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In addition to improving glucose metabolism, liraglutide, a glucagon-like peptide-1 rece-
ptor agonist, has weight-loss effects. The underlying mechanisms are not completely 
understood. This study was performed to explore whether liraglutide could lower weight 
by modulating the composition of the gut microbiota in simple obese and diabetic 
obese rats. In our study, Wistar and Goto-Kakizaki (GK) rats were randomly treated with 
liraglutide or normal saline for 12 weeks. The biochemical parameters and metabolic 
hormones were measured. Hepatic glucose production and lipid metabolism were 
also assessed with isotope tracers. Changes in gut microbiota were analyzed by 16S 
rRNA gene sequencing. Both glucose and lipid metabolism were significantly improved 
by liraglutide. Liraglutide lowered body weight independent of glycemia status. The 
abundance and diversity of gut microbiota were considerably decreased by liraglutide. 
Liraglutide also decreased obesity-related microbial phenotypes and increased lean- 
related phenotypes. In conclusion, liraglutide can prevent weight gain by modulating the 
gut microbiota composition in both simple obese and diabetic obese subjects.

Keywords: glucagon-like peptide-1, obesity, gut microbiota, metabolism, type 2 diabetes

inTrODUcTiOn

The rising global rates of type 2 diabetes mellitus (T2DM) and obesity present dramatic economic and 
social burdens, underscoring the importance of effective and safe therapeutic options (1). Recently, 
gut microbiota has been found to play a critical role in the establishment and maintenance of human 
health. A wide range of inflammatory and metabolic diseases have been shown to be associated with 
microbial imbalance (2–4). For example, Vrieze et al. (3) found that obesity was associated with 
changes in the abundance, diversity, and metabolic function of the gut microbiota, which mainly 
presented as a higher abundance of Firmicutes and a decreased abundance of Bacteroidetes in animal 

Abbreviations: GLP-1RA, glucagon-like peptide-1 receptor agonists; FBG, fasting blood glucose; PBG, postprandial blood 
glucose; FINS, fasting insulin; HOMA-IR, homeostatic model assessment-insulin resistance; ISI, insulin sensitivity index; TG, 
triglyceride; TC, total cholesterol; LDL, low-density lipoprotein; NEFA, non-esterified fatty acid; Raglu, rate of glucose appear-
ance; GNG, gluconeogenesis; Ragly, rate of glycerol appearance; T2DM, type 2 diabetes mellitus; AUC, area under the curve; 
IPGTT, intraperitoneal glucose tolerance test; IPITT, intraperitoneal insulin tolerance test.
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studies (5). In human studies, a relation between an aberrant 
Firmicutes/Bacteroidetes (F/B) ratio and obesity was observed (6).

The success of glucagon-like peptide-1 (GLP-1) receptor 
agonists (GLP-1RAs) in the treatment of T2DM highlighted the 
gastrointestinal tract as a potential target for diabetes treatment. 
Many studies had shown that the gut microbiota modulated 
satiety and glucose homoeostasis by inducing the secretion 
of GLP-1 (7–12). GLP-1 is an incretin hormone secreted by L 
cells in the intestine in response to food ingestion (13). It can 
enhance glucose-induced insulin and suppress glucagon secre-
tion. However, natural intact GLP-1 would be degraded rapidly 
by enzymatic inactivation by dipeptidyl peptidase-IV (DPP-IV) 
(4, 13). Therefore, various GLP-1RAs and DPP-IV inhibitors 
were developed to manage clinical hyperglycemia. Most recently, 
the GLP-1RA liraglutide has been recognized as a promising 
anti-obesity agent for its “additional effect” on weight loss in 
obese and/or diabetic individuals (14, 15). The exact mechanism 
is attributed to reduced food intake, which resulted from the 
inhibition of appetite and gastric emptying induced by GLP-1 
(13, 16). However, some studies demonstrated that GLP-1 could 
induce more weight loss than could be achieved by restricting the 
food intake alone (14, 15). This indicates that there may be other 
mechanisms underlying the weight-losing effect of liraglutide. 
The literature showed that changes in gut microbiota also had 
dramatic influences on lipid metabolism, satiety, and ectopic 
fat deposition (2, 17). Thus, liraglutide, as a GLP-1 analog, 
might prevent weight gain by modulating the gut microbial 
composition. Indeed, a previous study found liraglutide could 
modulate the composition of the gut microbiota by increasing 
the lean-related profile, consistent with its weight-loss effect in 
STZ-induced transiently hyperglycemic mice (4). However, in 
simple obese and spontaneous T2DM obese subjects, the weight-
loss effect of liraglutide associated with structural modulation of 
gut microbiota remains to be elucidated.

