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Glucose and lipid metabolism differ between men and women, and women tend to
have better whole-body or muscle insulin sensitivity. This may be explained, in part, by
differences in sex hormones and adipose tissue distribution. Few studies have investi-
gated gender differences in hepatic, adipose tissue, and whole-body insulin sensitivity
between severely obese men and women. In this study, we aimed to determine the
differences in glucose metabolism between severely obese men and women using
tissue-specific measurements of insulin sensitivity. Insulin sensitivity was compared
between age and body mass index (BMI)-matched obese men and women by a
two-step euglycemic hyperinsulinemic clamp with infusion of [6,6-2H2]glucose. Basal
endogenous glucose production (EGP) and insulin sensitivity of the liver, adipose tissue,
and peripheral tissues were assessed. Liver fat content was assessed by proton magnetic
resonance spectroscopy in a subset of included subjects. We included 46 obese men
and women (age, 48±2 vs. 46±2 years, p 2=0.591; BMI, 41±1 vs. 41±1 kg/m ,
p=0.832). There was no difference in basal EGP (14.4±1.0 vs. 15.3±0.5μmol · kg
fat-free mass−1 ·min−1, p=0.410), adipose tissue insulin sensitivity (insulin-mediated
suppression of free fatty acids, 71.6±3.6 vs. 76.1±2.6%, p=0.314), or peripheral
insulin sensitivity (insulin-stimulated rate of disappearance of glucose, 26.2±2.1 vs.
22.7±1.7μmol · kg−1 ·min−1, p=0.211). Obese men were characterized by lower hep-
atic insulin sensitivity (insulin-mediated suppression of EGP, 61.7±4.1 vs. 72.8±2.5%
in men vs. women, respectively, p=0.028). Finally, these observations could not be
explained by differences in liver fat content (men vs. women, 16.5±3.1 vs. 16.0±2.5%,
p=0.913, n=27). We conclude that obese men have lower hepatic, but comparable
adipose tissue and peripheral tissue, insulin sensitivity compared to similarly obese
women. Hepatic insulin resistance may contribute to the higher prevalence of diabetes in
obese men. Further insight into the mechanisms underlying this gender difference may
reveal novel targets for diabetes prevention and/or therapy.
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INTRODUCTION

Obesity is the most important risk factor for insulin resistance
and type 2 diabetes (1), and an increasing threat to both men
and women worldwide (2). It is, however, becoming increasingly
evident that handling of nutrients (3, 4), metabolic adaptations to
overnutrition (5, 6), and the global prevalence of clinically overt
dyslipidemia and diabetes (7, 8) are different for the two sexes.
These observations, in addition to concerns about the underrep-
resentation of women in clinical research (3, 9), have fueled recent
interest into sexual dimorphism in metabolism and metabolic
disorders.

Insulin resistance is the major contributor to cardiometabolic
complications of obesity, including diabetes (10, 11). Several stud-
ies have investigated whole-body and/ormuscle insulin sensitivity
in men and women [recently reviewed by Lundsgaard and Kiens
(12)]. Most (13–19), but not all (20, 21), of the available evidence
from euglycemic hyperinsulinemic clamp or arterial–venous bal-
ance studies suggests that insulin-stimulated glucose uptake is
higher inwomen thanmen, indicating that women generally show
higher peripheral insulin sensitivity. This may be related to amore
favorable adipose tissue distribution in women [more subcuta-
neous and less visceral fat compared to men (4)] as well as to
levels of circulating sex hormones, with estrogen having insulin-
sensitizing (12) and anti-inflammatory (22) properties. This is
strengthened by the findings that postmenopausal women rapidly
gain visceral fat and become less insulin sensitive (23), while
estrogen administration to postmenopausal women improves
insulin action (24). By contrast, administration of gonadotropin-
releasing hormone agonists (to induce short-termhypogonadism)
or testosterone does not affect whole-body insulin sensitivity in
healthy men (25).

