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Transcriptional control of mitosis:
deregulation and cancer
Somsubhra Nath† , Dishari Ghatak, Pijush Das and Susanta Roychoudhury*

Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India

Research over the past few decades has well established the molecular functioning
of mitosis. Deregulation of these functions has also been attributed to the generation
of aneuploidy in different tumor types. Numerous studies have given insight into the
regulation of mitosis by cell cycle specific proteins. Optimum abundance of these proteins
is pivotal to timely execution of mitosis. Aberrant expressions of these mitotic proteins
have been reported in different cancer types. Several post-transcriptional mechanisms
and their interplay have subsequently been identified that control the level of mitotic
proteins. However, to date, infrequent incidences of cancer-associated mutations have
been reported for the genes expressing these proteins. Therefore, altered expression
of these mitotic regulators in tumor samples can largely be attributed to transcriptional
deregulation. This review discusses the biology of transcriptional control for mitosis and
evaluates its role in the generation of aneuploidy and tumorigenesis.
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Introduction

The propagation of eukaryotic life is orchestrated by the generation of descendent cells through
the biological process of cell division. While mitosis controls the propagation of somatic cells,
generation of germ cells is controlled by meiosis. The fidelity of mitosis determines the equal
division of duplicated chromosomes to the two daughter cells. The first phase of mitosis, that is,
nuclear division or karyokinesis is divided into four sub-phases. Prophase marks the initiation
of mitosis bringing about chromosome condensation, separation of duplicated centrosomes, and
recruitment of some mitotic checkpoint proteins to the kinetochores. Following this, disassembly of
the nuclear envelope (NE)marks the entry intometaphase (prometaphase). Subsequently, the release
of chromosomes into cytoplasm activates the spindle assembly checkpoint (SAC) at each unattached
kinetochore. Aftermicrotubule capturing of each chromatid pair at their kinetochores and alignment
at the midzone, silencing of the SAC occurs and cell overcomes the “wait anaphase” signal. During
anaphase, sister chromatids are completely separated to the two opposite poles of the cell and
the invagination of plasma membrane around the spindle midzone becomes visible. Telophase
ends with chromosome decondensation and reassembly of the NE around polar chromosomes.
Cytokinesis or cytoplasmic division giving rise to two daughter cells follows soon after. Intriguingly,
each of these events is sequentially organized in a manner that minimizes any segregational errors.
Therefore, defects in the operation of any mitotic event may lead to the generation of chromosomal
instability (CIN), a hallmark of cancer (1–5). Having said this, precision and efficiency of the
mitotic cell division depends on proper regulation of the expression and function ofmitotic proteins.
Indeed, most of these proteins show mitotic phase specific activity. This activity is chiefly regulated
by post-translational modifications, namely, phosphorylation and ubiquitination, and some other
mechanisms (6). Notably, transcription also plays a key role in the maintenance of cell cycle specific
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protein levels (7). However, little has been summarized about the
transcriptional control of the mitotic phenomenon. In this review,
we will discuss the role of transcription in mitotic regulation
and provide evidence for transcriptional anomalies underlying
abnormal mitotic events that lead to CIN and tumorigenesis.