In this study, we used Wistar (euglycemic) and Goto-Kakizaki 
(GK, spontaneous type 2 diabetic) rats fed with a high-fat diet to 
explore the relationship between the structural modulation of gut 
microbiota and the weight-control effect of liraglutide.

MaTerials anD MeThODs

experimental Design
A total of 32 male Wistar and GK rats (3 weeks old) were bred 
in a pathogen-free environment (22 ± 2°C) with a 12/12-h light/
dark cycle and could free access to food and water. After 1 week of 
acclimation, these animals were fed with a high-fat diet (HFD: 40% 
carbohydrate, 20% protein, and 40% fat) for 8 weeks. Then, they 
were randomly divided into four groups and were subcutaneously 
injected with liraglutide (Victoza, Novo Nordisk, Denmark) or 
an equal volume of normal saline (NS) for 12 weeks. Wistar rats 
are non-diabetic, and GK rats are diabetic. Wistar rats are from 
the same genetic background as GK rats but with normal glucose 
levels. These two types of rats were all randomly divided into two 
groups and assigned with one of the treatments: WN (NS, equal 
volume, n = 8), WL (liraglutide 400 μg/kg/day, n = 8), GN (NS, 
equal volume, n = 8), and GL (liraglutide 400 μg/kg/day, n = 8).

Fasting body weights and blood glucose levels were measured 
every 2  weeks. Lipid profiles, including total cholesterol (TC), 
triglyceride (TG), and low-density lipoprotein (LDL) cholesterol, 
were assayed at the 0, 4th, and 12th weeks using Siemens Dimension 
MAX (Siemens Healthcare Diagnostics Inc.). Non-esterified fatty 
acid (NEFA) levels and fasting insulin (FINS) levels were also 
determined at the 0, 4th, and 12th weeks using the LabAssayTM 
NEFA kit (Wako, Japan) and ELISA kit (Shibayaji, Japan), respec-
tively. Insulin resistance and insulin sensitivity were evaluated by 
the homeostatic model assessment-insulin resistance (HOMA-IR) 
and the insulin sensitivity index (ISI) using the following formulas: 
HOMA-IR = FBG × FINS/22.5; ISI = ln[1/(FBG × FINS)] (18). 
After 12 weeks of treatment, the intraperitoneal glucose tolerance 
test (IPGTT) and intraperitoneal insulin tolerance test (IPITT) 
were also conducted. This study was carried out in accordance 
with the recommendations of the ethical principles in animal 
research adopted by the Department of Laboratory Animal 
Science, Shanghai JiaoTong University School of Medicine, 
Shanghai, China and The protocol was approved by the Animal 
Experimental Ethical Committee of Shanghai JiaoTong University 
School of Medicine, Shanghai, China.

isotope infusion
All rats were fasted overnight for approximately 12  h before 
isotope infusion. After local anesthesia with lidocaine, the lateral 
tail vein and the tail artery were catheterized for the infusion 
of tracers and blood sampling, respectively. During the experi-
ments, the rats remained conscious and relaxed. [6,6-2D]-glucose 
(2  µmol/kg/min) and [U-13C]-glycerol (0.84  µmol/kg/min) 
were constantly infused for 90 min through the tail vein using 
a Harvard mini infusion pump (Harvard Apparatus, Holliston, 
MA, USA). [9,10-3H]-palmitic acid (1 μCi) was injected at 60 min 
through the tail vein. During the final 10 min, three blood sam-
ples (0.5 mL each) were collected from the tail arterial catheter 
every 5  min for the quantitation of steady-state glucose and 
glycerol metabolism. Then, the animals were euthanized under 
anesthesia with pentobarbital (50  mg/kg) to reduce blood ele-
ments in tissues. A strip of gastrocnemius muscle (approximately 
13 mm × 3 mm × 1 mm) was promptly obtained and cultured 
in vitro to examine β-oxidation of [9,10-3H]-palmitic acid (1 μCi). 
Tissues were quickly obtained, immersed in liquid nitrogen and 
then stored at −80°C for further analysis.

