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Form-function relations in cone-tipped stimulating 
microelectrodes
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Metal microelectrodes are widely used in neuroscience research, and could potentially replace 
macroelectrodes in various neuro-stimulation applications where their small size, specifi city, and 
their ability to also measure unit activity are desirable. The design of stimulating microelectrodes 
for specifi c applications requires knowledge on how tip geometry affects function, but several 
fundamental aspects of this relationship are not yet well understood. This study uses a 
combined experimental and physical fi nite elements simulation approach to formulate three 
new relationships between the geometrical and electrical properties of stimulating cone-
tipped tungsten microelectrodes: (1) The empirical relationship between microelectrode 1-kHz 
impedance and the exposed tip surface area is best approximated by an inverse square-root 
function (as expected for a cone-tipped resistive interface). (2) Tip angle plays a major role 
in determining current distribution along the tip, and as a consequence crucially affects the 
charge injection capacity of a microelectrode. (3) The critical current for the onset of corrosion 
is independent of tip surface area in sharp microelectrodes.

Keywords: microelectrodes, deep brain stimulation, cone-tipped, critical current density, fi nite elements model

2003; Gimsa et al., 2005; Merrill et al., 2005) dependences. 
Additional studies have focused on calculating the potential 
fi elds around electrodes (Butson and McIntyre, 2006; Gimsa 
et al., 2006; McIntyre and Grill, 2001; McIntyre et al., 2004; 
Suesserman et al., 1991), and elucidating how the spreading cur-
rents interact with neural tissue (reviewed in Tehovnik, 1996; 
Tehovnik et al., 2006).

In addition to the fundamental effects of materials and fre-
quency, geometric parameters such as tip geometry and size can 
also crucially affect the suitability of microelectrodes for specifi c 
neuro-stimulation applications by effecting functional character-
istics like the current density distribution, impedance and corro-
sion thresholds (see, e.g., Gimsa et al., 2006, for a detailed study 
on the characteristics of bipolar electrodes with several different 
geometries). Interestingly, some basic form–function relationships 
are still not fully resolved in the important case of cone-tipped 
microelectrodes. For example, Robinson (1968) implies an inverse 
relationship between microelectrode impedance and tip surface 
area, by presenting impedance in units of MΩ µm2 (as it would be 
for a parallel-plate capacitor). In contrast, experimental measure-
ments performed using platinum-iridium electrodes (Tielen et al., 
1971) suggest a logarithmic relationship.

The present study is aimed at further elucidating the behavior of 
stimulating microelectrodes with respect to tip geometry, including 
the relationships between tip shape and size and interfacial imped-
ance, current density distribution along the electrode-electrolyte 

INTRODUCTION
Metal microelectrodes are pervasive in basic neuroscience research 
and are also seen as a promising alternative to macroelectrodes 
in many neuro-stimulation applications, including sensory-
motor prosthetic interfaces for the disabled (Normann, 2007; 
Normann et al., 1999; Weiland et al., 2005), deep brain stimu-
lation (Lozano et al., 2002; McCreery et al., 2006; Volkmann, 
2004) and brain machine interfaces (Donoghue, 2002; Maynard 
et al., 1997). Microelectrode advantages include reduced tissue 
displacement and trauma, higher stimulation specifi city, and 
the ability to combine unit recordings and stimulation in the 
same device, which can facilitate more accurate probe placement 
as well as closed-loop applications. However, to be considered 
suitable for long-term stimulation applications, microelectrodes 
must be electrochemically and mechanically stable (Das et al., 
2007; Edell et al., 1992; Liu et al., 1999), as well as biocompat-
ible (Szarowski et al., 2003). A major challenge in the design of 
stimulating microelectrodes is obtaining the high current den-
sities required by the small tip size, while avoiding the critical 
values for the onset of microelectrode degradation (Gimsa et al., 
2006; Merrill et al., 2005).

A signifi cant body of literature discusses the electrical prop-
erties of the electrode–tissue interface (McCreery et al., 1987; 
Robinson, 1968; Stieglitz, 2004) and its stimulation frequency 
(Bates and Chu, 1992; Franks et al., 2005; Gimsa et al., 2005; 
Onaral et al., 1984; Sun and Onaral, 1983) and material (Cogan, 
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boundary and the critical currents for the onset of microelectrode 
degradation. To address these issues our study combines a series of 
in vitro measurements using (primarily) tungsten microelectrodes, 
and analysis of fi nite elements numerical solutions for current density 
distributions around stimulating microelectrodes. Our study focuses 
on a search for generic relationships that can potentially be useful 
in many practical situations (using measurements from the nearly 
universal 1-kHz impedance testing equipment). We conclude by dis-
cussing the study’s limitations, and the relationship of our fi ndings to 
the theoretical behavior of cone-shaped capacitors and resistors.