Mitosis and Aneuploidy

Errors in chromosome partitioning often give rise to aneuploidy.
There are several roads that lead to aneuploidy through mitotic
errors (4, 8, 9). The first and foremost reason of mitotic ane-
uploidy is a faulty SAC. The SAC monitors bipolar segregation
of duplicated chromosomes during metaphase to anaphase tran-
sition (10). Prior to anaphase, sister chromatids remain held
together by the cohesin complex (11). At the onset of anaphase,
securin gets ubiquitinated by the E3 ubiquitin ligase, anaphase
promoting complex/cyclosome (APC/C). This degradation of
securin, in turn, makes separase (a protease) free and active.
The latter then cleaves cohesin and the chromosomes begin to
separate (10, 12). In the presence of any unattached kinetochore
or lack of amphitelic attachment SAC is activated. A number
of proteins are involved in the tasks executed by the SAC (10).
At the molecular level, the mitotic checkpoint complex (MCC)
comprised of the Mad and Bub families of proteins, sequesters
APC/C adapter protein Cdc20 (13), and APC/C remains inactive
until the defects get corrected. After the completion of proper
bipolar attachment Cdc20 is ubiquitinated by mitotic ubiqui-
tin carrier protein UbcH10 and gets free from inhibitory MCC
(14). Concordant with that, the SAC antagonist protein p31comet
binds to the MCC component Mad2 and modulates extraction
of Mad2 from MCC. This, in turn, causes disassembly of MCC
and blocks further sequestration of Cdc20 (15, 16). Free Cdc20
activates APC/C, which then degrades anaphase inhibitors and
cells progress through mitosis. The stepwise functioning of these
events depends on the balanced level of the SAC proteins. While
mutations in the SAC genes are infrequent in human cancers,
their altered expressions are often reported in various cancers
and have been associated with defective SAC-mediated aneu-
ploidy (4). Hence, the balanced levels of different SAC pro-
teins are important determinants of SAC behavior. The cell
cycle specific transcriptional regulation of SAC proteins might
be an elemental reason in maintaining this balance, deregula-
tion of which might be involved in altered levels of the SAC
molecules.

In search of other CIN inducing mitotic phenomena, genetic
screens have identified cohesion defects as contributors to the
onset of aneuploidy (3, 4, 8). Glitches in the machinery monitor-
ing sister chromatid cohesion might promote aneuploidy. Con-
sistent with this, a recent study identified mutations in STAG2
(which encodes a protein subunit of the cohesion complex) in
a number of aneuploid primary tumors and cancer cell lines
(17). Also, overexpression of securin and separase, two key
regulators of cohesion, is reported to promote aneuploidy and
tumorigenesis (18, 19). Chromosome missegregation may also
occur in case of merotelic attachment where a single kineto-
chore attaches to microtubules emanating from both poles of

the spindle (20, 21). Several molecular components, for example,
Aurora kinase B, kinesin-13 proteins, MCAK, INCENP, Sur-
vivin, and Shugoshin are associated in this phenomenon and
their overexpression are reported in cancers of various origins
(21). A final source of aneuploidy is the prevalence of aberrant
centromeres and multipolar mitosis (2–4). Centrosomes provide
mitotic spindle poles and concurrently, presence of more than
two centrosomes might produce multipolar spindles. Addition-
ally, aberrant chromosome numbers and multipolarity are asso-
ciated with CIN in various cancers (22). A number of cellular
proteins, including Aurora kinase A, Plk1, Chk1, Chk2, Cyclin
B1, and Cdk1, regulate centrosome duplication and the abnor-
mal upstream regulation of these proteins is found in various
cancers (2).

Molecular Control of Mitosis: Regulation of
Mitotic Proteins

Mitosis is a complex event performed by multiple factors with
distinct phase specific responsibilities. Regulation at the protein
level plays a crucial role in the mitosis specific performances by
these factors. These regulations can occur through several routes
(Figure 1). First, ubiquitination-mediated protein degradation
is believed to be pivotal. The mitotic ubiquitin ligase, APC/C
promotes ubiquitination of various protein substrates in a spa-
tial manner (23). By ubiquitinating and consequently targeting
mitotic inhibitors for proteasomal degradation, this cellular phe-
nomenon controls mitotic progression in a unidirectional man-
ner. Second, phosphorylation controls functional activities of a
number of mitotic proteins in a time-dependent manner. Mitotic
cyclin dependent kinase Cdk1, in association with Cyclin A or B,
phosphorylates more than 70 substrates involved in various steps
of mitosis (24). Some other mitotic kinases like Aurora, Polo, and
Nek families also participate in phosphorylation-mediatedmitotic
regulation (24). As a third mechanism, microRNA (miRNA)-
mediated regulation of mitotic proteins is also currently emerg-
ing (25–30). In this list of regulatory pathways, the control
of expression at the transcription level could be considered as
momentous.

