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Rapid growth of the human population has caused the accumulation of rare genetic vari-
ants that may play a role in the origin of genetic diseases. However, it is challenging to
identify those rare variants responsible for specific diseases without genetic data from an
extraordinarily large population sample. Here we focused on the accumulated data from
the human mitochondrial (mt) genome sequences because this data provided 7,098 whole
genomes for analysis. In this dataset we identified 6,110 single nucleotide variants (SNVs)
and their frequency and determined that the best-fit demographic model for the 7,098
genomes included severe population bottlenecks and exponential expansions of the non-
African population. Using this model, we simulated the evolution of mt genomes in order
to ascertain the behavior of deleterious mutations. We found that such deleterious muta-
tions barely survived during population expansion. We derived the threshold frequency of
a deleterious mutation in separate African, Asian, and European populations and used it to
identify pathogenic mutations in our dataset. Although threshold frequency was very low,
the proportion of variants showing a lower frequency than that threshold was 82, 83, and
91% of the total variants for the African, Asian, and European populations, respectively.
Within these variants, only 18 known pathogenic mutations were detected in the 7,098
genomes. This result showed the difficulty of detecting a pathogenic mutation within an
abundance of rare variants in the human population, even with a large number of genomes
available for study.
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INTRODUCTION
The human population has recently expanded to about seven bil-
lion, according to the last census (Roberts, 2011). Studies inferring
the demographic history of human populations from genetic data
have also shown an increase in effective population size, especially
for Europeans and Asians (Gutenkunst et al., 2009; Gravel et al.,
2011). Interestingly, the estimated growth rate of effective popu-
lation size increased as the number of samples analyzed increased
(Keinan and Clark, 2012). This finding supports the concept that
larger samples can better capture the rare variants in the popula-
tion, and thus, that sample size could affect the estimation of the
demographic history of the human population. Broad sampling is
therefore necessary to the accuracy of any study of the history of
modern humans.

Rapid population growth also results in an excess of rare vari-
ants, which have recently been the focus of many studies of the
identification of disease-related variants (Manolio et al., 2009; Cir-
ulli and Goldstein, 2010). Several researchers have detected the
association of rare variants with particular diseases (Nejentsev
et al., 2009; Calvo et al., 2010; Johansen et al., 2010). For such
identification, a large sample size is necessary: the low frequency
of rare variants reduces statistical power for detecting a significant
association between any single rare variant and a specific disease

(Bansal et al., 2010). In addition, the frequency of rare variants
can depend upon sampling biases (Keinan and Clark, 2012), since
such variants have so recently appeared.

Extensive examination of the distribution of rare variants
within subpopulations of humans would greatly contribute toward
the development of the analytical strategies needed to identify
those rare variants responsible for specific diseases. Relative to this
issue, the mitochondrial (mt) genome can be an attractive sub-
ject to study. The 16.5 kb sized genome allows us to sequence
whole genomes within large samples. The haploid genome of
mtDNA allows clear identifications of subpopulations of individ-
ual genomes. Further, the human diseases caused by mutations in
mtDNA have been well studied. Mutations in mtDNA can play a
role in mt dysfunction that leads to energy deficiencies in the cells
of our bodies (Wallace, 2010). Several mt diseases have been linked
to maternally inherited mutations, for example, Leber’s hereditary
optic neuropathy (LHON), mt encephalomyopathy, and Leigh
syndrome (Wallace, 2010). Those diseases are characterized by
degenerative phenotypes that typically include vision loss, muscle
weakness, cardiomyopathy, and dementias.

On the other hand, a high mutation rate of the mtDNA (Shi-
genaga et al., 1994; Bogenhagen, 1999) means that somatic cells
accumulate mutant mtDNA over the life of an individual. The
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accumulation of these mt mutations could relate to aging and age-
related diseases, such as diabetes, obesity, cancers, heart disease,
and Alzheimer’s disease (van den Ouweland et al., 1992; Wallace,
2005; Czarnecka and Bartnik, 2011). Because offspring can inherit
only mtDNAs passed through germ-line cell proliferation along
the maternal lineage (Giles et al., 1980; Bergstrom and Pritchard,
1998), the mutant mtDNA in somatic cells is not transmitted to
the next generation.

