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Motor synergy, the muscles grouping by few order  parameters, 
has been an answer for Bernstein to explain how infants, dur-
ing their early development, face the enormous dimensionality 
 problem of linking sensors and motors activities for producing 
coordinated movements. Although CPGs can autonomously 
establish some regular rhythmic fi ring patterns, they are under the 
constant supervision of descending chemical substances known as 
neuromodulators (Selverston et al., 2000; Rabinovich et al., 2006). 
As neuromodulators control the activity of CPGs, they are in a 
sense the meta-controllers that realize the CPGs’ coordination or 
 separation (Doya, 2002). We hypothesize that they do not only 
regulate the partial synchronization of CPGs to each other, but 
also to the body dynamics to create one specifi c rhythm dynami-
cally. Hence, a better image is perhaps to view the neuromodula-
tors governing the global coordination (or synergy) between the 
body dynamics and the pattern generators to the generation of the 
ongoing motion (Wolf and Pearson, 1988; Calabrese, 1995; Marder 
and Calabrese, 1996).

We propose to model this mechanism of dynamical phase syn-
chronization (PS) between the body dynamics and its nonlinear 
controllers for the discovery and the control of its motor synergies. 
It is known that chaotic systems are capable to phase synchronize 
their dynamics to the resonant frequencies of any weak external 
force coupled to them. Within an embodied system, we exploit this 
property to transiently match the resonant frequencies of the body’s 
limbs and to coordinate their dynamics with each other (Lungarella 

INTRODUCTION
During the 1960s and 1970s, central pattern generators (CPGs) 
were considered to be neural circuits capable of producing sin-
gle patterned motor output in the absence of sensory feedback. 
However, more recent investigations have demonstrated that they 
can adapt to a large variety of tasks scenarios and environmental 
conditions (Bizzi and Clarac, 1999; Ivanenko et al., 2005; Ting and 
MacPherson, 2005). Such adaptability and continuous adjustment 
of behavior is made possible by specifi c activations of muscles 
groups, also known as muscle synergies (Bernstein, 1967). Given 
that each muscle can be also activated by several synergies, it refl ects 
the considerable fl exibility and complexity in the motor systems’ 
dynamics (see Figure 1). Hence, the rhythmical patterns found 
in CPGs are more likely to be created dynamically by interacting 
with other signals rather than stored. As the motor system com-
bines modularity, plasticity (Bizzi et al., 1995; Rabinovich et al., 
2006; Choi and Bastian, 2007; Miall, 2007), but also robustness 
to perturbations (Torres-Oviedo et al., 2006), one might ask how 
this  complexity could be organized? Despite all the progresses 
done, little is known about the mechanisms regulating the fl exible 
coordination of the motor synergies (Ting, 2007), how they inte-
grate the body dynamics, and how animals acquire them (if so). 
Understanding these mechanisms is important for neuroscience 
since it underlines the so-called Bernstein’s problem (Bernstein, 
1967) – how do we face the enormous dimensionality to control our 
body – but also for robotics to control high dimensional systems.
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and Berthouze, 2002, 2004; Kuniyoshi and Suzuki, 2004; Pitti et al., 
2005, 2006; Kuniyoshi and Sangawa, 2006). Such scenario permits 
to incorporate the body dynamics within the control loop, repro-
ducing the modular and bottom-up aspects of the biological motor 
synergies (Schoner et al., 1988; Kelso and Haken, 1995; Taga, 1995; 
Seo and Slotine, 2007) whereas other methods account more on the 
role of internal dynamics over the body for motion generation (cf. 
Nakanishi et al., 2004; Buchli et al., 2006). In two experiments with 
bipedal walkers, we show that at PS, the body and the controllers 
mutually and dynamically entrain themselves to each other yield-
ing emergent behavioral patterns (e.g., walking patterns). In other 
words, the motion self-assembles in real-time as the coupled sys-
tems interact fl exibly. From an information-theoretical viewpoint, 
this stage is characterized by a directed information fl ow from the 
sensors to the motors which corresponds to an effi cient control in 
the sense given by (Touchette and Lloyd, 2000): i.e., exploitation of 
the external information (body dynamics) by the controllers with 
compact information sent (optimum motor command).

The paper is organized as follows. In Section ‘Materials and 
Methods’ we present the mechanism of PS in coupled dynamical 
systems and the necessary conditions required for its realization. We 
explain then how this phenomenon can be exploited to explore and 
control the intrinsic modes of coordination of one embodied system. 
In Section ‘Results’, we present two experiments done with a simple 
knee-less compass-like biped and a more complex walker with knees. 
For both systems, we explore their parameter space and focus on the 
particular values corresponding to the motor synergies. In these stages 
the neural controller and the body mutually entrain themselves to 
each other to induce fl exible coordinations. Based on our results, we 
discuss then the relevance of our fi ndings for modeling the modular 
control of distributed pattern generators in the spinal cord.

MATERIALS AND METHODS
In this section, we present the phenomenon of PS for chaotic systems 
and our framework for the control and the discovery of the motor 
synergies in embodied systems. We then expose its  information 
theoretical implications and the methods we use to quantify the 
causal dependencies in sensorimotor information fl ows.

PHASE SYNCHRONIZATION IN COUPLED CHAOTIC SYSTEMS
To explain the principle of PS, let us consider the discrete  nonlinear 
dynamical system F(x) where x = x(t)∈Rd is the system’s d dimen-
sional vector sampled at the discrete time step t. The system is 
perturbed with a weak external periodic force P such that:

x x= +F P( ) , (1)

where P(t) = [A
1
cos(ωt + δ

1
), A

2
cos(ωt + δ

2
),…,A

d
cos(ωt + δ

d
)]. 