FIGURE 1 | Molecular control of mitosis: regulation of mitotic proteins.
Different regulatory mechanisms are shown.
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Roads to Chromosomal Instability:
Contribution of Mutation Versus
Transcription of Mitotic Genes

Most of the tumors are reported to acquire a number of muta-
tions in proto-oncogenes and tumor suppressor genes. Mutation
of a gene may alter its product, qualitatively or quantitatively.
Extensive search has shown mutations in >1% of candidate genes
causally related to oncogenesis, termed as cancer genes (31). Given
the fact that mitotic protein levels are pivotal in proper execution
of mitosis, the mutational defects can be assumed prime factors
in deregulation of mitosis. Simultaneously, a few reports have
identified mutations in SAC as well as other mitotic genes in can-
cers of different origins (32–34). For example, a biallelic germline
mutation of the SAC geneBUB1B has been diagnosedwithmosaic
variegated aneuploidy, a rare recessive condition of childhood
cancer (35). The genetic alterations, such as gene amplification or
depletion, also play a key role in the regulation of many mitotic
genes. For example, the genes expressing Aurora-A and Ect2 are
amplified in several types of tumors (36–38). Interestingly, despite
these reports, mutations directly affecting a mitotic gene are not
frequent among cancer types. In an in silico approach, we analyzed
themutation status of 526 genes from a list of 572 validatedmitotic
genes (39) using COSMIC v67 database1 (Table S1 in Supple-
mentary Material). The percent mutation for each of these genes
was obtained from the percentage of unique mutated samples out
of total samples studied. The extracted dataset showed <1% of
mutations in 84% (441) of the genes. On the other hand, only 5%
of the genes showed mutations in >3% of the samples (Figure 2).
In a separate approach, we tried to find out the expression status
of validated mitotic hits (39). Using ONCOMINE 4.4 research
edition database2 cancer versus normal expression patterns were
obtained for 557 mitotic genes in 7 head and neck squamous
cell carcinoma (HNSCC) datasets (Table S2 in Supplementary
Material). Among these, 15% (82) of the genes were found to
be overexpressed and 1% was found to be down-regulated in
>60% of datasets (Figure 2). To find out whether mutations are
responsible for the altered expression of these genes we correlated
these two analyses (Table S3 in Supplementary Material). The
analysis revealed that 73% of the overexpressedmitotic genes have
mutations in <1% of the samples. Only 19% of the overexpressed
genes were detected with mutations in 1–2% samples and 8%
of the genes were detected with mutations in >3% of the sam-
ples. Among the down-regulated genes, 87% of the genes showed
mutations in <1% of the samples while 13% of the genes showed
mutations in 1–2% of the samples (Figure 2). This data clearly
negate the involvement of mutations in regulating the expression
ofmitotic genes. The probable reasons behind these findings could
be (a) mutation in any one of the mitotic genes including SAC
regulators may weaken the checkpoint or other mitotic regula-
tions; (b) mutation leading to complete inactivation of any crucial
mitosis regulatory gene would be fatal and be eliminated by death
of the affected cell(s). For instance, germline deletion of the SAC
gene MAD2 is associated with the loss of pregnancy (40). Indeed,

1cancer.sanger.ac.uk/cancergenome/projects/cosmic/
2http://www.oncomine.org/resource/login.html

negligible cancer-associated mutations are reported for Aurora
kinase B, Cdk1, Cyclin B, Nek2, and Pin1, proteins involved in
initial events of mitosis (Table S1 in Supplementary Material) (6).
Also, mutations in mitotic checkpoint genes themselves are not
found responsible for abnormal checkpoint in cancer cells (8) and
infrequently reported for core SAC proteins like Cdc20, Bub3, and
Mad2, and SAC-associated proteins like Borealin, Zwint, Hec1,
and Aurora kinase B (6).