MATERIALS AND METHODS
GEOMETRICAL AND ELECTRICAL MEASUREMENTS
Forty-nine glass-insulated tungsten microelectrodes and three 
platinum microelectrodes (Nano-Biosensors, Nazareth, Israel) 
were examined. Each microelectrode was photographed using a 
Nikon Eclipse TS100 microscope with a Nikon Digital Sight DS-
5Mc camera, and its geometry was analyzed in MATLAB R2006b 
(MathWorks, Natick, MA, USA). The exposed tip of the microelec-
trode (Figure 1A) was approximated to a simple cone whose base 
diameter (D) and distance between apex and base perimeter (L) 
were measured. The tip’s angle (the two-dimensional projection 
of an axisymmetric spatial angle) and surface area were calculated 
according to:

α
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The combined impedance of the microelectrode and its inter-
face with an electrolyte approximating the ionic composition of 
the extracellular matrix (0.15-M NaCl solution), was measured at 
1 kHz using a 10-nA sine wave (FHC impedance meter).

A variable amplitude 100-Hz sinusoidal alternating current was 
then applied to the circuit using an analog stimulus isolator (model 

2200, A-M SYSTEMS, Sequim, WA, USA), driven by a DF1643 
series function generator. One-minute stimulations were  repeatedly 
 carried out with gradually increasing current amplitudes until vis-
ible damage to the microelectrode’s tip was obtained at a critical 
current. As the microelectrodes were delivered in different sets, 
the fi rst microelectrode in each set was used to establish a rough 
range of damage threshold, and the rest were used to make the fi ne 
specifi c measurements. Twenty-two tungsten microelectrodes and 
three platinum microelectrodes that provided an accurate reading 
of damage thresholds were included in the analysis. A critical cur-
rent density was calculated from the geometrical measurements 
as follows:

J
I

Scr
cr=  (3) 

MODELING AND SIMULATION
Our simulations are based on an adaptation of the fi nite elements 
model of a stimulating microelectrode introduced by McIntyre 
and Grill (2001). Considering the frequency used for stimula-
tion (100 Hz), the dimensions and the electrical properties of the 
solution (or of biological tissues) allow us to utilize a quasi-static 
approximation and solve the Laplace equation for the DC case 
(Plonsey, 1969). A cylindrical insulated microelectrode with an 
uninsulated cone-shaped tip was set in axial-radial coordinates 
(Figure 1B), and the Laplace equation:

∇ ⋅ ∇V = 0 (4)

was solved for a surrounding conductive medium (σ = 0.3 S/m, as 
typical for cortex tissue – Sances and Larson, 1975) with dimen-
sions 2 mm × 1 mm (representing a three-dimensional cylinder 
of volume 2π mm3). The microelectrode tip was set to 1 V and 
the edges of the surrounding medium were set to 0 V. Electrical 
fl ux perpendicular to the insulation was not allowed, and radial 
fl ux at r = 0 was fi xed to zero due to symmetry considerations. 
In contrast with the model of McIntyre and Grill (2001), apex 

FIGURE 1 | (A) Microscopic photograph of a microelectrode with a nearly right-angled tip. (B) Axisymmetric microelectrode model and fi nite elements mesh in 
surrounding medium (the medium extends much further than shown). Scale bars are 20 μm.
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 curvature is neglected and the surfaces of the tip and the  insulation 
are parallel, to suit the geometry of the microelectrodes tested 
experimentally.

The model was solved in COMSOL Multiphysics 3.2b (COMSOL 
Inc., Burlington, MA, USA). The simulation resulted in a map of 
potentials inside the medium, from which a fi eld of current density 
was derived. The current density near the tip was analyzed for dif-
ferent conical geometries (same angle with changing surface area, 
and vice versa).

RESULTS
IMPEDANCE-GEOMETRY RELATIONSHIP
The tungsten microelectrodes were classifi ed into two major classes 
according to their tip angle: an acute angle class (24 microelec-
trodes; tip angles 41 ± 5° STD) and a nearly right-angle class (25 
microelectrodes; tip angles 81 ± 5°).