Few studies have investigated insulin sensitivity in matched
severely obese men and women, who are exceptionally prone to
develop insulin resistance (26), or described gender differences in
tissue-specificmeasurements of insulin sensitivity in liver and adi-
pose tissue of men and women. Novel insight into to pathophysi-
ological mechanisms underlying these differences in metabolism
may reveal novel targets as well as promote more personalized
therapeutic strategies.

In the present study, we aimed to determine the gender dif-
ferences in glucose metabolism and tissue-specific insulin action
using detailed metabolic tracer studies in a cohort of severely
obese men and women.

MATERIALS AND METHODS

Subjects
To assess the sex-specific differences in glucose metabolism and
insulin action, we selected age and body mass index (BMI)-
matched men and women (n= 46) from a previously described
cohort of obese men and women (27). Subjects were eligible for

Abbreviations: 1H-MRS, proton magnetic resonance spectroscopy; BMI, body
mass index; EGP, endogenous glucose production; FFA, free fatty acids; FFM, fat-
free mass; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein
cholesterol; Rd, rate of disappearance (of glucose); SEM, standard error of themean.

the present analysis if they were severely obese (BMI >35 kg/m2)
and had stable weight (<5% weight change) for 3months prior to
the study. Subjects were excluded in case of a history of insulin-
dependent diabetes, use of alcohol (>2U/day) or recreational
drugs, use of psychoactive medication, or any somatic disorder
except for obesity-related conditions (e.g., dyslipidemia, hyperten-
sion, or impaired glucose tolerance).

Subjects completed a medical evaluation including medical
history, physical examination, blood tests, and assessment of body
composition by bioelectrical impedance analysis (Maltron BF-
906, Rayleigh, UK). On a separate visit, subjects underwent a
two-step euglycemic hyperinsulinemic clamp for the assessment
of glucose metabolism and insulin sensitivity.

All procedures were approved by the Academic Medical Cen-
ter medical ethics committee and all subjects provided writ-
ten informed consent in accordance with the Declaration of
Helsinki.

Experimental Protocol
Glucose clamp studies were performed according to standard
operating procedures, which have been described in detail else-
where (27). Briefly, the basal rate of endogenous glucose produc-
tion (EGP), hepatic insulin sensitivity (expressed as the insulin-
mediated suppression of basal EGP), adipose tissue insulin sen-
sitivity [expressed as the insulin-mediated suppression of circu-
lating free fatty acids (FFA)], and peripheral insulin sensitivity
[expressed as the insulin-stimulated rate of disappearance (Rd)
of glucose] were assessed after an overnight fast during a two-
step euglycemic hyperinsulinemic clamp with infusion of [6,6-
2H2]glucose as glucose tracer.

After 2 h of tracer equilibration, insulin infusion was started for
2 h per step at a rate of 20 and 60mU ·m−2 ·min−1 during step 1
and 2, respectively. Plasma glucose was maintained at 5.0mmol/l
by infusion of exogenous glucose enriched with [6,6-2H2]glucose.
Three (after tracer equilibration) or five (after each 2-h step of
insulin infusion) blood samples with a 5-min interval were drawn
to assess tracer enrichment for calculation of EGP and Rd and for
measurements of glucoregulatory hormones.

Plasma glucose, glucoregulatory hormones, enrichment of
[6,62H2]glucose (tracer-to-tracee ratio), and lipids were deter-
mined, as previously described (27). EGP and Rd were calculated
using modified versions of the Steele equations for the steady
state (basal EGP) or non-steady state (during insulin infusion),
and expressed as μmol · [kg fat-free mass (FFM)]−1 ·min−1 and
μmol · (kg body weight)−1 ·min−1, respectively (28, 29).

In a subset of men (n= 8) and women (n= 19), intrahepatic
triglyceride (IHTG) content was assessed by proton magnetic
resonance spectroscopy (1H-MRS) on the morning of the clamp
after an overnight fast. Liver 1H-MRS spectra were obtained, as
previously described (30), and IHTG content was defined as the
percentage of liver volume comprised of fat.