Transcriptional Control of Mitotic Genes

Mitosis, like any other pathway, is essentially interplay among
various protein molecules with tightly regulated phase specific
functional activities. A number ofmitotic genes show peak level of
transcriptionwhen the cell passes through theG2phase (Figure 3)
(41). Promoters of these genes remain repressed during G0 and
G1 phase. The relief from repression starts at the S-phase and
peaks after reaching the G2 phase. The transcription factor, NF-Y
is crucial in this timely expression (41). A number ofmitotic genes
contain two or three CCAAT boxes. These sites are recruited by
hetero-trimericNF-Y in associationwith histone acetyltransferase
p300. This dynamic recruitment brings upon transcriptional acti-
vation of mitotic genes at the late phase of cell cycle (42). Two
consensus sites, namely, cell cycle dependent element (CDE) and
cell cycle genes homology region (CHR), have been extensively
described in the global regulation of genes having mitosis specific
expression (41). Transcriptional repression remains maintained
during G0 and G1 phase through the binding of repressor pro-
teins in CDE and/or CHR elements. The release from repression
starts at the S-phase. Following this, activation of these promoters
mostly occurs through CCAAT boxes after binding of NF-Y in
combination with the co-activator, p300. Promoters of mitotic
genes, namely, CCNA (Cyclin A), CCNB1 (Cyclin B1), CCNB2
(Cyclin B2), CDC2/CDK1, CDC25C, CKS1, MKLP1, PLK1, and
TOME-1, with well documented mitotic phase specific regulation
by CDE/CHR elements, are found to be activated through their
CCAATconsensus elements (41).On the other hand, p53 has been
associated with the repression of several mitotic genes through
CDE/CHR elements (41). A number ofmitotic genes, like CDC20,
CKS1, CCNB1, CCNB2, and CDC2/CDK1, are repressed by p53
(43–46). However, cell cycle specific repression of some other
genes without CDE/CHR has also been documented (41). Toward
that, besides CDE/CHR site driven effect, a direct p53 binding
element has been identified to regulate Cdc20 expression (47).

Beside this, several other transcription factors have also been
reported to control the expression of genes in mitosis specific
manner. As, for example, Forkbox M1 (FoxM1) has been iden-
tified as a master regulator of mitosis. Laoukili et al. have ele-
gantly shown a transcriptional cluster to be regulated by FoxM1
(48). Another study conducted by Wang et al. also ended up
with similar observation for FoxM1 as a master regulator of
mitotic genes, like CDC25A, AURKA, AURKB, Survivin, CENPA,
CENPB, CKS1, SKP2, and PLK1 (49). Subsequently, Fu et al.
have shown that mitotic serine/threonine kinase protein, Polo
like kinase 1 (PLK1), a target of FoxM1 itself, interacts with
and phosphorylates FoxM1. This phosphorylation, indeed, regu-
lates the transcriptional program driven by FoxM1 (50), thereby
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FIGURE 2 | Analysis of mutation and transcriptional alteration in
mitotic genes. (A) Expression analysis of mitotic genes was done using
ONCOMINE (4.4 research edition) database and mutation analysis was done

using COSMIC (v67) according to the given workflow. (B) The two analyses
were correlated to obtain the percentage of mutations in overexpressed and
downregulated genes.
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FIGURE 3 | Cell cycle specific transcriptional regulation of a mitotic
gene. Different cell cycle phases, mitotic gene, transcription start site,
transcription factor (TF), and repressor are shown. “X” mark indicates

“transcription off” condition and up arrow indicates “transcription on” condition.
Dotted appearance indicates gradual reduction of recruitment of TF or
repressor.

indicating a positive feedback loop as a driving force in mitotic
transcriptional regulation.

In the last decade, E2F transcription factor family, well-known
regulator of S-phase specific trans-regulation, has also been iden-
tified in transcriptional control of mitotic genes (51–57). The ini-
tial finding of E2F targets from microarray analysis was validated
in more than one way and was followed up with identification
of target genes involved in chromosome condensation and seg-
regation, SAC functioning, centrosome organization and dupli-
cation, and cytokinesis. For instance, core SAC protein Mad2,
mitotic ubiquitin carrier protein UbcH10 and PTTG1, a subunit
of chromosome cohesion regulator Securin are shown in extensive
detail to be G2/M specific E2F targets (58–60). Zhu et al. further
showed that recruitment of an activator E2F to the promoter of
mitotic cyclin-dependent kinase gene CDC2/CDK1 requires an
adjacent CCAAT consensus site pre-occupied by NF-Y. Further-
more, the authors reported that the association of Myb family
transcription factor, b-Myb to the promoter of CDC2 and CCNB1
depends on an intact E2F binding site, suggesting a co-operative
nature of trans-factor binding in determining mitotic gene activa-
tion. Interestingly, b-Myb, itself being an early phase E2F target,
links the E2F driven early phase (G1/S) and late phase (G2/M)
transcription cascade. Cdc2, Cyclin A2, and Cyclin B1, three
important regulators of mitotic entry and progression, were found
to be under control of b-Myb-E2F mediated transcription (61).

