. 
Likewise, Google Earth2 displays satellite imagery, mapping, and 
geographic data, permitting interactive search, annotation, and 
other functions. In the astronomy community, the recent launch 
of the World wide Telescope® [for historical context, see (Szalay 
and Gray, 2001)] has revolutionized the exploration and search 
capabilities for astral, galactic, and planetary data obtained from 
multiple imaging sources. These applications continue to enhance 
educational instruction, both for the general public and the spe-
cialists alike. Similar tools do not yet exist in the neuroimaging 
community where there is a tremendous potential for computer-
simulated training for neuroscientists.

Visual cataloging of neurodatabases
Visual data mining (VDM) is useful in exploratory analysis, 
where one has limited views and information of the data. With 
the recent advances in computing and storage, VDM has been 

1http://www.fl ickr.com/
2http://earth.google.com/

http://www.flickr.com/
http://earth.google.com/


Frontiers in Neuroinformatics www.frontiersin.org November 2009 | Volume 3 | Article 38 | 3

Joshi et al. Interactive exploration of neuroanatomical meta-spaces

For e.g. the LONI Pipeline (Rex et al., 2003)3 is a highly fl exible, 
distributed computing environment that enables parallelized 
execution of application software especially dealing with brain 
mapping protocols. It offers an effi cient GUI interface to the user, 
where one can quickly build complete applications using plug-
gable components called pipeline modules. The pipeline user 
can further extend the functionality of the pipeline by develop-
ing modules in addition to the ones existing in the library. The 
pipeline communicates back and forth with the grid scheduler 
to queue up user tasks in an effi cient manner. It also provides 
a feedback mechanism to the user where he can monitor pro-
gram execution real time from the pipeline interface. Moreover 
the pipeline also allows the data as well as programs required 
for analysis, to reside on the user’s local machine that launches 
the pipeline thereby integrating both local and remote resources 
in a seamless manner. Throughout this discussion, the LONI 
Pipeline will serve as a convenient execution environment for 
our  architecture. We would also like to stress that the user is not 
restricted to the LONI computing infrastructure to take advantage 
of the LONI pipeline. The LONI pipeline is independent of the 
underlying grid computing environment and can be tailored and 
adapted to other suitable execution infrastructures4.

DATA MINING WORKFLOW FOR DISCRIMINATIVE ANALYSIS
The data is typically stored as MRI images either in the Analyze or 
the NIFTI format. For the purpose of this discussion, we focus on 
neuroanatomical volumes, though in the future functional imaging 
could be incorporated. Depending upon the experimental setup, the 
data is usually corrected to minimize geometric distortions or non-
linearities, and any non-uniform intensities resulting due to mag-
netic properties of the RF coils. The data can further be sharpened 
using histogram techniques that can further lead to a reduction of 
intensity non-homogeneities. The corrected MR images are then 
stripped of skulls, unwanted tissue, and other extra unneeded ana-
tomical features such as the cerebellum or the brain stem. We used 
the Brain Extraction Tool (Smith, 2002) tool for skull stripping MRI 
images in our workfl ow, although any such similar tool can be used. 
All image volumes in the database are  registered (Woods et al., 1998) 
to a standard Montreal Neurological Institute (MNI) atlas image. 
The resulting gray/white matter image is then processed in parallel 
to i) extract the cortical (gray/CSF boundary) surface (Shattuck 
and Leahy, 2002), and ii) extract about 56 sub-cortical features 
(Tu et al., 2008) such as the major gyri, hippocampus, the putamen, 
etc. This process exclusively gives rise to a geometrical representa-
tion that is stored in the form of a triangular mesh using a suitable 
fi le format. Henceforth in this paper, brain anatomies will be taken 
to mean the cortical surface as well as surface parameterizations of 
the individual sub structures beneath the cortex. The top portion 
of Figure 1 shows the pre-processing and feature extraction steps. 
These steps are implemented as completely automated LONI pipe-
line modules. Figure 2 shows an example of a parcellated volume 
colored according to  different anatomies. The original input data 

used for diverse applications such as exploring geospatial data 
(Keim, 2002; Keim et al., 2004), internet web resource databases 
(Chen et al., 2007), and analyzing business intelligence patterns 
(Hao et al., 2000). Such an effort currently does not exist in the 
fi eld of neuroimaging. The development of visual catalogs of 
neuroimaging data would enable and enhance large-scale scien-
tifi c interaction among users. Though some basic image viewing 
tools exist, we believe a different approach is needed altogether. 
A content-based solution is benefi cial for researchers to more 
easily examine (dis)similarity between brains and to dynamically 
visualize patterns that may be indicative of the demographic and 
clinical attributes of the data themselves. By navigating through a 
virtual environment via an easy-to-use, web driven application, 
users will be able to examine large collections of brain data using 
only their computer mouse.