The applied periodic force has the frequency ω and is weighted 
by the coeffi cients A

j = 1,2,…,d
. Under these conditions, it is possible 

to observe PS (see Rosenblum et al., 1996; Pikovsky et al., 1997). 
This means that although the system’s amplitude remains chaotic, 
its dynamics change in such a way that the phase ψ of the chaotic 
attractor meets the one of the external force φ.

ψ( ) ( ) ,t t tm
n= φ ± ω  (2)

with m and n as integer and Ω the frequency of the oscillator 
such that:

|nΩ − mω| = 0. (3)

Therefore, PS means that the phase of the oscillator always stays 
close enough to the phase of the force (m = n = 1), or to the one of 
its harmonics (m > n); or, alternatively, the frequency of the oscil-
lator, Ω, is close to a harmonic of the force’s frequency (m < n). 
Whether we obtain PS or not, depends on the properties of the 
force applied (i.e. its coupling strength vector A) which drives the 
system’s dynamics into the neighborhood of ω (Gonzalez-Miranda, 
2004). Moreover, P in our example is a compound force constituted 
of multiple resonant frequencies; we can interpret it, however, as the 
linear combination of many resonant forces p (see Figure 2).

P =
=
∑ pi
i

k

1

.
 

(4)

It means that one oscillator can phase synchronize not  exclusively 
to one system but also to many. This expresses the  important point 
that nonlinear oscillators are capable of synchronizing themselves 
to any other systems or group of systems and to adapt to their 
intrinsic modes (i.e., their resonant frequencies). As a result, a non-
linear oscillator can be viewed as a model-free system requiring no 
a priori knowledge about the governing equations of the dissipative 
system to synchronize to it. Therefore, as long as PS is satisfi ed, 
we can produce fl exible coordination and plastic grouping among 
different systems (e.g., the musculo-skeleton system).

Applied to biological systems, PS is associated to specifi c muscles 
coordinations (synergistic states) arising from particular couplings 
(Kelso, 1995). The spanning of the coupling parameters values in 
their interval range can reveal therefore when such stage occurs 
among the limbs and to which motor synergies they are associ-
ated to.

FEEDBACK RESONANCE AND EMERGENCE OF COORDINATION IN 
COUPLED SYSTEMS
Resonance should not be mistaken with synchronization. The 
former phenomenon describes the situation in a passive system 
when a signal is amplifi ed at its resonant frequencies even by tiny 

FIGURE 1 | Concept of motor synergies. One motor synergy constitutes 
particular grouping of muscles for certain weights confi gurations (Bizzi and 
Clarac, 1999). In the same time, one muscle can be activated by several 
synergies (Ting, 2007); this demonstrates how modular and fl exible the motor 
system is.
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external forces (e.g., a pendulum, a mass-spring-damper system). 
The latter expresses the state of precise time locking in an active 
system (e.g., a chaotic system). Here, we combine the actions of 
both mechanisms in order to coordinate the dynamics of an active 
system (the controller) to a passive one (the body) with weak cou-
pling between the two. The fi rst one synchronizes to the resonant 
frequencies of the second which in return re-amplifi es them at each 
loop cycle (see Figure 3).

Within such conditions, the chaotic oscillator coupled to a dis-
sipative system forms a compound system capable of mutually 

entraining its sub-parts as the chaotic controller meets the resonant 
frequencies of the dissipative system, and the later weakly perturbs 
at precise timing the phase of the chaotic system. This situation, 
occurring at PS, depends however on the coupling strength between 
the two systems. Hence, by modulating their coupling values, the 
oscillators will phase synchronize more or less strongly.

Let us consider the case of two coupled systems A and B, with 
A being a chaotic oscillator similar to F, and B a passive system 
having a resonant term similar to P (Eq. 4) with a dissipative term 
D. Then, the coupling between the two systems can be formulated 
with the symmetric equations,

F F F

F F F
A A B

B B A

= +
= +

⎧
⎨
⎩

γ
γ

,

 

(5)

where γ is a coupling parameter which allows the two systems to 
mutually entrain with each other (see Figure 3). PS occurs when 
the phase ψFA

 of system A matches the one of ψFB
 of B. Such mutual 

entrainment is typically accompanied by resonant modes generated 
by the two systems depending on γ. In biomechanical models of 
muscles for instance, such modes are characterized by synergistic 
states and nonlinear stiffness yielding a hardening or softening of 
their compliance (Miller, 2004).

In many points, our strategy stays close to existing motor 
system models: i.e., the modeling via PS (1) the coordination 
of group muscles and (2) the dynamical coupling of one mus-
cle to many synergies (see Figures 1 and 3). But in comparison 
with others, it differs by putting more emphasis on the sensory 
information to create one rhythm dynamically, not learnt in 
advance or  parametrically defi ned (Kurz and Stergiou, 2005; Aoi 
and Tsuchiya, 2007; Manoonpong et al., 2007). Our assumption 
fi nds justifi cation in the fact that sensory feedback contributes 

FIGURE 2 | Phase synchronization. For specifi c coupling values γ, a chaotic 
system is able to match and combine the natural resonance frequencies of 
two or more forces.