Statistical Analysis
Data are expressed as mean± standard error of the mean (SEM),
unless stated otherwise. Groups were compared by two-tailed
independent samples t-test. Correlations were evaluated by Pear-
son’s correlation coefficient. Findings were considered significant
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if the p-value was <0.05. Analyses were performed using IBM
SPSS Statistics 22 (Armonk, NY, USA).

RESULTS

We included 46 age and BMI-matched severely obese men and
women (Table 1). Men and women were well-matched in terms
of age, BMI, and most other baseline characteristics, but women
had higher total body fat content and high-density lipoprotein
cholesterol (HDL). Fasting plasma glucose and insulin levels did
not differ between men and women. Two obese women were
postmenopausal. One woman had (non-insulin-dependent)
type 2 diabetes and was treated with oral hypoglycemic
agents.

Fasting plasma FFA levels were higher in women (Table 2).
The basal rate of EGP did not differ between men and women
(Figure 1A), but men had markedly lower insulin-mediated sup-
pression of EGP (Figure 1B), indicating that severely obese men
are characterized by lower hepatic insulin sensitivity compared to
similarly obese women. Plasma glucagon levels during step 1 of
the clamp were also higher in men (Table 2). Insulin-mediated
suppression of FFA (Figure 1C) and insulin-stimulated Rd of
glucose (Figure 1D) were not different between both groups,
indicating that severely obese men and women are characterized
by similar adipose tissue and peripheral tissue insulin sensitivity.
We recently defined cutoff values for euglycemic hyperinsuline-
mic clamp-derived insulin resistance (27), and 91% of included
subjects had Rd< 37.3μmol · kg−1 ·min−1, indicative of insulin
resistance. Detailed data from the two-step euglycemic hyperin-
sulinemic clamp studies are presented in Table 2.

Differences in insulin sensitivity could not be explained by
differences in (low-grade) systemic inflammation (C-reactive pro-
tein, men vs. women, 7.1± 2.6 vs. 11.6± 2.6mg/l, p= 0.244) or
liver fat content (Figure 2). Plasma glucagon levels were not
correlated to EGP or hepatic insulin sensitivity during the basal
state or step 1 of the clamp in men, women, or all subjects (not
shown).

DISCUSSION

We show that sexual dimorphism in metabolism is present in
severely obese men and women. The current experimental pro-
tocol allowed us to quantitatively determine the degree of insulin
resistance in the liver, adipose tissue, andmuscle. Our results show
that, in an age andBMI-matched cohort of severely obesemen and
women, men have comparable peripheral insulin sensitivity, but
lower hepatic insulin sensitivity compared to women. In addition,
women have higher fasting plasma levels of FFA, whereas insulin-
mediated suppression of FFA levels is similar to men.

Although several previous studies suggest that women may
physiologically be inclined to have better muscle insulin sen-
sitivity (13–17), both men and women in the present study
were severely obese and characterized by moderate-to-severe
peripheral insulin resistance compared to a non-obese reference
population (27). Our data, in line with one previous study of
obese individuals (21), suggest that the insulin-sensitizing effects

TABLE 1 | Baseline characteristics of included men and women.

Men Women p

N 23 23 –
Age (years) 48± 2 46± 2 0.591
BMI (kg/m2) 41± 1 41± 1 0.832
Body fat content (%) 43± 2 52± 1 <0.001
Fasting glucose (mmol/l) 5.5± 0.1 5.6± 0.2 0.728
Fasting insulin (pmol/l) 105± 9 103± 9 0.882
Triglycerides (mmol/l) 1.5± 0.2 1.3± 0.1 0.228
Cholesterol (mmol/l) 4.5± 0.3 4.9± 0.2 0.289
LDL (mmol/l) 3.1± 0.1 3.2± 0.2 0.795
HDL (mmol/l) 1.0± 0.1 1.1± 0.1 0.039

Data are mean±SEM.

