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Evidence for the potential role of organ specific cardiovascular renin–angiotensin systems
(RAS) has been demonstrated experimentally and clinically with respect to certain car-
diovascular and renal diseases. These findings have been supported by studies involving
pharmacological inhibition during ischemic heart disease, myocardial infarction, cardiac
failure; hypertension associated with left ventricular ischemia, myocardial fibrosis and left
ventricular hypertrophy; structural and functional changes of the target organs associated
with prolonged dietary salt excess; and intrarenal vascular disease associated with end-
stage renal disease. Moreover, the severe structural and functional changes induced by
these pathological conditions can be prevented and reversed by agents producing RAS
inhibition (even when not necessarily coincident with alterations in arterial pressure). In
this review, we discuss specific fundamental and clinical aspects and mechanisms related
to the activation or inhibition of local RAS and their implications for cardiovascular and renal
diseases. Fundamental aspects involving the role of angiotensins on cardiac and renal
functions including the expression of RAS components in the heart and kidney and the
controversial role of angiotensin-converting enzyme 2 on angiotensin peptide metabolism
in humans, were discussed.
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INTRODUCTION
The presence of local organ specific renin–angiotensin systems
(RAS) has been demonstrated for the heart, large arteries and
arterioles, kidneys, and other organs and their activation lead to
structural and functional changes, which are independent of those
elicited by the classical renin–angiotensin endocrine system (1–4).
Components of these local RAS, for instance, have been found in
cells and tissues (5–8) and some of their local functions play an
important role on cellular homeostasis.

In this review, we present several clinical circumstances involv-
ing certain cardiovascular diseases, which support the notion that
the activation of local RAS plays an important role on the mecha-
nisms of these pathological conditions. These vignettes cited also
involve renal diseases because the renal glomerular and arterio-
lar alterations contribute to the development and progression of
end-stage renal disease (ESRD).

CLINICAL CIRCUMSTANCES
MYOCARDIAL INFARCTION AND CARDIAC FAILURE
This first clinical cardiovascular local RAS example relates to the
introduction of angiotensin-converting enzyme (ACE) inhibitors

Abbreviations: ACE, angiotensin-converting enzyme; ACE2, angiotensin-
converting enzyme 2; Ang (1–7), angiotensin (1–7); Ang II, angiotensin II; ARB,
angiotensin receptor blocker; ESRD, end-stage renal disease; IClswell, swelling-
dependent chloride current; LV, left ventricle; LVH, left ventricular hyper-
trophy; NO, nitric oxide; RAS, renin–angiotensin system; SHR, spontaneous
hypertensive rats.

and later to angiotensin II (type 1) receptor blocking agents (ARBs)
to patients hospitalized with an initial myocardial infarction. This
innovative therapeutic intervention proved to reduce ventricular
remodeling in naturally developing spontaneously hypertensive
rats (SHRs) (9) and following myocardial infarction in rats (10)
then later in a small number of hospitalized patients (11) and,
ultimately, in a larger clinical trial involving patients enrolled in
the survival and ventricular enlargement (SAVE) trial (12). Thus,
in patients who were promptly treated with an ACE inhibitor,
immediately following acute myocardial infarction, a significant
reduction in death, development of heart failure, and subsequent
repeated myocardial infarction were found. Several subsequent
multicenter clinical trials, using other ACE inhibitors or the newer
ARBs, confirmed the initial findings thereby demonstrating their
beneficial effects on ventricular remodeling, reduction in the end-
stage events of cardiac failure, and repeated myocardial infarction
(13). The finding that these beneficial effects can occur inde-
pendently of blood pressure supports the conclusion that the
activation of local RAS contributes significantly to cardiovascular
pathology (14).