FIGURE 3 | Joint mechanism of phase synchronization and feedback 

resonance between an active system and a dissipative system. Depending on 
the values of the coupling parameter {γ}, the chaotic oscillator synchronizes or not to 

the phase of the dissipative system.The occurrence of this stage produces a 
resonance regime in the device. In our framework, we conceive motor synergies as 
the mutual entrainment between the internal controller and the dissipative system.
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together with the CPGs activity to the generation of the ongoing 
motion via neuromodulators (Wolf and Pearson, 1988; Calabrese, 
1995; Levi et al., 2005; Rabinovich et al., 2006). We exploit this 
control mechanism in the following experiments. But before, let’s 
explain its implications from information theory and the method 
used to quantify the causal dependencies in sensorimotor infor-
mation fl ows.

INFORMATION THEORETICAL CONSIDERATIONS
In an information theoretical viewpoint, the phase synchronized 
chaotic controller works as a pass-band fi lter selecting the resonant 
terms of the dissipative system connected with. Its properties (e.g., 
effi ciency, robustness) depends however of the level of PS between 
the two systems. Hence, PS can be described as a communication 
channel between the active controller and the mechanical system 
(Touchette and Lloyd, 2000; Baptista and Lopez, 2002; Baptista and 
Kurths, 2005). One advantage to describe the information theoretic 
aspect of controllability is to quantify the effi ciency of the control 
and to measure how information is exchanged between the two 
systems. The information of a system B (e.g., the same as described 
in the previous section) can then be estimated by the chaotic system 
A depending on the signal per noise ratio in its chaotic dynam-
ics and its apparent information production rate – the Shannon 
source entropy of the chaotic set. The quantity of information 
produced and exchanged between the two systems is then directly 
dependent on the capacity of system A to phase synchronize and 
to the overall level of PS between the two systems which depends 
to the coupling parameter γ; its values modulate the ‘tuning’ to the 
resonant frequencies of system B. The amount of information in 
the chaotic channel is then:

I A BC ( ), λ λ ,= −∑ ∑+
⊥
+

 
(6)

with I
C
(A, B) the mutual information in the channel between 

the transmitter B and the receiver A. The term ∑ +λ  is the sum 
of the positive Lyapunov exponents associated to the synchro-
nization manifold between A and B, and the term ∑ ⊥

+λ  is the 
sum of the positive Lyapunov exponents associated to the trans-
versal manifold between A and B. The term ∑ +λ  represents the 
information produced by the synchronization trajectories, and 
it corresponds to the amount of information transmitted. The 
term ∑ ⊥

+λ represents the information produced by the nonsyn-
chronous trajectories, and it corresponds to the information lost 
in the transmission, the information that is erroneously retrieved 
in the receiver.

The control of one system by discovering its resonant frequen-
cies requires the joint mechanisms of PS and feedback resonance 
which demands:

∑ ∑+
⊥
+λ > λ .

 
(7)

the condition to have I
C
(A, B) > 0 and I

C
(B, A) > 0. Moreover, 

these conditions for asymptotic stability depend to the coupling 
strength γ.

In our experiments, we measure the information transfer 
between time series to detect directionality during this stage using 
transfer entropy (Schreiber, 2000).

Given two time series x
A,t

 and y
B,t

, transfer entropy essentially 
quantifi es the deviation from the generalized Markov property: 
p(x

A,t + 1
|x

A,t
) = p(x

A,t + 1
|x

A,t
, y

B,t
), where p denotes the transition 

probability:

T Y X p x x y
p x x

B A
x x y

A t A t B t

A t A

A t A t t

→ =( ) ( )
+

∑ ∑ ∑ +
+

, , ,

, , ,

,
, , log

|

1

1

1

B

,, ,

, ,

,

|

t B t

A t A t

y

p x x

( )
( )+1      

(8)

where the sums are over all amplitudes states, and the index T(Y
B
→

X
A
) indicates the infl uence of Y

B
 on X

A
. The transfer entropy is 

explicitly non-symmetric under the exchange of X
A
 and Y

B
 – a 

similar expression exists for T(X
A
→Y

B
) – and can thus be used to 

detect the directed exchange of information (e.g., information fl ow, 
or causal infl uence) between two systems A and B.

RESULTS
In this section, we describe and discuss the two experiments done 
with the simple compass-like biped model (1 degree of freedom) and 
the more complex biped walker with knees (5 degrees of freedom).

COMPASS-LIKE BIPED MODEL
The compass-like biped walker is a two-legged mechanical system 
linked at the hip and controlled by a torque command. It is typically 
studied for its qualitative properties to exploit its passive dynamics 
for locomotion having a very stable limit cycle given a small energy 
supply (McGeer, 1990; Goswami et al., 1997, 1998). Our numerical 
experiments, simulated in Matlab, are done in the sagittal plane 
with no slope (at horizontal ground level).

Our aim is to understand how the chaotic controller synchronizes 
with the biped walker’s dynamics to produce emergent coordinations 
and how do they entrain with each other. Depending on the coupling 
strength between the two systems and in regard to the level of PS, 
we study which types of interactions arise between the body and the 
controller and which ones permit a stable behavior: a motor synergy. 
In such stage, we measure the causal information fl ow between the 
two systems and characterize their synergistic state.