In this study, we focused on transmitted mutations to ascertain
their behavior during recent evolution of the human population;
we also investigated effects of the population history of humans
on the identification of disease-related mutations among mt vari-
ants in the given dataset. We analyzed 7,098 whole mt genomes and
determined the demographic model of the human population his-
tory of the mt genomes, based on the genetic diversity of the 7,098
mt genomes. Under an assumption of this demographic model,
we simulated mt genome sequences and estimated the frequency
of deleterious mutations in the population.

MATERIALS AND METHODS
MITOCHONDRIAL GENOME SEQUENCES
More than 8,000 complete Homo sapiens mt genome sequences
were downloaded from GenBank. Genomes that contained gaps
longer than 300 bp were subsequently filtered out, most of
which had unsequenced control regions. After filtering, we ana-
lyzed 7,098 genomes, including the Cambridge reference genome
(NC_012920). We have included a list of the accession numbers of
these 7,098 genomes in the Supplementary Material.

POPULATION GENETIC ANALYSES
The 7,098 genomic sequences were aligned using MAFFT (Katoh
et al., 2005). We aligned the two control regions and the non-
control intervals independently and then combined them into
one alignment. We identified sites having at least two different
nucleotides as single nucleotide variants (SNVs). (The indel and
heteroplasmic sites were not counted as variants.) We used the
software HaploGrep (Kloss-Brandstätter et al., 2011) to identify
haplogroups.

DEMOGRAPHIC MODELS
In order to determine a suitable demographic model for the
human mt population, we tested three human demography mod-
els (Marth et al., 2004; Voight et al., 2005; Gutenkunst et al., 2009),
using the ms coalescent simulation program (Hudson, 2002). We
tuned the simulation parameters based on the assumption that the
effective population size of the human mt genome was a quarter of
that of the human nuclear genome (Hartl and Clark, 2007). (See
Figure A1 in Appendix for the parameters and the ms command
lines). For each model, we simulated 1,000 sets of 7,098 genomes.
The sample size of each population was identical to the number
of genomes in each haplogroup.

FORWARD SIMULATIONS
To ascertain the frequency of a deleterious mutation within a
population during demographic events, we needed to trace such
mutations by forward simulations. Forward simulations generated
mt genome sequences with the same length as the human mt ref-
erence genome (16,569 bp), based on the Gutenkunst et al. (2009)

model. We excluded migration events between populations in the
model because the expected migration rate was low, and the lack
of recombination in mtDNA meant the effect of such migration
was likely very small.

The African demographic model contained only one popula-
tion expansion (Ne from 1,825 to 3,075) 8,800 generations ago, and
no demographic event up to that time point. The time of 8,800
generations is longer than the fixation time (2Ne= 6,150 genera-
tions) of a neutral mutation in a population. Because a deleterious
mutation is eliminated within a population in less time than a
neutral mutation, 8,800 generations is long enough to trace the
frequency of any deleterious mutation. Therefore, we simulated an
ancestral population of Ne= 3,075, and ignored history prior to
8,800 generations. To save time in reaching the state of population
equilibrium, we used the FREGENE program (Chadeau-Hyam
et al., 2008) to generate the ancestral population.

Basically we repeated a process of mutation, random sampling,
and selection in each generation. In each generation, mutations
occurred at a rate of µ= 2.0e−07 per generation per site without
reverse mutation in the ancestral and AFR population. The simu-
lation was tuned to generate the expected diversity (the observed
nucleotide diversity of African).

According to the assumed demographic model, African and
non-African populations split 5,600 generations ago. For the
ancestral population of ASI and EUR, we randomly selected
525 genomes from the ancestral population (Ne= 3,075). During
4,752 generations, non-African evolved with the mutation rate of
µ= 7.0e−07 per generation per site, without reverse mutation,
which was adjusted for the extent of expected diversity. The muta-
tion rate was set lower than the African rate, which was adjusted for
the extent of diversity expected for non-African. Note that the rate
of mutation does not affect the frequency of a mutation. A defined
mutation rate was needed only for the process of generating new
mutations.

At the point in time of 848 generations ago, 128 ASI and 250
EUR genomes were randomly selected from the ancestral popula-
tion of non-African (Ne= 525). Since the two populations evolved
independently up to the present, from the 848 generations ago,
practically, our simulations were separately performed for each of
three populations.