TABLE 2 | Metabolic parameters and fluxes during two-step euglycemic
hyperinsulinemic clamp studies (n=46).

Men Women p

Basal
Glucose (mmol/l) 5.5± 0.1 5.6± 0.2 0.728
Insulin (pmol/l) 105± 9 103± 9 0.882
Glucagon (ng/l) 83± 5 66± 4 0.011
Cortisol (nmol/l) 300± 36 241± 22 0.153
EGP (μmol · kgFFM−1 ·min−1) 14.4± 1.0 15.3± 0.5 0.410
FFA (mmol/l) 0.57± 0.03 0.77± 0.03 <0.001
Clamp, step 1
Insulin (pmol/l) 255± 18 278± 18 0.359
Glucagon (ng/l) 76± 5 60± 4 0.018
Cortisol (nmol/l) 235± 19 295± 25 0.095
Suppression of EGP (%) 61.7± 4.1 72.8± 2.5 0.028
Suppression of FFA (%) 71.6± 3.6 76.1± 2.6 0.314
Clamp, step 2
Insulin (pmol/l) 723± 38 740± 38 0.749
Glucagon (ng/l) 61± 4 52± 5 0.163
Cortisol (nmol/l) 291± 34 278± 28 0.770
Rd (μmol · kg−1 ·min−1) 26.2± 2.1 22.7± 1.7 0.211
Rd (μmol · kgFFM−1 ·min−1) 48.8± 7.3 47.2± 3.3 0.846

Data are mean±SEM. Basal, after an overnight fast; step 1, after 2 h of low-dose insulin
infusion; step 2, after 2 h of high-dose insulin infusion.

of female sex may be blunted in the context of severe obe-
sity, or that insulin-desensitizing mechanisms in severe obesity
may overwhelm the protective mechanisms that exist in lean
women.

In the basal state and during prolonged fasting, women rely on
lipid oxidation for energy more than men (31). Women generally
have higher basal rates of lipolysis, resulting in higher circulating
levels of FFA (20). In accordance, we also show that severely
obese women have higher fasting plasma FFA levels. Notably,
infusion of insulin, the major inhibitory regulator of lipolysis, and
circulating FFA levels (31), resulted in similar suppression of FFA
in men and women, suggesting that insulin-mediated inhibition
of adipose tissue lipolysis does not exhibit sexual dimorphism in
obese subjects.

Several mechanisms may explain the difference in hepatic
insulin sensitivity between obese men and women. Although the
present study did not address the molecular pathophysiology, we
did not observe any gender differences in circulating levels of C-
reactive protein or IHTG content. These findingsmay suggest that
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FIGURE 1 | Basal glucose metabolism and tissue-specific measurements of insulin action in age and BMI-matched severely obese men and women.
(A) Endogenous glucose production (EGP) was assessed in the basal (fasted) state. (B) Hepatic insulin sensitivity was defined as the relative suppression of basal
EGP by insulin during step 1 of the clamp. (C) Adipose tissue insulin sensitivity was defined as the relative suppression of circulating free fatty acids (FFA) by insulin
during step 1 of the clamp. (D) Peripheral insulin sensitivity was defined as the insulin-stimulated rate of disappearance (Rd) of glucose during step 2 of the clamp.
Data are mean±SEM. *p= 0.028.

FIGURE 2 | Intrahepatic triglyceride (IHTG) content in a subset of
severely obese men and women. Men (n=8) and women (n= 19) did not
differ in IHTG content by 1H-MRS. Data are mean±SEM.

differences in systemic inflammation or hepatic steatosis, both
often implicated in the development of hepatic insulin resistance
(32), did not contribute to the observed sexual dimorphism. Nev-
ertheless, we did not measure local inflammatory signals in the
liver nor individual hepatic lipid species, such as diacylglycerol
(33), which may have contributed to hepatic insulin resistance
in obese men. In fact, estrogen reduces hepatic diacylglycerol
accumulation and improves hepatic insulin resistance inmice (34,
35). Estrogen and estrogen receptor β agonists might thus be
considered novel therapeutic targets for hepatic insulin resistance
and/or steatosis (36, 37).