The equations of motion describing the compass walker are 
reproduced in Appendix ‘Compass-Gait Biped Model’. The biped 
has only 1 degree of freedom in the hip and is actuated by a torque 
command. The hip angle A(t) formed between the two legs (meas-
ured in radians) is the input signal sent to the controller. We select 
the logistic map function f

µ
(z) to control the walker’s torque com-

mand defi ned as follows:

f
µ
(z(t + 1)) = 1 − µz2(t).  (9)

The parameter µ ∈ [0; 2.0] controls the dynamics of the dis-
crete chaotic map limited to the interval [−1, 1]. Although simple, 
this chaotic map can be used to generate PS in coupled map lat-
tice (Fujisaka and Yamada, 1983; Kaneko and Tsuda, 2000). We 
 coupled its dynamics to the walker’s hip torque command as done 
in Eq. 5:

f x t f x t A t

u t f x t
μ μ

μ

γ γ ,
γ

( ( )) ( ( )) ( )

( ) ( ( ))

+ = −( ) +
+ = +

⎧
⎨
⎪

⎩⎪

1 1

1 1
1 1

2
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with γ
1
 and γ

2
 the coupling strength between the controller and the 

mechanical system (see Figure 4). Moreover, since the  swinging legs 
balance, dissipate and recover potential energy, the biped can be assim-
ilated to a spring-damper-like or a pendulum-like system; a passive 
and dissipative system with resonant and damping forces. Hence, we 
can theoretically achieve PS for particular couplings. The nonlinear 
oscillator may thus synchronize or not to the phase of the hip angle 
signal A(t) (i.e., the walker’s pace) for certain coupling values only.

In this experiment, we fi x the chaotic map’s control param-
eter µ to its near maximum chaotic regime 1.95. We set the time 
step iteration of the simulation to 5 ms. Then, we defi ne the 
body-controller linkage with a symmetric coupling γ

1
 = γ

2
 = 0.1. 

These values correspond to the stage when the controller phase 
synchronizes to the biped dynamics. We display the time series of 
the hip angle and of the torque command in Figures 5A,B. We 
observe that for these couplings, the biped is capable to walk: the 
envelope of the chaotic controller dynamically matches the slow 
pace of the walker’s stride. The notwithstanding result is that it is 
emergent: this stable and fl exible coordination results neither from 
the internal dynamics only nor from the biped but ‘from scratch’ 
from their dynamical interaction.

As the state of synchronization is realized, the oscillator 
(Figure 5B) matches dynamically the phase of the input signal 
(Figure 5A) without any a priori knowledge about the mechanical 
system properties. In this stage, the behavior self-assembles in an 
apparent self-organizing process (Kelso and Haken, 1995; Thelen 
and Smith, 1995; Pfeifer and Iida, 2004). Both systems dynamically 
entrain themselves and mutually constrain their dynamics to each 
other in order to sustain their coordination: the walker maintains 
a stable regime around its unique basin of attraction (see the phase 
plot of the hip angle in Figures 6A,B) with a relatively small gain 
between [−0.1, 0.1] (see Figure 5B). However, these results do not 
inform about the underlying coordination mechanism and the 
directionality of the causal fl ow between the controller and the 
biped: How control is distributed between the internal and the 
external dynamics? And how they interact from each other and 
exchange information? We propose to study it thereinafter.

Measuring the causal information fl ow in the sensorimotor loop
The sensorimotor information fl ow between the nonlinear  oscillator 
and the compass walker constitutes the relative amount of informa-
tion transferred that is needed to achieve a stable locomotion. Our 
hypothesis is that the controller achieves an adequate control only if 
its dynamics fi t perfectly the complexity of those of the body. This 
corresponds to the situation when a minimum level of information 
is exchanged between the two systems.

We measure the causal infl uence of the oscillator on the body 
dynamics using the transfer entropy method defi ned in the 
‘Materials and Methods’ section. We analyze the bidirectional rela-
tions for the coupling strengths in the interval γ

1
 = γ

2
 = γ ∈ [0; 0.25] 

averaged over 50 trials for each coupling. Figure 7 plots the averaged 
walking duration against γ (Figure 7A), the  corresponding causal 
infl uence values from the body to the  controller Te

S→M
 (Figure 7B), 

and reversely from the controller to the body Te
M→S

 (Figure 7C).

FIGURE 4 | Control architecture for the compass biped walker coupled to 

one chaotic system. We hypothetize that for specifi c coupling values γ1 and γ2, 
we will have the chaotic system matching the phase of the walker dynamics.
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FIGURE 5 | The pace of the compass walker is described by the amplitude 

of its hip angle A(t) plotted in (A) and the controller dynamics plotted in 

plain lines in (B). Its stride is not fi xed but dynamic as the amplitude of the 
hip angle varies from small ranges to higher ones. The chaotic map’s fast 
dynamics match and entrain its envelope to the biped’s dynamics (dashed line 
plotted below). The coupling between the two systems is set symmetrically 
with γ1 = γ2 = 0.1, and µ = 1.95.
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In these plots, the area of stable locomotion corresponds to the 
interval γ ∈ [0.05; 0.15]. This area, although narrow, concentrates 
the permissible range of stable coordinations between the control-
ler and the walker. Conversely for γ < 0.05, the walker is unable to 
preserve a stable gait pattern without any compensation from an 
external energy source. There, Te

M→S
 value is therefore zero which 

means that the controller has no effect on the biped dynamics. For 
γ > 0.15, the action of the controller to the body dynamics imposes 
a too high gain on the torque motion and lacks the necessary loose 
coupling to let the biped to recover freely its own balance. The 
system’s dynamics are thus unstable.