Visualization of atlas spaces
Individual brain anatomies, have their own local coordinate 
systems that measure local distortions of features such as cur-
vatures, intensities, and surface areas. For large populations of 
such anatomies, most approaches construct an atlas template 
(Mazziotta et al., 2001) and transform all individuals to the atlas. 
This yields a single anatomical object that is then analyzed or 
visualized as a representative of the population. This approach 
also transforms the individual local variation to the atlas thus 
providing the researcher with an at-a-glance view of the variation 
across population. The drawback of atlas visualization is that the 
atlas depicts a single view of the population, and it is diffi cult to 
get an overview of the underlying dissimilarity patterns between 
individual subjects in the study. Often, these atlases are probabi-
listic in nature and thus only provide a statistical interpretation 
of the relationship between the template and the individual. Thus 
one has to continually go back and forth between the template 
and the individual to relate to, and observe the changes in the 
native brain space. Instead, a visualization scheme that simultane-
ously displays the atlas and the data used for its construction, in 
a meta-space is highly desirable. Moreover, one could technically 
extend this idea to multiple atlases grouped together with their 
respective populations.

MATERIALS AND METHODS
This section outlines the concept of a meta-space that follows 
from large-scale discriminative analyses on a brain population. 
Essential to the construction of the meta-space is the data process-
ing framework that enables complete workfl ows leading from 
the original data in the form of images to the various metrics 
that attempt to classify, cluster and separate individuals in the 
population. Due to the enormity of the data, as well as the types 
of processing involved, we employ a grid-based execution envi-
ronment. While large-scale distributed processing is an essential 
component in scientifi c computing, it has only recently (Rex et al., 
2003; Callahan et al., 2009) evolved to adapt itself to biomedical or 
neuroimaging workfl ows. The main hindrance for adapting such 
technologies is the specialized knowledge required to maintain, 
develop, and execute applications for common neurocomputing 
tasks. However with latest advances in interfaces and visualiza-
tion, much of these tasks have become oblivious to the end-user. 

3http://pipeline.loni.ucla.edu
4For more information about the pipeline, the reader is referred to the article 
“ Effi cient, Distributed and Interactive Neuroimaging Data Analysis using the LONI 
Pipeline” by Dinov et al., 2009.

http://pipeline.loni.ucla.edu
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FIGURE 2 | Surface rendering of segmented sub-cortical structures labeled according to regions. (A) Examples of image slices along the axial view. 
(B–D) Parcellated cortical and sub-cortical regions along three views.
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FIGURE1 | A schematic of the data mining workfl ows exposed through the 

LONI pipeline (Rex et al., 2003). The workfl ow is divided into three parts, 
i) Processing, ii) Feature Extraction – extracting anatomical features such as 
cortical surfaces, sub-cortical structures etc. and having 3D mesh 

representations for each feature, and iii) Feature Analysis – calculating the local 
curvature, shape index, cortical complexity, and encoding each surface mesh 
with these attributes. Each stage is implemented via pipeline without user 
intervention.
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is  usually accompanied by appropriate meta-tags using predefi ned 
XML schemas. The above pre-processed data is then stored hier-
archically for a streamlined access in a database.