A frequency of a mutation was traced while negative selection
operated on the mutation during our random sampling. Such a
deleterious mutation was randomly selected among new muta-
tions for each population, and its frequency was traced until it
was eliminated or fixed in the population. The simulation then
randomly selected a new mutation in the next generation. The
selection coefficient for negative selection was supposed to be
consistent throughout the evolution of the population. Each sim-
ulation tested for each of the various selection coefficients ranging
from neutral evolution to strong negative selection, 0∼ 0.1. For
the sake of a clear modeling of negative selection, we assumed
that only a single deleterious mutation existed at any one time.
The most important parameter for determining the frequency of
a deleterious mutation was the population growth rate. The AFR
effective population size has not changed, while the population
size in the ASI and EUR populations increased at a rate of 0.55
and 0.4% per generation, respectively. We recorded the frequency
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within each of three populations at the last or present generation
if at least one genome carried the mutation. For each selection
coefficient, we collected 10,000 frequency data of the mutations in
each of three populations.

RESULTS
THE SINGLE NUCLEOTIDE VARIANTS IN 7,098 HUMAN
MITOCHONDRIAL GENOMES
We analyzed 7,098 complete mt genomes after filtering non-
complete genomes among the retrieved sequences from GenBank
(see Materials and Methods). Since our aim was to study the
inherited variants, we intended to exclude any somatic mutations
contained in the retrieved sequences. Also, as many of the mt
genomes were generated via the sequencing of PCR products, it
is likely that some mt sequences in the GenBank may contain the
result of technical errors (Yao et al., 2009). It was therefore chal-
lenging to distinguish rare variants from sequencing artifacts. To
do so, among all variants found in the 7,098 genomes, we used only
SNVs, with the exception of indel and heteroplasmic sites. The
SNVs were then grouped into two categories: the first (Dataset 1)
consisted of all SNVs identified from the 7,098 genomes, and the
second (Dataset 2) contained all SNVs with the exception of sin-
gletons which appeared only once among the samples (Table 1).
While Dataset 1 is likely to include more errors, Dataset 2 might
have lost many rare variants as a consequence of our attempts at
error reduction.

In total, 5,554 nucleotide positions were identified as hav-
ing nucleotide variations. Among the positions, we detected 517
multi-allelic positions that had at least three variations. Those
multi-allelic positions were considered as multiple variants, for
example, a tri-allelic position was consistent with two SNVs. We
counted 1,073 SNVs for the 517 positions; 6,110 SNVs were finally
identified in 5,554 nucleotide positions. These 6,110 SNVs were
consistent with Dataset 1. Dataset 2 contained 4,092 SNVs found
in 3,895 nucleotide positions. Among those positions, 183 had at
least three variations and 380 SNVs were identified (Table 1). Of
the Dataset 1 SNVs, 663 (11%) and 5,447 (89%) were located in
the control and remaining regions respectively. Similar ratios were
found for Dataset 2: 12 and 88% for the corresponding regions
respectively (Table 2).

The SNVs identified in this study are the largest datasets of
the human mt variants studied so far (Figure 1). As the sam-
ple size increased, the number of identified SNVs also increased.
The similarity of the number of SNVs in mtDB1 to the number
in Dataset 2 supports the existence of those SNVs in the human
population. In addition, the large difference in the numbers of
SNVs between Dataset 1 and 2 can be explained by the existence
of singleton SNVs; that is, those which appeared only once in the
7,098 genomes. Although the number of SNVs was corrected by
the sample size to Waterson’s θ (Waterson, 1975), the θ value for
the entire region still increased, except in Dataset 2. On the other
hand, the ratio of the θ value for the control versus the remain-
ing regions decreased as the sample size increased. This suggests
that the number of SNVs increased in the remaining region rather

1www.mtdb.igp.uu.se

Table 1 |The number of SNVs of the 7,098 human mt genomes for

each region.

Dataset 1 Dataset 2

Number Proportion

(%)

Number Proportion

(%)

Position

Total 5,554 3,895

Multi-allelic 517 9 183 5

SNVs

Total 6,110 4,092

Control region 663 11 484 12

Non-coding 27 0 20 0

RNA genes 882 14 528 13

Protein-coding Nona 1,515 25 882 22

Synb 3,023 49 2,188 53

aNon-synonymous SNVs.
bSynonymous SNVs.

than the control region as the sample size increased. Therefore, the
large number of Dataset 1 SNVs resulted from a large number of
singletons and increased variant capture in the remaining region
due to the large sample size.