In comparison, in the interval of solutions for γ ∈ [0.05; 0.15], 
we observe a complete state transition of the global system for 
which the biped’s walking is stable over 30 s suggesting a per-
fect coordination between the oscillator and the body dynam-
ics. There, the corresponding causal relationships between the 
biped and the controller reveals some characteristics about the 
systems’  interactions not possible to observe from the time series; 
for instance, (i) that the two systems do not interact identically 
since the information fl ow between the two systems is strongly 
asymmetric (i.e., Te

S→M
 >> Te

M→S
) even though their coupling 

strength is symmetric (i.e., γ
1
 = γ

2
) and (ii) that the information 

fl ow is strongly biased in favor of the sensor to motor direction 
as Te

S→M
 >> Te

M→S
. It follows that the controller strongly exploits 

the body dynamics information in order to achieve the control. 
Or differently said, the body controls the controller which is an 
antagonistic view on how we normally consider the controller-
body coupled system. A fi rst insight would have been to have the 
controller affecting the body and not the reverse. As a result from 
an energetic and informational viewpoint, this mechanism is 
effi cient because a relatively small amount of information only is 
needed for the chaotic controller to actually control the dynamics 
of the walker (Te

M→S
 < 0.05 bits). This means that the code sent 

by the chaotic oscillator to the biped is compact and structured. 
Hence, the action of the controller, despite its chaotic  dynamics, 
can be considered to be energy effi cient from an information 
theoretical viewpoint (Touchette and Lloyd, 2000).

Aside to current CPG models which exhibit mostly  monotonic 
and cyclic patterns, chaotic control through PS relies advanta-
geously on the body ongoing motion dynamics for which the 
weight γ represents the global parameter that controls the overall 
synergistic state (Bizzi and Clarac, 1999; Ting, 2007). We adapt in 
the following this control mechanism to the discovery of the motor 
synergies in a kneed bipedal walker.

FIVE-LINK BIPED MODEL
In the previous section, we presented the mechanism of PS that gov-
erns the coordination between controller and body dynamics for the 
case of the compass-like biped walker. Although simple, the experi-
ment demonstrates that a dynamical phase and frequency locking can 
be achieved between a chaotic controller and a mechanical system 
with passive dynamics for only particular sensory-motor couplings, 
at PS. In this situation, the motion is ‘assembled’ in real-time with-
out predefi ning the internal dynamics of the controller: the real-time 
exploitation of the body dynamics by the nonlinear oscillator achieves 
the emergence of a weak and partial control. The stability of the coor-
dination then, is directly related to the level of synchronization.

We hypothetize that the same idea can be applied to a higher 
dimensional system. We expect that its controllability will be nev-
ertheless preserved thanks to the control of global synchronization 
within the system. The discovery of the specifi c coupling values 
permitting the global and local PS between its sub-components 
may guarantee the overall stable dynamical coordination of the 
ensemble in a self-organized fashion.

To this end, we use a more complex model with a simulation 
of the bipedal walker version with knees. The ensemble forms a 
5 degrees of freedom system detailed in Appendix ‘Five-linked 
Biped Model’. This system is composed of two legs linked at the hip, 
each leg consisting of two segments jointed at the knees. The upper 
part (torso) consists of a vertical bar in unstable equilibrium like 
the pole of a cart. When the legs are in movement, the upper part 
of the body has to recover its stable vertical equilibrium in order 
to ensure the overall balance of the ensemble (Lockhart and Ting, 
2007). The biped state vector q can be summarized as follow:

−0.2 −0.1 0 0.1

−0.2

−0.1

0

0.1

hip angle A[t]

hi
p 

an
gl

e 
A

[t−
50

m
s]

20
40

−0.3
−0.2

−0.1
0

0.1

−0.3

−0.2

−0.1

0

0.1

time [s]hip angle A[t]

A B

hi
p 

an
gl

e 
A

[t−
50

m
s]

FIGURE 6 | Phase plot of the biped hip angle’s amplitude variation during locomotion (A) and its evolution over time (B); the time delay is set to 50 ms 

with a sampling time of 5 ms. The hip torques trajectory follows the intrinsic attractor in which the biped belongs. Its dynamics converge sometimes to it and 
sometimes slightly diverge from it.
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q = [α, Δβ, γ
L
, γ

R
]T

with α the angle formed by the torso with the vertical axis, 
Δβ = β

L
 − β

R
 the angle between the two legs, and γ

(L,R)
 the angle of 

the two knees between the two segments. The applied momentum 
vector F

q
 corresponding to the coordinates q is:

F
q
 = [Fα, FΔβ, FγL

, FγR
]T.

Similar with the compass-like walker, each oscillator is coupled 
to one specifi c joint with no internal connection to the other units. 
Each one receives as input the normalized joint angle information 
(in radians) and controls the corresponding torque (in N/rad). 
We adopt once more the logistic map f

µ
(z) (Eq. 9) with slightly 

 modifi ed coupling equations:

f x t f x t t

F F G f x t

μ α α

α α α μ α

ε ε α

ε ε

( ) ( ) ( )

( )

+( ) = −( ) ( ) + ,

= −( ) +

1 1

1

1 1

2 2

μ

(( )
⎧
⎨
⎪

⎩⎪  

(10)

f x t f x t t

F F G f

μ Δ μ Δβ

Δβ Δβ Δβ

ε ε Δβ

ε ε

β( ) ( ) ( )+( ) = −( ) ( ) + ,

= −( ) +

1 1

1

1 1

2 2 μμ Δβx t( )( )
⎧
⎨
⎪

⎩⎪  

(11)

f x t f x t t

F F G f

L L

L L L

Lμ γ μ γ

γ γ

ε ε γ

ε ε

( ) ( ) ( ),+( ) = −( ) ( ) +

= −( ) +

1 1

1

1 1

2 2 γ μμ γx t
L
( )( )

⎧
⎨
⎪

⎩⎪  
(12)

f x t f x t t

F F G f

R R

R R R

Rμ γ μ γ

γ γ

ε ε γ

ε ε

( ) ( ) ( ),+( ) = −( ) ( ) +

= −( ) +

1 1

1

1 1

2 2 γ μμ γx t
R
( )( )