Measurement of isotope Tracers
Plasma samples were processed to obtain the derivatives of 
[6,6-2D]-glucose and [U-13C]-glycerol as described previously 
(18). Then, gas chromatography/mass spectrometry (Agilent 
5975C, Agilent Technologies) was used to measure enrichment 
of the derivatives. Ions with mass-to-charge ratios (m/z) of 319 
(unlabeled glucose) and 321 (labeled glucose) were selectively 
monitored. The peak area 321/319 ratio was calculated, and 
the corresponding enrichment was determined from standard 
curves. Similarly, the m/z 221/218 U-13C-glycerol and m/z 215/212 
1,2,3-13C-glucose ratios were monitored, and their corresponding 
enrichment was determined.

Hepatic lipids were extracted using the Folch method, and 
TG concentrations in the liver were assayed with an ELISA kit 
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(Jiancheng, Nanjing, China). Then, pure TG was isolated using 
thin layer chromatography. In addition, 3H2O generated from the 
process of [9,10-3H]-palmitic acid β-oxidation was obtained by 
removing the lipids with chloroform. Next, 3H radioactivity in the 
TG was determined using liquid scintillation counting (LS6500 
Multipurpose Scintillation Counter, Beckman, USA), as previ-
ously described (18).

calculations
The appearance rates of glucose (Raglu) and glycerol (Ragly) were 
calculated with the steady-state equation from the respective 
tracer infusion rates (F) and mole percent excess (MPE). In the 
basal state, hepatic glucose production (HGP) is equal to the 
Raglu after an overnight fast. The glycerol gluconeogenesis (GNG) 
rates could be calculated using the MPE of [1,2,3-13C]-glucose 
and [U-13C]-glycerol (18). Hepatic lipogenesis was calculated by 
dividing the total concentrations of TG by the radioactivity of the 
corresponding labeled TG. All the relative formulas are shown as 
follows (19):

  

  

  

  

adipose Tissue Morphology
Both visceral (mesenteric) and subcutaneous (inguinal) white 
adipose tissues (WAT) were fixed in 4% paraformaldehyde 
and were sliced after being paraffin embedded on a microtome 
(SLEE, Germany). Multiple sections were prepared and stained 
with hematoxylin and eosin (HE) and were analyzed under an 
optical microscope (CKX41, Olympus, Japan) to examine the 
morphological changes.

Fecal Dna extraction and 16s rrna gene 
sequencing
Fresh feces samples were collected at the end of experiment and 
were immediately stored at −80°C for analysis. Microbial DNA was 
extracted from feces using the E.Z.N.A. stool DNA Kit (Omega 
Bio-Tek, Norcross, GA, USA). The extracted DNA was used as 
the template to amplify the V3 and V4 hypervariable regions of 
ribosomal 16S rRNA genes by PCR (95°C for 2 min → 25 cycles at 
95°C for 30 s, 55°C for 30 s, 72°C for 30 s → a final extension at 72°C 
for 5 min). The primers were 338F 5′-ACTCCTACGGGAGG-3′ 
and 806R 5′-GGACTACVGGGTWT-3′: barcode is an eight-base 
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sequence unique to each sample. All PCR reactions were per-
formed in triplicate with 20 µL of final reaction mixture contain-
ing 4 µL of 5× Fast Pfu Buffer, 2 µL of 2.5 mM dNTPs, 0.8 µL of 
each primer (5 μM), 0.4 µL of FastPfu Polymerase, and 10 ng of 
template DNA. Amplicons were extracted from 2% agarose gels 
and purified using the AxyPrep DNA Gel Extraction Kit (Axygen 
Biosciences, Union City, CA, USA) according to the manufactur-
er’s instructions and quantified using QuantiFluor-ST (Promega, 
USA). The purified amplicons were pooled in equimolar quanti-
ties and paired-end sequenced (2 × 300) on an Illumina MiSeq 
platform (San Diego, CA, USA) according to standard protocols.