HYPERTENSIVE HEART DISEASE
Similar evidence involving therapeutic intervention was demon-
strated by the findings of the initial Veterans Administration
Cooperative Study Treatment Group on Antihypertensive Agents
(15, 16) and by the Framingham Heart Study’s first demonstra-
tion of “Factors of Risk” underlying coronary heart disease (17).
The existence that cardiac failure and left ventricular hypertrophy
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(LVH), respectively, were first introduced by these two groups, to
interdict in the major cardiac fatal and treatable complications
of hypertensive heart disease (15–17). Subsequent reports later
demonstrated that these two major complications of hypertensive
heart disease were prevented by antihypertensive therapy. They
also introduced the means to reduce left ventricular (LV) mass and
its co-morbid events (18). In more recent years, increased LV mass
and LVH were shown to be associated with extensive interstitial
and perivascular fibrosis as well as by significant ischemia of both
ventricles (18–20). Furthermore, when patients with LVH associ-
ated with hypertension (but not by co-existent occlusive coronary
artery disease) were also treated with RAS inhibitors, the fibrosis
and ischemia were significantly reduced (18–22). This, then, pro-
vided additional evidence of the beneficial value of local cardiac
RAS inhibition.

The precise mechanisms underlying the development of LVH
have usually been explained as an adaptive compensation by
the LV to pressure overload by the hypertensive disease. Newer
information has been introduced more recently concerning the
development of fibrosis, apoptosis, aldosterone, and other induced
cellular biochemical events in the LV. Others have suggested that
angiotensin II (Ang II) causes hypertension and LVH through
actions of AT1 receptors expressed by the kidney that reduce
urinary sodium excretion (23) not involving Ang II-mediated
aldosterone responses.

PROLONGED DIETARY SALT EXCESS
Two very different diseases involving local RAS in the heart as
well as in the glomerular arterioles of the kidneys (24–26) sup-
port the important role of local RAS. SHRs receiving long-term
dietary salt excess have shown remarkably similar pathophysio-
logical expressions of disease similar to those which occurs in
patients with hypertension having ventricular fibrosis, myocardial
ischemia, and heart failure or with ESRD (27–29). These end-stage
events occur in patients with hypertension and/or with diabetes
mellitus having ESRD with intrarenal fibrosis and hyaline degen-
eration of the glomerulae and arterioles. As with the foregoing
diseases that were shown by controlled multicenter drug trials
using Ang II inhibitors described above, the progression of ESRD
was also shown to be significantly retarded (30, 31). Interestingly,
a recent report of SHR, given a prolonged dietary excess of salt,
demonstrated a second local renal RAS (in addition to that of
the juxtaglomerular apparatus) that produced a more plentiful
production of angiotensinogen (32).

Finally, a word of speculation may be in order involving end-
stage cardiac and renal diseases, the most common causes of hos-
pitalization in geriatric hypertensive (or normotensive) patients
from industrialized nations (33). These data suggest that a life-
time of excessively high salt intake together with these untoward
outcomes may be intimately associated with the aging process (34).
Indeed perhaps this may also relate to our new knowledge about
local RAS in heart, arteries and arterioles of the kidneys.

FUNDAMENTAL ASPECTS BEHIND THE FOREGOING
CLINICAL EXAMPLES
Experimental evidence supporting the notion that local RAS are
present in different organs including the heart and kidney (3, 4,

35–40) has opened a new window into our understanding of how
the local RASs contributes to local regulation of tissue and organ
function. The synthesis of several components of the RAS in the
heart (8, 41) or their uptake from plasma (8, 36, 41), for instance,
makes it possible to explain the synthesis of Ang II locally (41).
Furthermore, the presence of AT1 receptors, angiotensinogen and
Ang II in different cells (8), supports the concept of local RAS. In
the normal heart of pigs as much as 75% of cardiac Ang II is syn-
thesized at tissue sites (42) whereas in human beings, the gradients
of Ang II across the heart were increased in patients with congestive
heart failure (5). Rapid internalization of the Ang II–AT1 receptor
complex, contributes significantly to the intracellular levels of the
peptide [see for review Ref. (43)] and the internalized AT1 recep-
tor, is displaced to different organelles including the nucleus and
mitochondria (43–47). Activation of AT1 receptor binding sites in
renal nuclei has been found to elicit an increase in calcium (48)
and in the expression of TGF-B1 and NHE-3 (46). Concerning
the role of the local renal RAS on the generation of hypertension,
recent studies revealed that the infusion of Ang II into mice lack-
ing renal ACE, indicated no renal responses or hypertension in the
knockout mice compared with wild-type control (49).