Human MuvB core complex, comprising of Lin9, Lin37, Lin52,
Lin54, and RBBP4, was also identified to regulate transcription of
the genes required for the progression into mitosis. Knockdown
of the members of this complex led to downregulation of mRNA
levels of mitotic proteins including Plk1, Aurora kinase A, Bub1,
CENP-E, Lap2, Cyclin A2, Cyclin B1, Cep55, Survivin, and
Cdc2 (62, 63). Following this, Sadasivam et al. (64) explains

the association and interplay among these master regulators of
transcription during the course of cell cycle. They showed that
DREAM complex (comprising of DP1, Rb-related protein p130,
E2F4, and MuvB core complex) functions as a global repressor of
mitotic genes during quiescence or G0 phase. Following entry of
a cell in G1 phase after quiescence, this DREAM complex dissoci-
ates fromMuvB core complex. TheMuvB core complex then asso-
ciates with b-Myb and gets recruited to the promoters of late phase
mitotic genes (64). Subsequently, MuvB and b-Myb together facil-
itate the binding of FoxM1 to these promoters during G2 phase to
promote the transcription ofmitotic proteins like, Cyclin B1, Plk1,
Cdc6, Aurora kinase A, and RacGAP1. The cell cycle regulated
expression of three other mitotic genes, namely ECT2, MgcRac-
GAP, and MKLP1, also showed CHR dependent repression
throughout G1 phase (65). These genes code for three impor-
tant regulators of Rho GTPases, critical for mitotic progression,
and cytokinesis. The cut homeobox 1 (Cux1) transcription factor
coordinately induces the expression of these three genes from S-
phase. Moreover, E2F1 was shown to be required in this Cux1
dependent trans-activation process (65).

Besides these well-known consensus elements and master reg-
ulators of transcription, some gene specific regulations are also
documented in influencing the expression of several mitotic
genes. For instance, the transcription of Cdc20 is reported to be
regulated by E2F through a new element called Cell cycle Site
Regulating p55Cdc/Fizzy transcription (SIRF) (66). Surprisingly,
a few mitotic proteins are also identified with transcription regu-
latory activities. A report showed that WD40 domain containing
mitotic checkpoint proteins could act as co-repressors during
interphase. The WD40 domain containing SAC proteins, Cdc20
and Bub3, form a complex with histone deacetylases (HDAC1
and HDAC2) during the course of repression (67). On the other
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hand, we showed that Cdc20, in combination with APC/C and
CBP/p300, transcriptionally activates the expression of UbcH10
(68). Furthermore, recruitment of this Cdc20 trans-complex
showed dependence on E2F consensus element on the UBCH10
promoter (60). The mitotic kinase Plk1 was reported to regulate
mitotic gene transcription program by phosphorylating FoxM1
(50). Together, these findings clearly indicate a co-ordination
of several master regulators of transcription among themselves
and with some gene specific co-activators in controlling cell
cycle specific expression of mitotic players. This, in turn, points
out the importance of transcription in maintenance of mitotic
progression.

Transcriptional Alterations of Mitotic
Genes and Association with Cancer

On a cellular level, cancer cells are associated with the loss-of-
functionmutations of tumor suppressors and the gain-of-function
mutations of proto-oncogenes. As many of the mitotic genes
are transcriptionally regulated by tumor suppressor or proto-
oncoprotein trans-factors, the above-mentioned mutational inci-
dences frequently deregulate the transcriptional outcome of the
mitotic genes in tumor cells (Figure 4). This, in turn, results in
the abnormal execution ofmitosis and defects in the chromosomal
segregation leading to aneuploidy. Concordant with that, abnor-
mal expressions of many mitotic genes are often associated with
the occurrence of oncogenesis.