statistical analysis
Data analyses were conducted with IBM SPSS Statistics, Version 22 
(IBM Corporation, Armonk, NY, USA). All data were presented 
as the means ± SDs, and statistical significance was assessed by 
one-way ANOVA (LSD). Raw “fastq” files were demultiplexed 
and quality-filtered using QIIME (version 1.17). The reads that 
could not be assembled were discarded. Sets of sequences with 
≥97% identity were defined as an Operational Taxonomic Unit 
(OTU) using UPARSE (version 7.1).1 And chimeric sequences 
were identified and removed using UCHIME. The phylogenetic 
affiliation of each 16S rRNA gene sequence was analyzed by 
Ribosomal Database Project Classifier2 against the SILVA 16S 
rRNA database (SSU123, Max Planck Institute, Germany) with 
70% confidence threshold. The Rarefaction curve mainly reflect-
ing the microbial diversity of each sample at different sequencing 
numbers was constructed by using the microbial diversity index 
of each sample’s sequencing quantity at different sequencing 
depths. It could be used to compare the richness, homogene-
ity, or diversity of species in samples with different amounts of 
sequencing data and also to illustrate whether the amount of 
sequencing data for a sample was reasonable. The curves tended 
to be flat, indicating that the amount of sequencing data were 
large enough to reflect the vast majority of microbial diversity 
information. In our study, the sobs index and Shannon index of 
OUT levels were used to conduct the rarefaction curves and the 
latter was also called Shannon curves. The Shannon index and 
Chao index were all alpha-diversity indices. The former mainly 
reflected the community richness and the latter reflected com-
munity diversity. The alpha-diversity indices were calculated by 
Mothur software packages (version V.1.30.1) and the curves were 
constructed using R packages (version 3.1.0). Principal coordi-
nate analysis (PCoA) was one of the data dimension reduction 
analysis methods that were used to study the structure of different 
microbial communities. Unweighted UniFrac distance-metrics 
analysis was performed using OTUs for each sample. PCoA was 
then performed based on matrix-of-distance by R programming 
language. To compare the relative abundance of microbial taxa 
between different groups, community bar plot analysis was also 
implemented by R programming language. And the differences of 
microbial species between the liraglutide-treated group and con-
trols in Wistar or GK rats were assessed by Wilcoxon rank-sum 

1 http://drive5.com/uparse/.
2 http://rdp.cme.msu.edu/.
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FigUre 1 | Liraglutide attenuated glucose levels, body weight gain, and insulin resistance. (a) Fasting blood glucose (FBG) levels. (B) Postprandial blood glucose 
(PBG) levels. (c) Food intake. (D) Body weight. (e) Fasting insulin (FINS) levels. (F) Insulin sensitivity index (ISI). (g) The homeostatic model assessment-insulin 
resistance (HOMA-IR). Data are presented as the mean ± SEM. *P < 0.05 vs WN group; #P < 0.05 vs WL group; and &P < 0.05 vs GN group.
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test. Finally, a heatmap based on Spearman’s correlation analysis 
was constructed to illustrate the correlations between microbial 
communities and metabolic parameters. P < 0.05 was considered 
significant.

resUlTs

liraglutide attenuated Blood glucose 
levels, suppressed Body Weight gain, 
and improved insulin resistance
After the first injection of liraglutide, the anti-hyperglycemic 
effects were obviously observed in the GK rats within the first 
4 weeks, but there was no difference in the two groups of Wistar 
rats. At the end of experiment, both fasting and postprandial 
blood glucose levels were significantly decreased in GK rats 
(Figures  1A,B, P  <  0.05). The food intake was significantly 
restricted within the first week after liraglutide treatment in 
both Wistar and GK rats (P < 0.05). From the third week, the 
food intake of liraglutide-treated groups tended to be stable, 
but was still significantly lower than the corresponding control 
groups (Figure 1C, P < 0.05). The weight-sparing effects were 
observed within the first 2 weeks in Wistar rats but within the 
first 4 weeks in GK rats (Figure 1D). These results manifested 
that liraglutide was able to attenuate body weight gain without 
leading to the risk of hypoglycemia. After liraglutide interven-
tion, the improvement of FINS concentrations (Figure 1E) and 
IR (both ISI and HOMA-IR) (Figures 1F,G) were all observed 
from the fourth week. After 12 weeks of intervention, the FINS 

concentrations, the ISI and the HOMA-IR were all greatly 
improved in the GL and WL groups (P <  0.05). Interestingly, 
these indices had no difference between GL and WN groups, 
which means the IR was much more serious in GK rats and that 
a lager dose of liraglutide was needed to improve IR in diabetes 
patients with obesity. The results of IPGTT (Figures 2A,B) and 
IPITT (Figures 2C,D) showed that glucose tolerance and insulin 
tolerance were improved greatly by liraglutide in GK rats rather 
than in Wistar rats.