Transgenic mouse models developed to examine the role of the
local RAS on cardiac remodeling, generated contradictory results
revealing ventricular hypertrophy or fibrosis in some models but
not in other (40, 50, 51) leading to the conclusion that cardiac
remodeling is probably much more dependent on hemodynamic
changes than on local Ang II levels. In hypertensive transgenic
mouse lacking the synthesis of angiotensinogen, for instance, the
local components of the RAS do not seem to be essential for the
subsequent development of ventricular hypertrophy and fibrosis
(41). The production of Ang II, in cardiac muscle caused by a
αMHC promoter, increases the release of Ang II by 20-fold, but
not hypertrophy was produced (51). On the other hand, in trans-
genic mouse lines over-expressing angiotensinogen by the heart,
Ang II is increased in cardiac muscle but not in plasma (52) and
ventricular hypertrophy was found despite no change in blood
pressure. In these models, the hypertrophy was abolished by ACE
inhibitors or AT1 blockers (53), again supporting the notion of
a local RAS. Xu et al. (54) found that when hemodynamic load-
ing conditions remain unchanged, cardiac Ang II does not elicit
hypertrophy but in animals with hypertension, cardiac Ang II,
acting via AT(1)R, increases oxidative stress, inflammation, ven-
tricular hypertrophy, and cell death (probably via down regulation
of PI 3 kinase and Akt).

These apparent discrepant results achieved with different trans-
genic models could be related to the use of different animal species
or experimental conditions. Furthermore, the only parameter used
to define cardiac remodeling in many of these studies was ventric-
ular hypertrophy and other aspects of cellular remodeling like cell
communication, fibrosis as well as expression and function of ionic
channels were not considered.

Concerning the origin of cardiac renin, evidence is available
that in the normal heart, cardiac renin is dependent on its uptake
from plasma (6, 36, 42) but studies performed after myocardial
infarction (55) or after stretch of cardiomyocytes (40) showed
increased renin expression. Furthermore, a renin transcript that
does not encode a secretory signal and remains inside the cell is
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over-expressed during myocardial infarction (55, 56) suggesting
that intracellular renin has functional properties. The cytosolic
renin protein exerts functions different and even opposite to those
of secretory renin, which increases necrotic death rates of cardiac
cells, while the cytosolic renin isoform even protects cells from
necrotic death (56). In adrenal gland, a local secretory RAS exists
that may stimulate aldosterone production and elicits an amplifi-
cation for circulating angiotensin (Ang II) (57). The regulation of
the secretory adrenal RAS is clearly different from the regulation
of the circulatory RAS because under potassium load, the activity
of the renal and circulatory RAS is suppressed whereas activity of
the adrenal RAS is stimulated (57).

The function of intracellular renin and Ang II was demon-
strated when renin or Ang II was dialyzed into cardiac myocytes
from the failing heart. Renin, and particularly Ang II, decreased cell
communication and increased the inward calcium current (37, 58,
59). The decrease of gap junction conductance leads to a decrease
of electrical coupling and mechanical desynchronization as well as
the generation of slow conduction and cardiac arrhythmias (60,
61). Recent studies performed on the intact ventricle of normal rats
revealed that intracellular renin causes a depolarization of ventric-
ular fibers and a decreased action potential duration at 50 and 90%
repolarization, respectively while the cardiac refractoriness was
significantly decreased with consequent generation of triggered
activity (59). The intimate mechanism by which intracellular renin
alters cardiac excitability involves changes of potassium current,
which is responsible for repolarization of the action potential (59).
The possible role of an intracellular renin receptor (62), which is
activated by renin (62, 63), cannot be discarded and further studies
will be needed to support this idea. The pathophysiological signif-
icance of intracellular renin is far from clear and further studies
will be needed to clarify this point.