⎧
⎨
⎪

⎩⎪  (13)

with ε
1
 and ε

2
 in the interval [0, 1], the respective sensor and 

motor coupling parameters common for all the joints and the set 
Gα, GΔβ, G G

L Rγ γ, , the respective torque gains specifi c to the joint 
motors defi ned to G ∈ [0, 20]. Here, the pair {ε

1
, ε

2
} and the gain G 

control the sensory-motor coupling linearly over the whole system 
(see Figure 8) however the phase relations between the oscillators 
are not linear because any postural changes in one limb  perturb 
in return some other parts; the graphs in Figure 9 describe this 
situation. Therefore, in order to produce stable rhythms, the 
oscillators have to coordinate themselves externally through the 
body dynamics. This stage occurs when the controllers merge 
the incoming information about the body’s dynamics at PS by 
matching the biped’s morphology, the intrinsic phase relations 
between its limbs.

A better view of the control scheme is to see the weights {ε
1
, 

ε
2
} as the true global controllers modulating the level of coor-

dination between the limbs and for which specifi c values may 
produce proper coupling between the musculo-skeleton system 
and the chaotic controllers (see Figure 9). Thus, these weights 
are responsible for activating particular motor synergies; e.g., 
muscles grouping and behavioral patterns. To observe these 
synergies, we span the parameters space of the three variables 
{ε

1
, ε

2
, G} ∈ [0, 1] × [0, 1] × [0, 20] on which we annotate the 

standing duration of the biped (averaged over 15 trials for each 
values). We plot the two maps for the pairs {ε

1
, ε

2
} and {G, ε

2
} 

in Figures 10A,B). These maps reveal specifi c patterns for stable 
sensory-motor coordination in the parameters space. As they 
appear only for certain intervals, these regions  indicate where 
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0

20

40

60

coupling parameter γ 

A average walking duration
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FIGURE 7 | Sensorimotor information fl ow for γ
1
 = γ

2
 = γ ∈ [0; 0.25] over 

50 trials for each values. (A) Plot of the average walking duration stability (in 
seconds) dependent to the coupling strength γ. Transfer entropy measure of 
resp. TeS→M in (B) corresponding to the causal infl uence of the body on the 
controller dynamics, and TeM→S in (C) corresponding to the causal infl uence 
induced by the controller on the body dynamics. The stable walking area 
γ ∈ [0.05, 0.015] corresponds to inverted and asymmetric information fl ow 
from the body dynamics over the controller for which TeS→M >> TeM→S: the 
body controls the controller (!). Phase synchronization permits the controller to 
fully exploit the body dynamics in order to control it in return.
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coupling is effi cient for which the controllers match the body’s 
structural regularities; for instance, its morphology as well as the 
stiffness of the joints.

For small durations below 3 s, the gain is either too weak to 
entrain a positive feedback (G < 7 in Figure 10A) or too strong to 
keep balance and coordination (G > 12 in Figure 10A and ε

2
 > 0.20 

in Figures 10A,B). In between, when the biped stands longer than 4 s, 
the state corresponds to specifi c constraints for which the ensemble 
is able to coordinate its limbs dynamically and to walk for a duration 
of up to 8 s (see Figure 11). Such state results from a global phase 
transition for which the body and the neural controllers match their 
dynamics. We draw the corresponding time series in Figure 12.

One can remark from the graph that the whole system gener-
ates regular and dynamically stable sensory-motor patterns in the 
temporal range from the millisecond to the second order. That 
is, each chaotic unit maintains a specifi c rhythm along with its 
associated limb but also with others. These oscillators combine 
indirectly specifi c local action and global integration, a fl exible 
 synchronization to several rhythms. The plots of the phase dif-
ference between the sensor and the motor signals displayed in 
Figure 13 illustrate this status. Statistically, the overall phase 
differences are mainly null showing PS and global integration. 
However, the phase slips occurring from time to time  correspond 
to saccades in the motion that are recovered  dynamically. PS 

FIGURE 8 | Control scheme of the kneed biped. Each joint is linearly 
coupled to a chaotic unit receiving in return its joint angle. The sensory inputs 
are pondered by the coupling parameter ε1, and the motor outputs are 
weighted by ε2. Hence, the pair {ε1, ε2} controls the whole biped’s dynamics. 
The limbs coordination arise when the isolated chaotic units globally phase 
synchronize to each other through the body.

FIGURE 9 | Control scheme of the kneed biped from Figure 8. The variables 
{ε1, ε2} linearly couple the chaotic oscillators to their respective limbs (left). 
However, due to their embodiment, the isolated controllers receive 
dynamically the phase information from the different body parts: the 

situation is comparable to the schema in the right side where the pair {ε1, ε2} 
controls the global level of synchronization. In this parameter space, particular 
values will correspond to characteristic limbs coordinations (i.e., its motor 
synergies).

FIGURE 10 | Walking duration performance map for the kneed biped for the 

control parameters pair {G, ε
2
} ∈ [0; 1] × [0; 20] in (A) and {ε

1
, ε

2
} ∈ [0; 1] × 

[0; 1] in (B). They reveal hidden information structure and correlations for 

particular coupling strengths. These relations correspond to the stable 
coordinations occurring between the internal controllers and the biped 
dynamics, its intrinsic behavioral patterns.
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causes the balance of plasticity and stability of the global  sensory-
motor coordination. As for the previous case, it shows the kind 
of motor synergies rised from the controllers and the biped 
interactions but neither how the parts exchange information 
nor how they are causally integrated, what we investigate in the 
next section.