liraglutide Decreased lipid Profile and 
improved leptin and adiponectin levels
Before intervention, there were no differences in the NEFA 
(Figure  3A), TG (Figure  3B), and HDL (Figure  3E) levels 
between Wistar and GK rats, while the TC (Figure 3C) and LDL 
(Figure 3D) levels of GK rats were drastically higher than those of 
Wistar rats. The adiponectin levels (Figure 3F) were also without 
difference between the two types of rats; however, the leptin levels 
(Figure 3G) were significantly higher in Wistar rats. After inter-
vention for 4 weeks, the lipid profile levels and the adiponectin 
and leptin levels were significantly improved. Compared with the 
two control groups, liraglutide treatment for 12 weeks dramati-
cally reduced the lipid profile levels, including NEFA, TG, TC, 
and LDL (all P < 0.05), and there were no differences between the 
WL and GL groups (Figures 3A–D). Contrarily, from the fourth 
week, liraglutide significantly elevated the HDL levels in both 
Wistar and GK rats (all P < 0.05). Interestingly, throughout the 
experiment, TG and NEFA levels of the WN group were always 
comparable to those of the GN group, while the TC and LDL 
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FigUre 2 | Liraglutide improved glucose tolerance and insulin tolerance. (a) Blood glucose levels after intraperitoneal glucose tolerance test (IPGTT). (B) The area 
under the curve (AUC) after IPGTT. (c) Blood glucose levels after intraperitoneal insulin tolerance test (IPITT). (D) The AUC after IPITT. Data are presented as the 
mean ± SEM. *P < 0.05 vs WN group; #P < 0.05 vs WL group; and &P < 0.05 vs GN group.

FigUre 3 | Liraglutide improved the lipid profiles and the leptin and adiponectin levels. (a) Non-esterified fatty acid (NEFA) levels. (B) Triglyceride (TG) levels. 
(c) Total cholesterol (TC) levels. (D) Low-density lipoprotein (LDL) cholesterol levels. (e) High-density lipoprotein (HDL) cholesterol levels. (F) Adiponectin levels.  
(g) Leptin levels. Data are presented as the mean ± SEM. *P < 0.05 vs WN group; #P < 0.05 vs WL group; and &P < 0.05 vs GN group.
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FigUre 4 | Liraglutide inhibited hepatic glucose production, decreased hepatic fat deposition and lipogenesis, and promoted fatty acid β oxidation. (a) Rate of glucose 
appearance (Raglu). (B) Gluconeogenesis (GNG). (c) Triglyceride (TG) content in the liver. (D) TG synthetic rates in the liver. (e) Rate of glycerol appearance (Ragly). (F) Fatty 
acid β-oxidation in the skeletal muscle. Data are presented as the mean ± SEM. *P < 0.05 vs WN group; #P < 0.05 vs WL group; and &P < 0.05 vs GN group.

6

Zhao et al. GLP-1 and Microbiota

Frontiers in Endocrinology | www.frontiersin.org May 2018 | Volume 9 | Article 233

levels of the GN group were gradually higher than those of the 
WN group. However, after liraglutide treatment, there was no 
difference in the lipid profile between the WL and GL groups. The 
dramatic increase in the adiponectin levels (Figure 3F) and the 
obvious reduction in leptin levels (Figure 3G) were also observed 
from the fourth week of intervention.