RECENT DEVELOPMENTS
Our view of the RAS has been changed dramatically in recent
years with studies demonstrating that Ang II can be hydrolyzed by
angiotensin-converting enzyme 2 (ACE2), angiotensinases as well
as neprilysin generating angiotensin (1–7) [Ang (1–7)], Ang A,
Ang IV, and Ang III (64–66) and that new receptors for Ang (IV)
(AT4), prorenin [(pro)renin receptor (PRR)], and Mas receptor
for Ang (1–7) have been identified (67–70). Interestingly, the acti-
vation of prorenin receptor is able not only to catalyze prorenin to
Ang II but also to induce cellular responses not related to the pep-
tide (71, 72). Of particular interest is the recent finding that not all
the peptides from RAS are derived from Ang I. The plasma levels
of Ang (1–12), initially isolated from the rat intestine and present
in heart, aorta, and kidney (73, 74) are not altered by renin inhibi-
tion or bilateral nephrectomy, which suggests a local effect of Ang
(1–12) in tissues independently of the systemic circulation (73,
74). Chymase seems to be the most important enzyme involved
in the metabolism of Ang (1–12), at least in the heart (75). Other
studies of Ang (1–12) metabolism indicated that in the plasma of
normal or hypertensive rats, ACE has a role generating Ang I from
Ang (1–12) (76).

A new component of the RAS is amantadine, which is a hep-
tapeptide possessing functions similar to those of Ang (1–7) and
found in human plasma particularly in patients with ESRDs (77).

The vasodilation caused by amantadine was not inhibited in Mas-
deficient mice (77) suggesting its interaction with another Mas
receptor. The precise role of this compound on cardiovascular
disease is not known.

AT2 RECEPTORS
Although it is known that the effect of Ang II on cardiac and vas-
cular remodeling involves the activation of AT1 receptors, recent
studies revealed that the AT2 receptor activation causes vasodi-
lation and its agonist C21 is able to decrease myocardial fibrosis
and vascular injury in SHRs [see Ref. (66, 78)]. The role of AT2
receptors on cardiac remodeling is supported by studies using
AT2-knockout mice and the results indicated that this receptor
plays an essential role in the development of ventricular hyper-
trophy induced by pressure overload (79) [see Ref. (80)]. AT2
receptor activation seems to inhibit inflammation and apoptosis
(81), attenuates cardiopulmonary injury by decreasing pulmonary
inflammation (82) and in obese animals, long-term activation of
AT2 receptors increases ACE2 activity and contributes to natriure-
sis and blood pressure reduction (83). The natriuresis is probably
related to Ang III (84).

Myocardial fibrosis impairs ventricular relaxation and is an
important cause of diastolic heart failure. The presence of fibro-
sis is not limited to the left ventricle and is found in the right
ventricle as well as in the interventricular septum, suggesting that
hypertension is not the only factor involved but also local produc-
tion of Ang II is involved (85). The fibrotic action of the peptide
within the heart seems to depend on fibroblast hyperplasia as well
as activation of collagen biosynthesis and suppression of collagen
degradative pathways. Activation of pathways related to AT1 recep-
tors as well as MAP/endoplasmic reticulum (ER) kinase pathway
activation play a key role of the generation of fibrosis and recently,
evidence has been provided that Ang II AT2 receptors prevent car-
diac remodeling after myocardial infarction and improve cardiac
function (86).

THE (PRO)RENIN RECEPTOR
The PRR (71), mainly located intracellularly (62), is a new mem-
ber of the RAS, originally considered as involved in the regulation
of blood pressure. Recent observations using transgenic animals
over-expressing PRR did not provide a clear answer to this ques-
tion but demonstrated different aspects of PRR biology. It is now
clear that PRR is an accessory protein of V-ATPase (87) playing an
important role on the regulation of several cellular homeostatic
processes including autophagy (88).

A knockout model generated by Kinouchi et al. (89) showed
death within 3 weeks and an accumulation of vesicles and
autophagosomes in cardiomyocytes indicating a change in
autophagic flux. The role of PRR on the etiology of cardiovas-
cular diseases, however, is not clear and further studies will be
needed to clarify this point.