To understand the dependence of microelectrode impedances 
on form parameters, we measured characteristic 1-kHz imped-
ances for our entire sample. Impedances were found to be strongly 
dependent on the tip surface area (Figure 2), irrespective of their 
tip angle. We tested three different functional fi ts for this depend-
ence, where the highest correlation (r = 0.93) was found between 
impedances and the inverse square-root of the surface area:

Z
S

[M ]
m2

Ω
μ

= − +0 63
40

.
[ ]

 (5)

Strong correlations were also found to the inverse of surface 
area (r = 0.91), in agreement with Robinson’s model (Robinson, 
1968), and to the logarithm of surface area (r = −0.92), consist-
ent with previous measurements (Tielen et al., 1971). Note that 
the predictions of inverse-root and inverse fi ts at 1000 μm2, for 
instance (Z = 627 and Z = 595 kΩ, respectively), are close to that 

of Robinson for platinum electrodes under 1-kHz  stimulation – 
Z = 557 kΩ (Robinson, 1968, p. 1067). By comparing mean 
square errors (MSE) of the fi ts, the superiority of inverse-root 
relationship over inverse and logarithmic relationships becomes 
clearer (MSE = 0.114, 0.144 and 0.136, respectively). For fur-
ther justifi cation of favoring inverse-root relationship, see 
discussion.

We next calculated the dependence of the mean current den-
sity along the tip in the model simulation on the form parameters. 
Within the tip size range of 200–3000 μm2, the mean current den-
sity (J) is nearly independent of tip angle, with relative differences 
between the cases of 40° and 90° of 4.8 ± 3.0%. In contrast, J is 
strongly related to the tip surface area (Figure 3). Here too, inverse 
square-root relationships (Eqs 6 and 7) provide an excellent fi t with 
the results (r > 0.99 for both), whereas inverse and logarithmic 
relationships yield weaker fi ts: MSE values of these fi ts are more 
than an order of magnitude larger than the MSE of the former fi ts 
(Figure 3, inset).
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THRESHOLD CURRENTS FOR MICROELECTRODE DEGRADATION
Values of critical currents for microelectrode degradation were reg-
istered from experimental observations. In contrast to the imped-
ance, the critical current and current density of the microelectrodes 
are considerably dependent on tip angle, as the small angle class 
(14 samples; tip angles 41 ± 4° STD) and the large angle class (eight 
samples; tip angles 83 ± 4°) exhibit an entirely different behavior 
from each other. We fi nd that the critical current density has a clear 
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FIGURE 2 | Impedance of electrode-electrolyte complex vs. tip surface 

area of tungsten microelectrodes, with possible inverse and inverse-root 

relationships. Inset: Logarithmic relationship, in logarithmic scale.
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FIGURE 3 | Mean current density vs. tip surface area, as predicted by 

simulation for two extreme cases of tip angle – 40° and 90°. Inset: MSE of 
three different fi ts: (1) inverse root, (2) inverse and (3) logarithmic.
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inverse dependence on tip surface area for the large angle specimens 
(Figure 4A; r = 0.98, after excluding two specimens which we later 
refer to as outliers):
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An inverse relation to increasing surface area was also obtained 
for the three platinum microelectrodes tested under the same con-
ditions (r > 0.99, tip angles: 82, 84 and 90):
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Critical current density of small angle tungsten specimens 
showed no signifi cant dependence on either surface area or 
impedance.

As for critical current, in the small angle class it substantially 
drops along with increase in impedance (Figure 4B) and an inverse 
relationship:

I
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= 0 77.
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was found to best fi t the results (r = 0.94), whereas in the large 
angle class the critical current showed no signifi cant relation to 
impedance, nor to surface area. Specifi cally, all specimens resisted 
corrosion until current reached 4–5 μA  except for the two above-
mentioned outliers which underwent corrosion at 1–1.5 μA 
(despite the fact that they were not exceptional in terms of neither 
impedance nor surface area), suggesting that these microelectrodes 
may have been defective.

EFFECT OF CRITICAL REGIONS
To gain a better understanding of the tip behavior under the appli-
cation of current, we analyzed the spatial distribution of current 
densities near the tip in our numerical solutions. Simulation results 
(Figures 5A,B) show that the computed current  distributions 

along the tip is far from being uniform and is characterized by two 
regions of high current density: the apex of the cone  (hereinafter: 
tip head) and the perimeter of its base where the metal becomes 
exposed (hereinafter: end of insulation). This observation coin-
cides with the numerical results obtained by Gimsa et al. (2006). 
Since corrosion is expected to commence where current density 
is the highest, these regions will be referred to as “critical regions”. 
Indeed, during stimulation we experimentally observed the for-
mation of bubbles at these regions (Figure 5C). Gaseous bubbles 
(of hydrogen, oxygen or chlorine) are formed as a result of the 
solution’s hydrolysis and occur fi rst at the regions where current 
density is highest.