liraglutide Decreased raglu, gng, the Tg 
content, and synthetic rates of Tg in the 
liver and ragly but increased Fatty acid 
β-Oxidation rates in the skeletal Muscle
The Raglu (Figure 4A) and GNG (Figure 4B) were considerably 
decreased in both the WL and GL groups after a 12-week liraglutide 
intervention. The TG content (Figure 4C) and synthetic rates of 
TG (Figure 4D) in the liver were also significantly reduced in the 
two intervention groups (all P < 0.05), and there were no signifi-
cant differences between these two groups. The Ragly (Figure 4E), 
representing the extent of lipolysis, was also decreased in the two 
treatment groups (WL vs WN: 1.06 ± 0.20 vs 2.06 ± 0.61 μmol/
kg/min; GK + LIRA vs GK + NS: 0.62 ± 0.07 vs 1.23 ± 0.78 μmol/
kg/min, P  <  0.05), whereas fatty acid β-oxidation (Figure  4F) 
was dramatically increased in both Wistar and GK rats (WL vs 
WN: 17.07 ± 1.48 vs 8.85 ± 1.63%; GL vs GN: 13.92 ± 0.94 vs 
1.75 ± 0.78%, P < 0.05).

liraglutide reduced adipocyte size  
in Both Visceral and subcutaneous  
Fat Depots
Mesenteric WAT and inguinal WAT represented visceral and sub-
cutaneous fat depots, respectively. After 12-week intervention, 

adipocyte sizes of mesenteric WAT were reduced by liraglutide 
in both Wistar and GK rats (Figure  5A). Similarly, compared 
with the corresponding control groups, liraglutide also decreased 
adipocyte sizes of inguinal WAT in both Wistar and GK rats 
(Figure 5B).

liraglutide changed the structure of  
gut Microbiota in Both simple Obese  
and Diabetic Obese rats
A total of 1,975,595 valid reads were obtained from 20 samples and 
were delineated into 980 OTUs at similarity level cutoff of 97%. 
The rarefaction and estimator curves were shown in Figure 6. The 
rarefaction curves (Figure 6A) and Shannon curves (Figure 6B) 
tended to reach the saturation plateau, which indicated that the 
sequencing was deep enough to capture most of the OTUs within 
our samples. The Chao and Shannon indices of the WL group 
were significantly lower than those of the WN group. In GK rats, 
the Chao and Shannon indices also tended to be lower in the 
GL group than in the GN group, but there was no significant 
difference between these two groups (Figures 6C,D). This dem-
onstrated that liraglutide treatment could result in a decrease in 
both the microflora community richness and diversity, seemingly 
independent of the glycemic status of the rats. In addition, the 
results showed that the WN group had a higher Chao index than 
did the GN group (P < 0.05), with a comparable Shannon index. 
However, after liraglutide treatment, there were no differences in 
the Chao and Shannon indices between the WL and GL groups. 
This means liraglutide reduced microflora community richness 
more obviously in simple obese rats (Wistar rats) than it did in 
diabetic rats (GK rats).
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FigUre 5 | Liraglutide reduced adipocyte size in both visceral and 
subcutaneous fat depots. (a) Mesenteric white adipose tissues (WAT) 
hematoxylin and eosin (HE) staining (magnification 200×). (B) Inguinal WAT 
HE staining (magnification 200×).
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To explore whether the liraglutide-mediated reduction in body 
weight and glucose levels had relationship with the alteration in 
the gut microbiota, the overall microbial structure from all the 
rats was profiled. The PCoA score plots showed a substantial rear-
rangement of the microfloral structure in the liraglutide-treated 
rats compared with that of controls. In addition, the arrangement 
of the bacterial structure was different between Wistar and GK 
rats, indicating that the shift in gut microbiota was also related 
with the glucose levels (Figure 6E). The first three PCoA scores 
were 26.06, 15.68, and 13.82%, accounting for 55.56% of the 
variation between the WN and WL groups (Figure 6F). Similar 
results were found between the GN and GL groups: PC1, PC2, 
and PC3 were 26.25, 14.26, and 11.91%, respectively (Figure 6G). 
When the data from all samples were analyzed together, primary 
differences of microfloral structure could still be detected among 
the four groups (PC1/PC2/PC3: 24.75, 16.04, and 8.92%, respec-
tively) (Figure 6H).