ADIPOCYTES AND REGULATION OF ANG II PLASMA LEVELS
The presence of a local RAS in adipocytes is supported by recent
findings showing that RAS is activated during obesity in humans
and that obesity-prone rats show increased levels of Ang II and
hypertension (84). In mice over-expressing angiotensinogen in

www.frontiersin.org February 2014 | Volume 5 | Article 16 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Endocrinology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

De Mello and Frohlich Local cardiovascular and renal RAS

adipocytes, the plasma levels of Ang II are increased as well as
the systolic blood pressure (90). On the other hand, adipocyte-
specific deficiency of angiotensinogen prevented the obesity-
induced increase in plasma levels of Ang II (84) indicating an
important role of adipocytes on the regulation of Ang II plasma
levels and on ulterior consequences including hypertension and
vascular remodeling.

INTRACRINE ACTION OF ANGIOTENSIN II IN THE HEART AND
MESENTERIC ARTERIES
The concept of an intracrine renin–angiotensin aldosterone sys-
tem (RAAS) in the heart has been substantially supported (3, 5–7,
37). When eplerenone was administered chronically to the failing
heart, the intracellular action of Ang II on the inward calcium
current (91) was abolished, an effect reversed by aldosterone and
related to a decrease of intracellular AT1 receptor levels (91). The
activation of the intracrine RAAS might be involved in the gener-
ation cellular hypertrophy (92, 93), cardiac arrhythmias (60), and
on regulation of vascular tone (94).

Of particular interest was the recent finding that intracellular
administration of Ang II to arterial myocytes isolated from mesen-
teric arteries of Sprague Dawley rats increased the total potassium
current and the resting potential, whereas extracellular admin-
istration of Ang II reduced total potassium current and elicited
depolarization of smooth muscle cells (94). These effects of intra-
cellular Ang II on potassium current and membrane potential were
inhibited by dialyzing a PKA inhibitor inside the cell together with
Ang II (94). Because it is well known that the resting potential is a
determinant factor on the regulation of vascular tone (95), these
results might indicate that endogenous or internalized intracellu-
lar Ang II in vascular resistance vessels counteracts the effect of
extracellular Ang II and plays an important role on the regulation
of vascular tone and peripheral resistance (94).

MITOCHONDRIA AND INTRACRINE RENIN-ANGIOTENSIN SYSTEM
A revealing finding was that in the ER, renin cleaves angiotensino-
gen to Ang I, which is subsequently processed to Ang II by
ACE (96). Different components of the RAS including the pro-
cessing enzymes, angiotensins, and their receptors can be trans-
ported intracellularly via secretory vesicles to the cell surface, to
mitochondria, or to the nucleus.

Activation of the mitochondrial Ang system is coupled to mito-
chondrial nitric oxide (NO) production and the binding of Ang
II to mtAT2Rs stimulates NO formation through mtNOS, sup-
pressing mitochondrial oxygen consumption. Nuclear Ang II can
stimulate NO formation (via AT2Rs) or Ca2+ and phosphoinositol
3 kinase (PI3K) via AT1Rs (96). The pathophysiological meaning
of the presence of renin or Ang II in mitochondria is not known,
but considering the role of Ang II on oxidative stress, it is possible
to think that activation of AT1 or AT2 receptors in mitochondria
might be involved in the etiology of heart or kidney failure.

CELL VOLUME CHANGES EVERYTHING. MECHANICAL SENSITIVITY OF
HEART MUSCLE AND CARDIAC REMODELING
One of the important limitations on studies of cellular functions
is the assumption that cell volume is constant. It is known that
preservation of cell volume is fundamental for cell function and

survival and that several mechanisms are working constantly in
order to maintain cell volume. Changes in metabolism and the
transport of osmotically active substances across the cell mem-
brane are important causes of cell volume variations. It is well
known that metabolic pathways are sensitive to changes in cell
volume and that glycolysis is inhibited by cell swelling [see Ref.
(97)]. Cell swelling, which activates several ionic channels at the
cell membrane, changes the action potential duration and alters
cardiac excitability.