The critical regions were under scrutiny when numerically ana-
lyzing changes in current density with respect to the tip’s cone 
parameters. The current density at these regions was computed 
for a spectrum of angles so as to explore the source for differences 
in behavior between acute angle tips and right-angle tips. In order 
to isolate the effect of tip angle, surface area was held constant at 
444 μm2 (Figure 6A) and later at 2000 μm2 (Figure 6B). For the 
larger surface area current density at end of insulation remains 
higher than that at tip head for all angles, whereas for the smaller 
surface area the inequality reverses for small angles. A transition 
range exists between 40  and 50 , with 46  being the intersection of 
the two corresponding linear fi ts. Such observation can certainly 
account for the different behavior exhibited by the two classes of 
microelectrodes, since the two classes are on opposite sides of the 
“turnover” angle: (41 ± 4°) ≤ 46 ≤ (83 ± 4°).

A graphical visualization of the entire current density distribu-
tion along tips of two representative types (90° and 40°) is shown 
in Figures 5A,B, and shows that the current density at the tip head 
is substantially reduced as a result of tip blunting.

In order to isolate the effect of surface area, current density 
was examined at the two critical zones for two different cases of 
constant tip angle – 90° (Figure 7A) and 40° (Figure 7B). The sim-
plest relationships that fi tted all four simulations suffi ciently well 
(|r| ≥ 0.95) were inverse-root:
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FIGURE 4 | (A) Critical current density of large tip angle species vs. tip surface area, with inverse fi ts (putative outliers are excluded). (B) Critical current for corrosion of 
tungsten microelectrodes vs. impedance of electrode-electrolyte complex, with possible inverse relationship for species with small tip angle.
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(with different proportionality constants) and logarithmic, 
although the latter cannot apply for large values of surface area 
(otherwise implying negative current densities) and thus their 
validity is restricted.

DISCUSSION
MAIN CONTRIBUTIONS
In this study, we systematically examined the dependence of certain 
electrical properties of metal microelectrodes on the geometry of 
the exposed tip, using a combined experimental and  simulation 

approach. Our experimental sample consisted of tungsten 
 microelectrodes with sharp or right-angled tips, and with surface 
areas that varied over 1.5 orders of magnitude (100–2700 μm2). 
Our results provide new insights regarding these dependences that 
may also assist the design of microelectrodes for safe and effi cacious 
stimulation of neural tissue.

We fi rst compared three different functional relationships 
for the experimentally derived dependence between the imped-
ance Z(1 kHz) and tip surface area S: a logarithmic relationship 
(obtained by Tielen et al., 1971), an inverse relationship (implied 
by the model of Robinson, 1968), and an inverse-root relationship. 
To the best of our knowledge, such comparison was not made 
before the present work. The inverse square-root  relationship 

FIGURE 5 | (A,B) Distribution of current density magnitudes obtained in numerical simulation around 90° tip (A) and around 40° tip (B). Brighter colors correspond to 
higher values. (C) Experimental observation of microelectrode during stimulation. Note that virtual black-white border appears due to light refractions and does not 
indicate a metal-insulation border.
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FIGURE 6 | Current density at tip’s head and at end of insulation vs. tip 

angle, as obtained in simulation and plotted with linear fi ts, for two 

different values of surface area. (A) S = 444 μm2, r = 0.95 for tip head and 

r = 0.59 for end of insulation, and (B) S = 2000 μm2, r = 0.90 and r = 0.29, 
respectively. In both cases only the tip head’s correlation is statistically 
signifi cant.
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(Eq. 5) yielded the best fi t (Figure 2). This functional form is 
also consistent with our model simulation results, where the 
mean current density J was found to vary as 1 S  irrespective 
of tip angle (Figure 3), thus predicting the same relation for the 
impedance itself: 

Z
V

I

V

J S S
( )1

1
kHz � =

⋅
∝

 

(where V is a constant voltage). The fact that inverse-root fi t was sig-
nifi cantly better than other fi ts for simulated mean current density 
(Figure 3) strengthens the certainty about inverse-root relationship 
for measured impedance (Figure 2).