liraglutide changed the Microbial 
composition in Both simple Obese  
and Diabetic Obese rats
The patterns seen in microbial composition were quite dissimilar 
between the liraglutide treatment groups and the corresponding 
control groups in both Wistar and GK rats. At the phylum level, 
the microflora of the four groups was dominated by species of the 
phyla Firmicutes, Bacteroidetes, Tenericutes, and Proteobacteria. 
Liraglutide obviously increased the Bacteroidetes in both 
Wistar and GK rats (WN vs WL: 0.19  ±  0.04 vs 0.31  ±  0.09; 
GN vs GL: 0.25 ±  0.06 vs 0.38 ±  0.09; P <  0.05) (Figure 7A). 
The abundance of Firmicutes also tended to be decreased in 
these two types of rats after liraglutide intervention, but there 
was no significant difference between them. This resulted in a 
higher Bacteroidetes-to-Firmicutes (B/F) ratio in the treatment 
groups than in the corresponding control groups (WN vs WL: 
0.29 ± 0.07 vs 0.54 ± 0.22; GN vs GL: 0.38 ± 0.13 vs 0.67 ± 0.23; 
P < 0.05) (Figure 7A). At the class level, HFD resulted in a dra-
matically lower percentage of Bacteroidia (phylum Bacteroidetes) 
and a comparatively higher percentage of Clostridia (phylum 
Firmicutes) in both Wistar and GK rats, both of which were 
reversed by liraglutide treatment (WN vs WL: 0.19  ±  0.04 vs 

0.31 ± 0.09, P < 0.05; 0.59 ± 0.07 vs 0.54 ± 0.18, P > 0.05; GN vs 
GL: 0.25 ± 0.06 vs 0.40 ± 0.05, P < 0.05; 0.57 ± 0.09 vs 0.49 ± 0.07, 
P > 0.05) (Figure 7B). At the family level, the total abundances 
of Ruminococcaceae and Lachnospiraceae, both belonging to the 
phylum Firmicutes, showed no difference among the four groups, 
but an obvious increase in Bacteroidales (phylum Bacteroidetes) 
was observed in the WL and GL groups compared with the 
corresponding controls (Figure  7C). As observed at the genus 
level, liraglutide led to marked changes of microbiota composi-
tion in the majority genus, with a significant enriching effects on 
Bacteroidales (phylum Bacteroidetes) (P < 0.05). The total levels 
of most genera from the phylum Firmicutes also showed no sig-
nificant difference between the intervention and control groups  
(Figure 7D).

The differential species analysis (a taxonomy-based compari-
son) was also conducted between the liraglutide-treated group 
and controls in Wistar or GK rats. The results showed that the 
genera within the phylum Bacteroidetes were increased, while 
the genera within the phylum Firmicutes were decreased in 
Wistar rats (Figures  7E,F). Interestingly, at the phylum level, 
there were differences in phyla Tenericutes, Cyanobacteria, and 
Acidobacteria between the GN and GL groups (Figure 7G), but at 
the genus level, the genera mainly within the phyla Bacteroidetes 
and Firmicutes showed differences between these two groups 
(Figure 7H).

relationship Between gut Microbiota 
composition and Metabolic Parameters
We also assessed the relationship between the relative abundance 
of dominant bacterial genera and metabolic parameters to iden-
tify the genera that might contribute to the anti-hyperglycemia 
and anti-obesity effects. The results showed that the microbiota 
(such as Romboutsia and Ruminiclostridium), belonging to the 
phylum Firmicutes, were positively associated with the obesity-
related parameters, including the lipid profile and lipogenesis 
in the liver, etc. In contrast, the microbiota (such as Prevotella.) 
belonging to the phylum Bacteroidetes correlated negatively with 
the obesity-related parameters (all P  <  0.001). In addition, we 
found the microbiota Ruminiclostridium belonging to the phylum 
Firmicutes had a significantly positive relationship with hyper-
glycemia. In this study, genera having anti-hyperglycemia effects 
were not found (Figure 8).

DiscUssiOn

In this study, we found that liraglutide improved both glucose and 
lipid metabolism via modulating the structure of gut microbiota. 
After intervention with liraglutide, the abundance and diversity 
of the gut microbiota were all decreased greatly. In Spearman’s 
correlation analysis, the correlation of the gut microbiota with 
metabolic parameters was also displayed.