Recently, it has been shown that that the RAAS is involved in the
regulation of cell volume in normal as well as in the failing heart
(98). Indeed, in myocytes isolated from the failing ventricle and
exposed to renin plus angiotensinogen or to Ang II, an increase
of cell volume was seen concurrently with the inhibition of the
sodium pump (98). The activation of the Na–K–2Cl cotransporter
is involved in the effect of Ang II because bumetanide abolished
the swelling induced by the peptide (98). Ang II also increases the
swelling-dependent chloride current (IClswell) in the failing and in
the normal heart (98), while Ang (1–7), which has been found to
counteract many effects of Ang II (99), reduces the heart cell vol-
ume and decreases the swelling-activate chloride current (IClswell)
(98). This effect of the heptapeptide might be involved in the ben-
eficial effect of Ang (1–7) by decreasing the incidence of cardiac
arrhythmias during ischemia/reperfusion (65, 100, 101).

Experimental studies using low doses of aliskiren in hyperten-
sive TGR(mRen2) 27 rats, revealed a decreased structural and elec-
trical cardiac remodeling independently of blood pressure (102)
supporting the notion that the renin inhibitor has a direct effect on
the heart. The beneficial effect of aliskiren was related to a decrease
of AT1 receptor levels. Because AT1 receptors are mechanosensors
(103) independently of Ang II [see also Ref. (104)], it is reasonable
to think that mechanical stress is able to produce cardiac remod-
eling even in absence of the peptide. These findings leads to the
hypothesis that cardiac remodeling elicited by pressure overload,
depends upon the mechanical sensitivity of the cardiac muscle
to mechanical stimulation (102) determined by the expression of
mechanosensors like AT1 receptors.

ON THE ROLE OF ACE2
Angiotensin-converting enzyme 2 is a newly discovered enzyme
having a high homology to ACE and able to hydrolyze Ang II to
the peptide Ang (1–7) (105, 106). Ang (1–7) counteracts the pres-
sor effects of Ang II as well as the proliferative and profibrotic
effects of the peptide (65, 69, 70, 99, 100, 107, 108), reduces the
incidence of heart failure after myocardial infarction in rats (99)
and humans (109), and enhances the cardiac function, coronary
perfusion, and aortic endothelial function (99). Previous studies
have shown that Ang (1–7) increases the conduction velocity in
the failing heart (100, 101) and decreases the incidence of slow
conduction and reentry. Recently, evidence has been provided
that the activation of the ACE2-Ang (1–7)-Mas receptor axis is
involved in the regulation of heart cell volume (110) as well as in
the magnitude of the swelling-activated chloride current I(Clswell).
This effect of Ang (1–7) was inhibited by ouabain, supporting
the view that the heptapeptide activates the sodium pump. Ang
II, on the other hand, had an opposite effect on heart cell vol-
ume causing cell swelling and increasing the swelling-activated
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chloride current (110). During myocardial ischemia, cell swelling
elicited by the inward movement of water increases I(Clswell) with
consequent decrease of cardiac refractoriness. These observations
support the notion that the activation of the ACE2-Ang (1–7)-Mas
receptor axis is of benefit reducing the cell volume and the inci-
dence of cardiac arrhythmias during ischemia-reperfusion (110).
In other studies, it was found that the loss of ACE2 accelerates
the maladaptive LV remodeling after myocardial infarction (111).
Interestingly, perinuclear immunostaining of the Ang (1–7) was
found in mesangial cells (112) and very low concentrations of
Ang (1–7) stimulated NO release opening the possibility that
intracellular Ang (1–7) has also an intracrine effect.

Although compelling evidence has been presented supporting
the view that ACE2 activation counteracts the effects of Ang II
in ventricular muscle, some fundamental aspects of the biological
significance of ACE2-Ang (1–7)-Mas receptor axis remain unclear.
Overexpression of ACE2 in the failing heart, for instance, does not
prevent the progression of human heart failure (109). In human
coronary circulation, the levels of Ang (1–7) were found to be
linked to those of Ang I not Ang II, indicating no role of ACE2 on
Ang II metabolism (113). This finding is not in agreement with
previous studies on human heart failure showing that ACE2 plays
an important role on Ang II metabolism (109).

In the kidney, evidence has been presented that Ang (1–7)
causes vasodilation in renal tubuli and counteracts the effect of
AT1 receptor activation in several renal diseases such as tubuloin-
terstitial fibrosis, diabetic nephropathy and glomerulonephritis.
Under some experimental conditions, however, Ang (1–7) may be
harmful by exacerbating renal injury [see Ref. (114)]. This suggests
that the state of activation of local RAS, the involvement of non-
Mas receptor mediated pathways, or even the dose might explain
the discrepant results (65).