A NEUROANATOMICAL META-SPACE
The central idea behind atlas meta-spaces is the modeling of the dis-
similarities between individuals in a population. The population can 
be analyzed all at once, or the individual subjects can be grouped 
according to some well-defi ned categories. Before performing any 
type of discriminatory analysis, one needs to consider an appropriate 
metric space of objects and defi ne a notion of distance associated with 
it. Metric spaces are mathematically easier to defi ne in case of sim-
ple tractable objects such as two-dimensional, or three-dimensional 
points, multidimensional vector measurements, or objects that lend 
themselves to functional representations in a well-defi ned space. In 
case of neuroanatomical structural data, such as cortical surfaces and 
sub-cortical structures, it is diffi cult to have a rigorous defi nition of 
a metric space of such entities directly. There are ongoing research 
efforts to model the geometry of the cortex, or defi ne the shape of 
three dimensional closed surfaces corresponding to the sub-cortical 
structures. The goal is to have a mathematical representation of the 
shape geometry, independent of indeterminacies such as the scale, 
position, orientation etc. Various researchers have used harmonic 
functions on a sphere to represent closed genus zero surfaces. In this 
case the shape distance is measured by a L2 distance between the coef-
fi cients in the space of harmonic functions. Others have used level 
set representations for shapes of surfaces, again using the L2 metric 
between two signed distance representations for surfaces. Yet another 
approach by researchers uses global measurements such as the volume, 
average curvature, or the surface area of cortex, or the sub-cortical 
structures. Although, this may interpreted as a gross simplifi cation 
of brain geometry, numerous studies have shown the effectiveness of 
such simple metrics in capturing a global underlying pattern of the 
data. A study based on simple volume analysis of the Hippocampus 
(Chupin et al., 2008) was able to correctly classify 82% of Alzheimer’s 
disease (AD) patients with respect to the elderly controls. Another 
study (Gosche et al., 2002) has also shown that hippocampal volume 
can be used as an indicator for Alzheimer neuropathology. A recent 
study (Dubois et al., 2007) also supports that quantitative volumetric 
analysis on the hippocampus was able to distinguish AD across young 
and old ages. We will follow a similar approach and utilize metrics that 
are simple to compute, and lend themselves to an easy interpretation. 
A few of the metrics considered in this paper are cortical complexity, 
shape indices, volume and surface area of the segmented structures. 
We then represent these quantities in the space of real numbers and 
adopt the standard Euclidean metric. As a specifi c example, for a 
database with N subjects and L delineated sub-volumes, given by 
{ } ... ..V i N k Lk

i , = , , , = , ,1 1 .  we fi rst normalize all the volumes to have 
a unit scale. We then calculate a N-by-N distance matrix given by,
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Likewise, one can in practice utilize different metrics to generate dif-
ferent distance matrices. In order to establish a frame-of- reference, 
we construct a template atlas for the population and also include it 

in the distance calculation. This process yields a distance space of 
neuroanatomical structures with the atlas conveniently treated as the 
“origin”. One can even defi ne distance units in this space and defi ne a 
centralized coordinate system with the atlas at the origin. This result-
ing distance space is extremely high dimensional and not straightfor-
ward to visualize. In the analysis stage, we will pre-store multiple such 
distance matrices based on different metrics for the above features in 
the database. As new data enters the LONI IDA, the workfl ow engine 
will automatically detect new entries and subject them to regional 
extraction, surface modeling, and regional measurement, etc. Random 
spot checking to ensure accuracy will help to reduce improper data 
from entering into and possibly biasing the comparison of image 
data-sets. Each new data set’s relative distance from each of the brain 
volumes already in the overall distance matrix will be performed and 
this new information will take its place in the matrix. Upon updating 
of the distance matrices, the multidimensional scaling (MDS) will 
then be recomputed and the positions of each brain surface in the 
space adjusted accordingly. We expect that once fully deployed the 
continuous processing of new entries into the IDA and the updating 
of the geometric similarities will not require extensive computational 
loads or interfere with other jobs being processed on the LONI grid. 
Lastly, we will post the automated processing meta-algorithm via the 
community web forum so that others may download the workfl ow 
and use the LONI Pipeline on their own systems to validate results. 
Using the online web forum as well as client-side user interface tool, 
users will be able to post their reviews of the validity of meta-algo-
rithm, note outlier subjects, or annotate interesting cases. These pub-
licly given annotations will form additional meta-data information 
to be made available to other users of these tools.

In order to explore the dissimilarities between brain volumes, 
we need to project the dissimilarity matrix into an appropriate 
2D or 3D space. There are numerous techniques to project high 
dimensional data into lower dimensional spaces for analysis or 
visualization. As discussed above, one could calculate principal 
coeffi cients, or principal factors explaining the maximum observed 
population variability in terms of a few determining factors. For 
visualization purposes, only the fi rst 3 eigen projections can be used 
to display objects in a 3D space. Sophisticated visualization tools 
(Swayne et al., 2003) exist for performing such high dimensional 
data visualizations, as well as plotting multivariate statistics of the 
data. However, these tools usually represent objects by points in 3D 
space and thus limit the interaction with the original objects them-
selves. Moreover, since the construction of our meta-space relies 
on dissimilarities among neuro-structures, we will use the multi-
dimensional scaling (Kruskal and Wish, 1978) approach for pro-
jecting the dissimilarity matrix into a 3D space. Multidimensional 
scaling is an optimization technique that projects a high dimen-
sional dissimilarity matrix into a low dimensional space that most 
accurately represents the pair-wise distances between the objects. 
This is achieved by minimizing a cost function that minimizes a 
Euclidean cost between the original dissimilarity matrix and a set 
of low dimensional (3D in our case) vectors. Additionally, since 
most studies come equipped with meta-data tags along with the 
images, one can easily perform comparative analyses of individual 
brain locations with the mean brain locations for each categorical 
meta-data type. For example, in case of an Alzheimer’s study, this 
implies that a brain whose standardized distance from the mean 
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AD patient location is smaller than the normal subject will increase 
the likelihood that the brain belongs to an AD patient. Figure 3 
shows an illustrative visualization of the meta-space after the MDS 
projection of pair-wise distances between a group of brains with 
respect to an atlas.