Changes in gut microbiota composition and activity have 
been associated with different metabolic disorders, including 
obesity, diabetes, and cardiometabolic disorders (7, 20, 21). 
Previous studies displayed that the gut microbiota in obese 
subjects was characterized by higher populations of Firmicutes 
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FigUre 6 | Liraglutide changed the overall structure of gut microbiota. (a) The rarefaction curves. (B) Shannon curves. (c) Chao index levels. (D) Shannon index 
levels. (e) Principal coordinate analysis (PCoA) generated using an unweighted UniFrac metric between before and after liraglutide intervention in all rats. (F) PCoA 
between WN and WL groups. (g) PCoA between GN and GL groups. (h) PCoA between the four groups.
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and lower populations of Bacteroidetes, as well as a reduction in 
microbial diversity (22). Several probiotics and their mixtures have 
been reported to improve metabolic syndrome (MS) (23, 24) by 
modulating the composition of the gut microbiota or its metabo-
lites (23–25). For example, Bifidobacterium animalis ssp. lactis 
GCL2505 treatment significantly increased the abundance of phy-
lum Actinobacteria but did not affect the Bacteroidetes/Firmicutes 
ratio (7). B. lactis GCL2505, a highly viable and proliferative 
probiotic, exerted anti-MS effects, such as improving glucose 
tolerance and suppressing visceral fat accumulation, via chang-
ing the overall structure of the gut microbiota (7). In addition, Li 
et al. (26) showed a simultaneous reduction of both Firmicutes 
and Bacteroidetes but a significant increase in Proteobacteria 
after the gastric bypass in a rat model. Nicola Basso et al. (17) 
found no significant changes in the Firmicutes/Bacteroidetes ratio 

after glandular gastrectomy but rather dramatic shifts in relative 
abundance within the Firmicutes, with increased relative abun-
dance of Lactobacillus, and reduced abundance of Ruminococcus, 
characterizing improved metabolic health. All these suggested 
that modulating the structure of the gut microbiota was consid-
ered an emerging therapeutic strategy for improving metabolic 
disorders.

In this study, liraglutide increased the Bacteroidetes-to-
Firmicutes ratio to lower weight significantly regardless of the 
glycemic status, consistent with the results of previous studies 
(14, 15, 27). GLP-1 receptor agonists, mimicking gut-derived 
molecules, have been used for diabetes and obesity treatment (1). 
Previous reports indicated that the proportions of the phylum 
Firmicutes and the class Clostridia were significantly reduced in 
the guts of diabetic patients (28). The exact correlation between 

FigUre 7 | Continued

https://www.frontiersin.org/Endocrinology/
https://www.frontiersin.org
https://www.frontiersin.org/Endocrinology/archive


FigUre 7 | Liraglutide changed the composition of gut microbiota in both simple obese and type 2 diabetes mellitus obese rats. (a) Composition of gut microbiota 
at the phylum level. (B) Composition of gut microbiota at the class level. (c) Composition of gut microbiota at the family level. (D) Composition of gut microbiota at 
the genus level. (e) The differential species between the WN and WL groups at the phylum level. (F) The differential species between the WN and WL groups at the 
genus level. (g) The differential species between the GN and GL groups at the phylum level. (h) The differential species between the GN and GL groups in the 
genus level. *P < 0.05 and **P < 0.01.
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the Firmicutes/Bacteroidetes ratio and obesity remain under 
discussion. Some studies indicated an increased ratio (22, 29), 
while others indicated the inverse (6), and recent studies have 
revealed no correlation at all (30, 31). Lin Wang et al. observed 
no substantial changes in the abundance of the phyla Firmicutes 
and Bacteroides but found a higher Firmicutes-to-Bacteroidetes 
ratio under liraglutide administration (4). Our study found 
the abundances of Bacteroides were significantly increased 
and the abundances of Firmicutes tended to be decreased after 
liraglutide treatment. This discrepancy may be attributed to the 
different model systems used (mice vs rats), different lifestyles 
(such as under field conditions without restriction, intensity 

and regularity of exercise as well as total daily energy intake) 
and methodological differences in DNA extraction protocols as 
well as primer design (6). When these factors were excluded in 
well-defined experiments in both animals and human studies 
(5, 22, 29), the results showed the positive relationship between 
the Firmicutes-to-Bacteroidetes ratio and obesity. However, 
when the study was conducted in human volunteers under field 
conditions without restriction, the finding was contrary (6). 
The exact reasons still need further investigation.

Liraglutide mainly changed the structure of gut microbiota at 
the family- and genus-levels, which might be more relevant to 
body weight. The genera Candidatus, Arthromitus (16), Roseburia 
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FigUre 8 | The relationship between microbiota composition and metabolic parameters. *P < 0.05, **P < 0.01, and ***P < 0.001.
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