At the initial stages of mitosis (centrosome maturation, chro-
mosome condensation, NE breakdown, and spindle formation), a
number of proteins participate in an orchestrated fashion. Among
them, expression of Cyclin B, a Cdk1 activator involved in G2/M
progression, has been found to be regulated by the tumor sup-
pressor p53 (69). The direct interaction of p53 to the promoter
response element downregulates Cyclin B expression upon DNA
damage-mediated checkpoint arrest (69). With alteration of p53
pathway, overexpression of Cyclin B has been shown to contribute
to the alteration of SAC and occurrence of CIN in cancer samples
(70–72). The Ser–Thr kinase, Plk1 (involved in mitotic initia-
tion in more ways than one) showed elevated mRNA levels in a
variety of tumors (73). This protein is transcriptionally coordi-
nated during cell cycle, its level being low during interphase and

maximum in mitosis (74). The cell cycle-dependent repression of
Plk1 is mediated by Rb pathway. During DNA damage-mediated
checkpoint activation, tumor suppressors like p53 and BRCA1 are
found to influence levels of Plk1 (74, 75). Correlated with the loss
of functional tumor suppressors, transcriptional deregulation of
Plk1 is reported in various cancers and associated with CIN and
oncogenic transformation (76). Furthermore, tumor suppressors
like BRCA1 and Rb are reported to regulate the levels of another
mitotic kinase Nek2. In co-ordination with the loss-of-function of
tumor suppressors, the overexpression of this protein is associated
with CIN and cancer (77–80). Cell cycle specific expression of
mitotic Aurora kinases (Aurora kinase A and Aurora kinase B) are
CDE-CHR element regulated (81, 82). Oncoproteins like EWS-
Fli1 and Myc upregulate expression of aurora family proteins
through binding on promoter response elements. On the other
hand, tumor suppressors like p53, Brd4 also influence expres-
sion of Aurora kinases (83–86). In fact, the altered expression
of Aurora kinases are potential markers of cancer progression
(87). Regulated expression of kinetochore protein Hec1 is directly
related to phosphorylation-mediated inactivation of Rb during the
course of cell cycle. Beside this, the CREB family of oncoprotein
transcription factors has been shown to upregulate the levels of
kinetochore protein Hec1 (88). Disrupted pRb function is associ-
ated with transcriptional upregulation of Hec1, which may cause
aneuploidy and tumor formation (89, 90).

The initial events of mitosis are followed by chromosomal
alignment at the equatorial plane of the cell during metaphase.
The amphitelic metaphase alignment precedes SAC release, chro-
mosomal segregation, and entry into anaphase. Consistent with
their mitotic roles, a number of core SAC and SAC-associated
proteins (Mad1, Mad2, Bub1, Cdc20, UbcH10 to name a few)
accumulate gradually through the G2 phase with peak levels
at mitosis (13, 68, 91, 92). Different transcription factors and
chromatin modifiers regulate cell cycle specific promoter activi-
ties of these genes (68, 92, 93). The well-known tumor suppres-
sor p53 is reported to control the transcription of CDC20 and
BUB1B (46, 47, 94). Upon genotoxic stress, Cdc20 expression is
indirectly suppressed by p53 through p21-dependent mechanism
(46). On the other hand, a direct p53 binding element has been
identified on the CDC20 promoter and shown to bring about
repression of transcription through chromatin remodeling (47).

FIGURE 4 | Role of transcription factors in regulation of
mitosis: The left panel shows the involvement of various
proto-oncogenic trans-factors as well as tumor suppressor
transcription factors in regulation of phase specific expression

of mitotic proteins. The right panel depicts the deregulation of
transcription by gain of function mutations of proto-oncogene
trans-factors as well as loss of function mutations of tumor
suppressor trans-factors and onset of oncogenesis.
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TABLE 1 | Role of proto-oncoprotein and tumor suppressor transcription
factors in mitosis and involvement in oncogenesis.