Case study for a subset of ADNI dataset
As a case study for our framework, we sampled the LONI IDA and 
identifi ed three groups of subjects obtained from the ADNI data-
set. Subjects included N = 244 mild cognitively impaired (MCI) 
subjects, N = 56 Alzheimer’s Disease (AD) patients, and N = 100 
normal control subjects, for an overall group of N = 400 neuro-
anatomical Magnetization-Prepared Rapid Acquisition Gradient-
Echo (MPRAGE) image volumes. All images in this example were 

scanned using a 3T MR scanning platform, although, a mixture 
of data from across scanner manufacturers and fi eld strengths 
would also be possible. The distance matrix computed using Eq. 1 
is visualized in Figure 4A. This distance matrix is projected to a 
three dimensional space using MDS and the results is displayed 
in Figure 4B. The spheres are drawn with a radius equal to 5% 
of the standard deviation from the population mean. From the 
MDS analysis, we extracted the fi rst three latent dimensions which 
accounted for more than 66% of the distance variation between 
subjects (50%, 10%, and 6%, respectively). No inferential statisti-
cal test thresholding (e.g. T-tests, F-tests, etc) was performed and 
no signifi cance-levels were determined concerning the differences 
between groups as “group” variables were not specifi ed a priori. 
Rather, all data were considered equally in terms of  processing 

FIGURE 3 | An illustration of distributions of brain surfaces in an atlas meta-space. The atlas can be treated as the origin. The locations of the brain surfaces are 
derived using MDS applied to the distance matrix of discriminative features. A radial coordinate system is shown for convenience, in practice any other informative 
reference frame can be used.
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FIGURE 4 | (A) Visualization of the pair-wise distance matrix for N = 400 subjects of the ADNI dataset. (B) MDS projection of the dissimilarity matrix into 3D 
coordinates, each projection colored according to subject status, NC = blue, AD = red, MCI = yellow.

and MDS analysis. Subjects segregated maximally along the 
fi rst principle axis. Along this dimension, normal subjects were 
clearly distinguishable from AD patients, whereas MCI patients 
were observed to overlap both normal and AD distributions. Each 
extracted brain surface was positioned in space by its MDS coor-
dinate triad. This served to offset each brain from the origin, to 
position brains that are similar near one another, and those that 
are dissimilar far from each other. In this way a user can graphically 
examine similar brains to identify similar meta-data characteristics 
from those brains that might have bearing on etiology of disease, 
demographic factors, etc. The intention in processing these data 
in this manner was to determine and demonstrate whether the 
imaging data, based upon the characteristics of content-based 
regional brain geometry, would separate themselves in a manner 
that would be obvious to an end-user. Other metrics, however, 
besides the profi le of regional volumes, might also segregate sub-
jects equally well or even better. Different metrics of distances 
can lead to differing patterns of results. This scheme sets the stage 
for systematic evaluation of which metric discriminate between 
subjects best, best express individual variability, or classify subjects 
to heretofore unappreciated classifi cations based on anatomical 
similarity, meta-data factors, etc.

INTERACTIVE VISUALIZATION OF NEURO- META-SPACES
Finally, we provide the user with a fully interactive 3D exploration 
experience by allowing visual navigation of the meta-space. As seen 
earlier, the meta-space comprises of 3D projections of pair-wise 
distances among the population along with the atlas template. 
Intuitively, this can also be thought of as scaling, stretching and 
collapsing a set of 3D points (corresponding to brain anatomies) 
such that their pair-wise distances in the higher dimensional space 
are accurately approximated. Thus we have the target locations for 
all brain anatomies after the MDS procedure converges. We now 
simply scale and translate the corresponding brain cortical surfaces 
extracted in the data mining workfl ows to the appropriate location 

in the 3D space. The end result is a graphical rendering of a large 
volume of brain surfaces all at once. The visualization display is 
dynamic, thus enabling the user to rotate, zoom, and pan the view 
in real time. Additionally, the user can also navigate through the 
meta-space, thus discovering and verifying the brain surface geom-
etry simultaneously in relation to it’s neighbors. Each brain surface 
is accompanied by an XML description of its meta-data that can 
be quickly displayed on the screen to get more information about 
the individual brain.