The conical microelectrode geometry studied here renders 
the full theoretical analysis of the problem quite complicated. 
Nevertheless, certain approximate solutions can provide additional 
insights into the validity of our experimental and simulation results. 
The electrochemical double-layer can be seen as a capacitor with 
two cone-shaped plates. The analytical solution for a minimally-
trimmed cone capacitor was derived by Selby (1962):
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where ε is the medium’s absolute permittivity, h is the trimmed 
cone’s height, D is the distance between the imaginary apices of 
the cones and θ is the cones angle. Since the surface area of a mini-
mally-trimmed cone practically equals πh2 tan(θ/2)/cos(θ/2), the 
following relation is derived for the impedance:
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This solution does not take into consideration the shunt 
capacitance introduced in models of the interface (e.g., Robinson, 
1968).

In contrary, analysis of resistance relates solely to the  surrounding 
medium, as interfacial currents are strictly capacitive under the low 
currents used in impedance measurements. When neglecting fringe 
effects and assuming current spread in an infi nite medium with 
conical equipotentials, an inverse-root relationship with respect to 
the surface area can be derived:
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This analytical result is in agreement with the inverse square-
root relationship found in the simulation results where a resistive 
medium was assumed. In the experimental measurements, both 
the resistive medium and the capacitive interface play a role in 
determining the impedance. The better experimental fi t of the 
inverse-root functional may imply that the effect of the medium 
on the impedance is stronger than that of the interface.

A second major focus of our study was on thresholds for 
microelectrode degradation, for which the direct implication is 
corrosion of the metal. Degradation might also be accompanied 
by other Faradaic processes and the formation of free radicals 
which are hazardous for the living tissue. Both experimental and 
simulation results demonstrated a signifi cant disparity between 
the properties of sharper tips (∼40°) and blunter tips (∼90°). The 
constant critical current for blunt tips is surprising, implying that 
larger tip would not improve the microelectrode’s endurance. The 
calculation of critical current density (Eq. 3) refers only to mean 
density, whereas corrosion selectively begins at critical regions 
where current density is much higher. Most of the current fl ows 
through a small fraction of the surface, hence an increase in sur-
face area contributes mostly to regions of low current density. 
As a result, enlarging the surface only moderately affects current 
densities at critical regions while signifi cantly decreasing critical 
mean current density. This coincides with the different relation-
ships obtained both experimentally (Figure 4A) and in simula-
tion (Figure 7): current densities at critical regions moderately 
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decline with increase in surface area (varying as 1 S), whereas 
critical mean current density drops more rapidly (varying as 1/S). 
Our results thus support and extend McIntyre and Grill’s (2001) 
observation that peak current density is not linearly proportional 
to the change in surface area.

METHODOLOGICAL CHOICES AND THEIR GENERALITY
We have attempted to study generic, practical aspects of form-func-
tion relations in stimulating microelectrodes. This has led us to 
focus on 1-kHz impedances, universally used to  qualitatively 
characterize microelectrodes in both laboratory and  clinical set-
tings. Clearly, a more thorough impedance spectroscopy treat-
ment is needed in order to understand how our observations are 
related to the (generally frequency- dependent, non-linear and 
non-stationary) microelectrode properties (e.g., Gimsa et al., 
2005). Moreover, the proposed relationships describing 1-kHz 
impedance are relevant in a wide range of measured surface area 
(100–2700 μm2) but are not necessarily valid outside this range. 
Indeed, some of the functional forms we have obtained imply 
physically impossible negative impedances for very large tips.

The study of microelectrode degradation focused on the 
properties of tungsten microelectrodes using 100-Hz sinusoidal 
stimulation. Pulse frequencies of approximately 100 Hz (typical 
range: 90–130 Hz) are most commonly used in DBS  stimulation 
paradigms, and driving the electrodes with  sinusoidal currents 

(rather than low duty-cycle pulses used for neuro- stimulation) 
simply accelerates the electrodes’ degradation. Tungsten 
 microelectrodes are typically only used for stimulation in unde-
manding acute studies due to their relatively low damage thresh-
olds. We  therefore also measured a small sample of platinum 
microelectrodes, and contrasted the empirical results with the 
behavior of physical models, overall suggesting that our results 
appear to be material-independent. Nevertheless, it will be inter-
esting to test whether the more clinically useful platinum/irid-
ium microelectrodes manifest similar degradation modes and 
characteristics.
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