Transcription factor Mitotic target Reference

PROTO-ONCOPROTEINS
c-Myc Aurora kinase A and Aurora kinase B (83, 99)

c-Myc Mad2 and BubR1 (100)

c-Myc Cyclin B1 (101)

Epstein–Barr virus
nuclear antigen 2

Mad2, Plk1 (102)

FoxM1 Cyclin B1, CENP-F, Plk1, Nek2,
Aurora kinase B, Cyclin

(48, 103–105)

Mutant p53 Cyclin A, Cyclin B1, Cyclin B2, Cdk1 (106)

Mutant p53 Mad1 (107)

EWS-Fli1 Aurora kinase A and Aurora kinase B (85)

CREB Hec1 (88)

CREB Cyclin A (108)
TUMOR SUPPRESSORS
BRCA1 Mad2 (96)

BRCA1 BubR1, Hec1, Stk6, Nek2, Securin,
Prc1, Plk, Knls2, Cdc2, and Cdc20

(78)

Rb Mad2 (58, 109)

Rb Hec1 (90)

Rb UbcH10 (60)

p53 Cdc20 (46, 47)

p53 Mad1 (95)

p53 Aurora kinase A, Plk2, Lats2 (110)

p53 Cyclin A1 (111)

p53 Cyclin B (45)

p53 Emi1 (112)

pVHL Mad2 (113)

Similarly, direct recruitment of p53 on the promoter consensus
element brings about chromatin remodeling and the repression of
Mad1 expression (95). Expression of Mad2 is regulated by E2F in
a cell cycle-dependent manner. Rb inactivation leads to aberrant
Mad2 expression by deregulating E2F activity and contributes
to mitotic defects and aneuploidy (58). The tumor suppressor
BRCA1 was also reported to regulate Mad2 expression (96).
Cancer-associated defects in these tumor suppressors contribute
to the abnormal expression of these proteins and a flawed SAC.
Indeed, transcriptional abnormalities including differential pro-
moter methylation of these SAC proteins are potential markers of
cancers of various origins (97, 98). Their deregulated expressions
are associated with CIN phenotype and incidence of cancer (6).

The final stages of mitosis involve cytokinesis and mitotic exit.
Along with mitotic kinases like Aurora, Polo, and related families,
some other molecular components also regulate this stage of the

cell cycle. Protein regulator of cytokinesis 1 (PRC1) and the gua-
nine nucleotide exchange factor, Ect2, the two major molecules
of cytokinesis have been related with cancer-associated altered
expressions and CIN (6). In conclusion, we have summarized a
number of reports from the ever-growing lists of proto-onco gene
as well as tumor suppressor trans-factors in regulation of mitosis
and their deregulation in tumor background (Table 1).

Conclusion

The role of transcriptional regulatory pathways behind the inci-
dence of tumorigenesis remains an enigma. For a number of
key cell cycle regulators, the transcriptional control represents an
evolutionarily conserved mechanism to precisely maintain their
abundance, working in conjunctionwithmiRNAmediated silenc-
ing, translational control, and ubiquitin-mediated degradation
(23, 26, 114, 115). Among these cell cycle regulators, a defined
set of factors stringently control mitotic entry, progression, and
exit. The interplay among these factors is naturally adjusted by
their abundance. Abnormality in this abundance is associatedwith
the occurrence of aneuploidy, a hallmark of cancer (2, 8, 116).
In this review, we have discussed the maintenance of protein
levels of the mitotic players whose transcription is regulated in a
cell cycle specific manner. We further discussed the deregulation
of their transcriptional control, working in concert with cancer
onset. In this regard, mutations in various tumor suppressors and
proto-oncogenes acting as co-factors of transcription are found to
disharmonize the relative protein levels, rather than mutations in
the mitotic genes themselves. Besides this, a few mitotic genes are
reported to participate in transcriptional control. Furthermore,
the list of transcripts whose transcription is affected by certain
cell cycle or developmental transitions is being expanded owing
to new genome-wide approaches. Answer tomany open questions
regarding the interplay between transcriptional regulation and
mitotic progression will make an important contribution to the
understanding of cell cycle control. This, in turn, will help to
dissect the involvement of cell cycle progression in the onset of
tumorigenesis.
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