Since glucagon stimulates EGP (38), higher levels of glucagon
during the first step of the clamp may have contributed to
the lower insulin-mediated suppression of EGP in obese men.
However, since the absolute gender difference in glucagon was
small and glucagon levels were not directly correlated to EGP or
insulin-mediated suppression of EGP in the present study, further
research is required to fully elucidate the role of glucagon in

explaining sexual dimorphism inmetabolism.Othermechanisms,
such as sex-specific differences in visceral adipose tissue-derived
lipolysis and fatty acid flux (39, 40) or differences in unmea-
sured glucoregulatory hormones such as growth hormone (41),
may also have contributed to the observed difference in hepatic
insulin resistance. Lastly, we did not measure specific adipokines,
but it has been shown that circulating adiponectin is lower in
men (42). Since adiponectin reduces EGP in mice (43), lower
levels may be implicated in elevated EGP and/or hepatic insulin
resistance.

The observation that severely obese men are prone to develop
hepatic insulin resistance is also of clinical relevance. Failure
of insulin to appropriately suppress EGP, i.e., hepatic insulin
resistance, is an important contributor to the development of
hyperglycemia and (pre)diabetes (44–46). A male predisposition
to develop obesity-related hepatic insulin resistance may thus
contribute to the higher global prevalence of diabetes in men
(7). In accordance, prevention of type 2 diabetes by metformin,
an oral hypoglycemic agent that primarily targets hepatic insulin
resistance (47), appeared to be most effective in obese and male
prediabetes patients (48). Further understanding of the precise
metabolic defects in (obese) men and women will help to person-
alize treatment strategies.

We acknowledge that the contribution of adipose tissue glucose
uptake to whole-body insulin-stimulated glucose uptake has not
been clearly established, and estimates range from ~4 to 33% of
total glucose flux (49, 50). Differences in body composition [i.e.,
women typically have twice the adipose tissue mass compared to
men with the same BMI (4, 12)] may thus influence study results
when metabolic fluxes, such as the Rd of glucose, are expressed
per kilogram of body weight or kilogram of fat-free mass. In the
present study, however, Rd was comparable for severely obese
men and women when expressed per kilogram of body weight
(Figure 1D) or fat-free body mass (Table 2), suggesting that
differences in body fat content between men and women did not
influence the main findings.

Unfortunately, we did not have data on the menstrual status of
included women and, therefore, could not take this into account.
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Women generally do not undergo major changes in peripheral
insulin sensitivity throughout themenstrual cycle (12), but plasma
sex hormones may vary considerably, and we cannot rule out
an effect of menstrual status on measurements of hepatic and/or
adipose tissue insulin resistance. We also acknowledge that glu-
cose tolerance and HbA1c tests were not performed in the present
study. We thus cannot rule out that some individuals with normal
fasting glucose would otherwise be diagnosed with impaired glu-
cose tolerance or type 2 diabetes on the basis of those tests. Finally,
sensitivity analysis did not reveal any differences in our results
when all analyses were repeated excluding two postmenopausal
women and/or one woman with pre-existing type 2 diabetes.

In conclusion, we show that insulin sensitivity of adipose tissue
and peripheral tissues is similarly impaired in severely obese men
and women, but these men are characterized by lower hepatic
insulin sensitivity. A predisposition to develop obesity-related
hepatic insulin resistance may contribute to the higher prevalence
of diabetes in obese men. Further studies are required to elucidate

themolecularmechanisms underlying the observed sexual dimor-
phism in obesity-related insulin resistance.
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