Measuring the causal sensory-motor information fl ow
In the previous section, we found that particular sensory-motor 
coupling values rise the global synergistic state in the biped’s 
phase space responsible for locomotion. We want to character-
ize this state and understand how energy and information are 
exchanged within the biped limbs and the controllers. We ana-
lyze the  sensory-motor information fl ow measured between the 

controllers and the body dynamics during motion as we did for 
the compass biped. To this end, we display the phase plots of the 
joints with their  respective causality measure of the sensory-motor 
 information fl ow in Figure 14.

Similar to the compass biped, the causal flow in the kneed 
biped is asymmetric in the direction from the body to  controller 
for all the joints: T

Sensor→Motor
 ≈ 3 × T

Motor→Sensor
. The controllers 

and the body mutually synchronize; the body’s dynamics con-
strain the controllers’ ones continuously whereas the latters con-
duct a weak and almost indirect guidance on the body motion. 
It follows that the controllers regulate the body limbs motion 
intermittently only at critical moment when T

Sensor→Motor
 ≈ T

Motor→

Sensor
. The internal  controllers phase synchronize to the biped’s 

limbs most of the time but their linkage and influence are flex-
ible and can vary over time. In the swing phase of the left leg 
for instance, the passive dynamical motion of the knee γ

L
 in 

Figure 14B dominates its controller F
Lγ  and drive its behavior 

since we have Te Te
L L L LF Fγ →γγ γ

.→ >  Conversely, ground contact’s 
perturbation during stance phase (when the tip of the leg is 
in contact with the ground) disrupts synchronization and the 
internal dynamics regulate the body dynamics. We observe 
this situation when Te Te

L L L LF Fγ → →γγ γ
≈ . In the whole system, 

the coordination transits from the free passive exploitation of 
the body parts to a collective and active control of the ensem-
ble at specific moments and for precise temporal durations at 
ground contact. Coordination is brittle but stable, the failing of 
the  coordination in one single joint may entrain therefore the 
breaking of the  global coordination as of the global synergistic 
state in a bottom-up manner.

FIGURE 11 | Motion sequence of the kneed biped walker for the 

parameters ε
1
 = 0.10, ε

2
 = 0.10, output Gain G = 10. The body and the 

controllers mutually entrain themselves with each other in an emergent 
manner. The body dynamics feeded back to the controllers contribute to 
regulate its own motion.
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FIGURE 12 | Time series of the sensors and motor dynamics for the 

parameters {ε
1
, ε

2
, G} ∈ [0; 1] × [0; 1] × [10]. (A) time series of the

 joint angles of the hip Δβ, of the knees γ{L,R}, of the torso alpha, and their 
respective torque command activation in (B) resp. FΔβ, Fγ{L,R},

and Fα. Regular sensorimotor patterns are discovered and stabilized 
dynamically in the whole system, i.e., partial and dynamic phase 
synchronization (see the dashed and plain lines in (A)) – till one perturbation 
destroys the coordination.
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CONCLUSION
We propose in this paper a framework based on the  mechanisms 
of PS and resonance to model the motor synergies arising 
 dynamically from the coupling between internal controllers 
and its embodied system. We exploit the property of chaotic 
systems to synchronize their phase to any resonant frequencies 
and explore the natural synergies of one embodied system. At 
PS, chaotic controllers lock transiently their phase to the body 
dynamics and generate a global entrainment. One of the results is 
that the controllability problem is then transferred from a prob-
lem of high dimension in the body parameter space (e.g., for the 
kneed biped q = [x

0
, y

0
, α, β

L
, β

R
, γ

L
, γ

R
]T ∈ ℜT) to a problem of 

lower dimension in the coupling parameters space (e.g., the pair 
{ε

1
, ε

2
} ∈  ℜ2) by searching the areas of stability corresponding 

to PS, a scenario in line with synergistic viewpoint of humans’ 
motion control where the neuromodulators regulate the CPGs’ 
dynamics (Bernstein, 1967; Kelso and Haken, 1995; Bizzi and 
Clarac, 1999).

Consequently, the internal controllers entrain themselves along 
with the body dynamics for specifi c coupling. In this stage, the 
embodied system transits to a global coordination corresponding 
to effi cient control in an information theoretical viewpoint: i.e., 
characteristic asymmetric information fl ow between the internal 
and external dynamics (cf. Fradkov, 1999; Touchette and Lloyd, 
2000) and exploitation of the sensory information. Here, the body 
dynamics dominate the activity over the control command which 
exploits in return the sensory information to act weakly and inter-
mittently on the motion. It follows that the  controllers stabilize 

the overall global dynamics with a compact code: the body plays 
an active part in the control by constraining and conducting its 
pace for most of the time (cf. Thelen and Smith, 1995; Miall, 
2007). From a developmental perspective, the exploration stage 
of the parameters space in our experiments could correspond to 
the period when babies, in their fi rst 2 months, systematically 
experience various sensory-motor coordinations in a random 
fashion till the fi nding of the most optimum ones; that is, the 
synchronized motions; an early period found for the exploration 
and acquisition of the general movements (Rochat, 1998; Taga 
et al., 1999).