A growing challenge to the visualization environment is the 
rapidly accumulating data. Both long-term storage and memory 
requirements for data multiply progressively with increase in 
the sheer data volume. Real time visualization of large data-sets 
presents numerous diffi culties with regards to limited process-
ing power and computer memory. For e.g. a triangular mesh 
parameterization of a moderate resolution cortical surface 
roughly includes 250 K triangles and 100 K vertices. A fl oat-
ing point representation for the geometry alone requires about 
1.5 MBytes of storage, while attributes such as colors and normals 
are represented at an additional cost. For a brain volume database 
in excess of 500 brains, the storage requirements start becom-
ing prohibitive for any real time manipulation of data. For this 
reason, it is necessary to represent the data in a multi-resolution 
manner. There is an ongoing research effort in the area of trian-
gular mesh simplifi cation for visualization or compression for 
storage purposes. For our visualization interface, we have imple-
mented the quadric error mesh simplifi cation strategy (Garland 
and Heckbert, 1997) that keeps on contracting edges defi ned by 
vertex-pairs until the desired number of faces are achieved. The 
multi-resolution representation and rendering enables faster 
response times, and facilitates better user interaction. Currently 
the surface geometry is stored as triangular meshes with faces, 
vertices, and colors. We also allow surfaces to be colored according 
to attributes for each vertex. These can represent measures such as 
cortical thickness, functional activity, or other statistics. Figure 5 
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FIGURE 5 | A snapshot of the 3D Visualization environment for the neuro- meta-space displaying a group of brain surfaces from the ADNI 400 dataset. 

(A) A zoomed-in view of the 3D interface. (B) A close-up of an individual brain belonging to the AD category. (C) Alternate view of the interface with the meta-data 
(green text) displayed, as a result of a right-click action on one of the brains.

shows the functioning prototype of our visualization interface. 
The visualization environment is a desktop-based application 
designed in C++ and Open GL® and is available on all Windows, 
Mac OS X, and Unix-based platforms. The OpenGL pipeline con-
veniently provides a built-in framework for polygonal rendering 
and transformations.

DISCUSSION
We foresee the development of graphical visualization tools that 
enable and enhance scientifi c interaction with large-scale databases, 
as the next step in neuroimaging informatics. Though some basic 
image viewing tools exist, we have argued for a need for a next gen-

eration visual interaction framework. We have also demonstrated a 
content-based solution that can be applied to any such archive in 
order for researchers to more easily examine dissimilarity between 
brains and to dynamically visualize patterns in the degree of prox-
imity between brains that may be indicative of the demographic 
and clinical attributes of the data themselves. In fact, all throughout 
our approach, we have made as few assumptions about the data as 
possible, and really let the data segregate itself based upon the char-
acteristics of regional shape and geometry. A key component of this 
framework is the fully interactive, 3D visualization environment. By 
navigating through a virtual environment via an easy-to-use, web 
driven application, users will be able to examine large collections of 
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Technol. Inform. 112, 100–109.

Hao, M. C., Dayal, U., and Hsu, M. (2000). 
Visual data mining for business intel-
ligence applications. In WAIM ’00: 
Proceedings of the First International 
Conference on Web-Age Information 
Management, London, Springer-
Verlag, pp. 3–14.
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Integrating data-mining support 
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Sci 2, 172–181.
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11, 2586–2595.
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Comput. Graph. Appl. 5, 36–44.
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brain data using only their computer mouse. The underlying data 
distribution manifested through classifi cation and collocated with 
the respective brain anatomies would be a very valuable tool for 
data processing, mining and interactive visualization of large-scale 
neuroanatomical databases. This will form a common frame-of-
reference for neuroimaging informatics that is (a) familiar to most 
neuroimaging scientists, (b) provides a navigable space in which 
to position brain data, and (c) allows measurement of brain dis-
similarity to be visually represented.

Our plan now is to (i) apply this meta-workfl ow to the thousands 
of MR anatomical images contained in the LONI IDA to obtain 
cortical surface and partition shape statistics, (ii) measure the pair-
wise distances between the shapes obtained from the individual MR 
volumes, (iii) apply multidimensional scaling (MDS) and related 
decompositions of the matrix of pair-wise distances to determine 
which brains are most related, and (iv) broaden the concept of 
the standard brain atlas space to extend beyond the boundaries of 
the atlas to form a large space, analogous to a celestial coordinate 
system, wherein the atlas is centered at the origin and the individual 

brain surface representations are distributed in clusters with respect 
to it. We also plan on enhancing the user interface and scaling its 
performance with the increasing data.
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