ON THE ROLE OF ALDOSTERONE AND MINERALOCORTICOID
RECEPTORS
There is experimental and clinical evidence that aldosterone causes
fibrosis in the cardiovascular system. The RALES trial, for instance,
indicated a beneficial effect of spironolactone on morbidity and
mortality in patients with heart failure mainly related to the
decrease of fibrosis (115) RALES. The contribution of aldosterone
to the effect of local RAS activation has been supported by several
studies [see Ref. (3)] and justifies the concept of a local RAAS.
Although the expression of aldosterone synthase as well as the
synthesis of aldosterone seems unlikely in the normal heart, it has
been reported an enhanced synthesis of aldosterone in the fail-
ing heart (116, 117). Furthermore, elevated plasma aldosterone
levels are associated with increased incidence of heart attack and
stroke (118).

In vascular smooth muscle as well as in immune cells, the local
RAAS plays an important role on endothelial dysfunction and
contributes to the production of arterial stiffness. In humans with
obesity and diabetes, the RAAS is associated with enhanced oxida-
tive stress and inflammation in the vascular tissue supporting the
view that the mineralocorticoid receptors play a role on genera-
tion of insulin resistance (119). Indeed, basic and clinical studies
have demonstrated that elevated plasma aldosterone levels predict
the development of insulin resistance by interfering with insulin

signaling in vascular tissues. Aldosterone suppresses insulin sig-
naling via the downregulation of insulin receptor substrate-1 in
vascular smooth muscle cells (120, 121).

Recent observations indicated that spironolactone enhances
the beneficial effect of aliskiren on cardiac structural and elec-
trical remodeling in TGR(mRen2)27 rats (122) and that chronic
administration of eplerenone to the failing heart reduces the car-
diac effect of Ang II on inward calcium current through a decline in
AT1 receptor level at the surface cell membrane (91). Because AT1
receptor is a mechanosensor involved in cardiac remodeling, it is
reasonable to think that part of the beneficial effect of spironolac-
tone in the failing heart is related to a smaller sensitivity of cardiac
muscle to mechanical stress.

SUMMARY
Recent findings that Ang II can be hydrolyzed by ACE2 and
neprisylin as well the evidence of new receptors for Ang (IV), Ang
(1–7), and Ang III, and the possibility that Ang (1–12) might be
the mother of all angiotensins are other evidences of how complex
is the RAS. The observation that in human coronary circulation,
the levels of Ang (1–7) are related to those of Ang I, but not of
Ang II, lead to the question whether many aspects of Ang (1–7)
pharmacology are different in humans.

The presence of a local RAS in adipocytes and the observa-
tion that the RAAS is activated during obesity in humans, seem to
demonstrate how important is this local system on the generation
of obesity and hypertension.

The relevance of cell volume and mechanical stretch as a reg-
ulators of chloride or potassium channels and the role of AT1
receptors as mechanosensors independently of Ang II indicates
that during myocardial ischemia or heart failure, abnormalities
on the electrical properties of the heart and cardiac remodel-
ing can be produced independently of the RAS but able to alter
the effect of Ang II and Ang (1–7). The recent observation that
intracellular Ang II counteracts the effects of extracellular Ang II
on potassium current and resting potential in mesenteric arter-
ies leads to the question whether internalized or endogenous
levels of Ang II in vascular resistance vessels represent an impor-
tant factor on the regulation of peripheral resistance and arterial
blood pressure. Furthermore, evidence that components of the
RAS are present in mitochondria and in the nucleus raises the
possibility that the activation of AT1 and AT2 receptors in these
organelles influences gene expression and oxidative stress, which
is an important cause of cellular dysfunction and the cause of
several diseases. Further studies on all these areas will provide
opportunity to prevent and treat cardiovascular and renal dis-
eases. The possible role of PRRs on the regulation of cellular
homeostasis including autophagy as well as the importance of
Ang II AT2 receptors on ventricular hypertrophy needs to be
clarified.
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