APPENDIX
DETAILS OF THE BIPEDAL MODELS
Compass-gait biped model
We consider a knee-less compass-like two link three-mass 
biped model with analog characteristics to the McGeer’s model 
(McGeer, 1990) (see Figure 15). The biped is modeled in the sagit-
tal plane in an horizontal ground level (no slope), the transition 
is assumed inelastic and without slipping, and the viscosity in 
the joints are ignored. We summarize the simulation’s variables 
and parameters in Table 1. The posture of the walking model is 
determined from the global position of the tip of one leg and from 
the angles of the legs. The vector of the Lagrangian coordinate 
q is chosen as:

q R:= θ ,θ ,θ ,θ ∈1 2 1 2
4⎡⎣ ⎤⎦

T
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FIGURE 13 | Phase difference ΔφΔφ evolution between the biped sensors and motor dynamics during locomotion. The coordination in each joint is dynamic with 
lot of variance, however stable since centered in 0.
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FIGURE 14 | Phase plots and causality measure of the sensorimotor 

information fl ow in all the joints during walking; resp. left and right 
column. In the right, the causal fl ows from the body dynamics X to its 
controller FX, TeX FX→ , are drawn in plain lines. The causal fl ows from the 
controller FX to its sensory variable X, TeF XX → , are drawn in dashed lines. 
During walking, the body and the controllers fl exibly entrain themselves 
dynamically. This coordination depends bothly on the current posture of the 

body and on the ongoing internal dynamics. However, the causal fl ows 
between the two systems reveals that the body drives most of the time the 
internal dynamics ( )Te TeX F F XX X→ →>  which means that the controllers exploit 
effi ciently the body passive dynamics. Nevertheless, for short periods, the 
causal fl ow in the embodied system is inverted (when we have 
Te TeX F F XX X→ →≤ ) exhibiting the situation when the controllers actively drive 
the biped.
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FIGURE 15 | Model of the compass-gait biped.

Table 1 | Model parameters.

m
h
 (kg) m (kg) a (m) b (m) l (m) g

10.0 5.0 0.5 0.5 1.0 9.8

where θ
1
 and θ

2
 are the corresponding swing and stance legs 

angle, θ1 and θ2 are the respective derivatives. The motion kinemat-
ics are given by:

M C g Su( ) ( ) ( )θ θ θ,θ θ θ =+ +  (14)

with θ = [θ
1
, θ

2
]T, the system’s angle vector and

M
m l m ml

mbl

mbl

mb

C

h a( )
cos

cos
,

(

θ
θ θ

θ θ

θ

=
+ +

− −( )
− −( )⎡

⎣
⎢

⎤

⎦
⎥

2 2 2

1 2

1 2

2

,,θ
θ θ θ

θ θ θ

θ

)
sin

sin
,

( )
(

=
− −( )

− −( )⎡

⎣
⎢

⎤

⎦
⎥

=
−

0

01 2 1

1 2 2

mbl

mbl

g
mhll ma ml

mb
g

+ +⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

)sin

sin

θ
θ

,1

2

and the torque control vector,

Su u= ,
1

1−
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⎢

⎤

⎦
⎥

Here M, C, g and S are the inertia matrix, a centrifugal-Coriolis 
matrix, a gravitational term and a conversion matrix from an input 
torque u to the generalized force respectively. The double-support 
phase is the moment when both legs touch the ground. In this 
period, the angles of the swing leg and the stance leg are exchanged 
as θ ,θ → θ ,θ .1 2 2 1

− − + +( ) ( )  This state with α the angle formed between 
the two legs is when we have:

Q Q+ + − −=( ) ( )α θ α θ  (15)

Q
m l m ml l b mbl b l
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and α always positive

α θ θ θ θ >= + = +− − + +
1 2 2 1 0  

(16)

We defi ne the kth step is one step from the double-support phase 
to just before the end of the next single-support phase.

The step duration is the duration time of one step. The kth 
step duration is denoted T

k
, k = 1, 2,…,. The walking speed is cal-

culated from the kth step length divided by the kth step duration 
and is valid only when walking motion continues. This value is 
given by:

v
l

Tk
k

= +( )− −2
1 2sin θ θ .

 
(17)

FIVE-LINKED BIPED MODEL
Generalized coordinates of the kneed biped walker (see 
Figure 16):

q = [x
0
, y

0
, α, β

L
, β

R
, γ

L
, γ

R
]T

Generalized forces corresponding to the coordinates:

F F F F F F F Fq x y

T

L R L R
= , , , ,⎡⎣ ⎤⎦0 0

, , .α β β γ γ    

Positions of the thigh center of mass in Cartesian coordinates: 
xL1

, yL1
 and xR1

,  yR1
 Positions of the shin center of mass in Cartesian 

coordinates: xL2
, yL2

 and xR2
, yR2

.
Leg tip positions in Cartesian coordinates: x

LG
, y

LG
 and x

RG
, y

RG
. 

These coordinates can be stated using the generalized coordinates 
(correspondingly for the right leg):

FIGURE 16 | Model of the biped walker with knees.
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Translational energy of the system:
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Rotational energy of the system (missing from the original 
model):
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where J
0
, J

1
 and J

2
 are the inertia of the torso, thigh and shin, 

respectively.
Total kinetic energy:

T = T
t
 + T

r
.

Formulas of the generalized forces (left leg):
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Lagrangian equations:

d

dt

T

q

T

q
F

r r

qr

∂
∂

∂
∂

⎛
⎝⎜

⎞
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− = .

Now for each element q
r
 in q and F rqr

( , , , )= …1 2 7  calculate the 
Lagrangian equation, and collect the coeffi cients of the second time 
derivates of the generalized coordinates to A. This gives the seven 
rows in the fi nal dynamic equation:

A q q b q q M F( ) ( , , , ),=

where

M = [M
L1

, M
R1

, M
L2

, M
R2

]T

and

F = [F
Lx

, F
Ly

, F
Rx

, F
Ry

]T.
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