POPULATION STRUCTURES OF 7,098 HUMAN MITOCHONDRIAL
GENOMES
The genetic diversity of the 7,098 human mt genomes could be
represented by the nucleotide diversity (Π: per genome, π: per
site; Nei and Li, 1979), which represents the nucleotide difference
between two randomly chosen genomes. Nucleotide diversity is
less likely to be affected by rare and/or erroneous SNVs, because
it considers allele frequency in a population. The Π value of the
7,098 genomes was 39.8 and 39.3 for Dataset 1 and 2, respec-
tively, and the π value was 0.24% for both datasets (Table 2).
However, overall nucleotide diversity can be biased by popula-
tion samplings. In order to examine the distribution of origin of
the samples, we identified haplogroups for the 7,098 genomes.
Every known haplotype was found in the genomes, indicating
that the assembled mt database of 7,098 mt genomes represents
sufficiently deep sampling of the human population worldwide.
Because our SNV dataset included many novel and/or rare SNVs,
most of the genomes were unique and newly identified haplotypes.
For the 7,098 genomes in this study, we determined only macro-
haplogroups identifying three major populations of African,Asian,
and European humans. Our simplifying assumption was that the
three representative haplogroups (assigned L, M, and N) corre-
spond to the African, Asian, and European origin populations
respectively (Wallace et al., 1999). The 7,098 genomes consisted
of 685 (10%) of the L haplogroups (African, AFR), 2,658 (37%) of
the M haplogroups (Asian, ASI), and 3,755 (53%) of the N hap-
logroups (European, EUR; Table A1 in Appendix). AFR is most
underrepresented in our dataset.

Within AFR, ASI, and EUR, the numbers of SNVs were 2,071,
3,385, and 4,182 respectively, for Dataset 1 (Figure 2). The number
of SNVs apparently depended upon the sample size. Therefore,
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Table 2 |The genetic diversity of the 7,098 human mitochondrial genomes.

Region Length (bp) Sa θb (%) Πc πd (%) Maxe

Dataset 1 All 16,569 6,110 3.90 39.8 0.24 123

Control 1,122 663 6.26 9.9 0.88 32

Remain 15,447 5,447 3.73 29.9 0.19 98

Dataset 2 All 16,569 4,092 2.61 39.3 0.24 122

Control 1,122 484 4.57 9.8 0.88 32

Remain 15,447 3,608 2.47 29.5 0.18 96

aThe number of segregating sites (equal to the number of SNVs).
bThe number of segregating sites per site, Watterson’s θ (Waterson, 1975).
cThe average number of pairwise nucleotide differences, Nucleotide diversity per genome (Nei and Li, 1979).
dThe nucleotide diversity per site.
eThe maximum number of pairwise nucleotide differences.

FIGURE 1 | Comparison of the number of identified SNVs to previous
studies. The X -axis indicates five datasets from Ingman et al. (2000), Carter
(2007), mtDB (http://www.mtdb.igp.uu.se/), and our dataset 1 and 2. A red
dot with a number shows the number of genomes used in the studies or
database. The bar graph represents the number of SNVs identified in each
dataset, and the number in the bar is the SNV number. The orange lines
indicate the number of segregating sites per site (θ) for the remaining
region in mtDNA. The blue lines indicate the ratio of the θ value for the
control versus the remaining regions.

it is not surprising that EUR, having the largest sample size,
had the largest number of SNVs. The Π value should not be
affected by the sample size; therefore we can compare diversity
among the three populations. The Π value within AFR, hav-
ing the smallest sample size and number of SNVs, showed the
largest nucleotide diversity (64.0). The nucleotide diversity val-
ues within ASI (30.1) and within EUR (30.6) were both less
than half the AFR value (Table A2 in Appendix). The Π value
between AFR and ASI (57.9) was similar to that of the diversity
between AFR and EUR (60.3), and both these values were even
marginally smaller than the Π value within AFR itself. The overall
distribution of Π values for Dataset 2 was similar (Table A2 in
Appendix).

FIGURE 2 | Number of SNVs and nucleotide diversity for three
populations. The Venn diagram represents the number of SNVs identified
in AFR, ASI, and EUR. Inside the diagram, the number of SNVs and the
nucleotide diversity per genome (Π) are shown in the corresponding area.

To show the divergence among populations, we examined their
shared variants. We used Dataset 2 for this analysis because all sin-
gleton SNVs were population-specific. Among the Dataset 2 SNVs,
62% shared in at least two populations (Figure A2 in Appendix). In
the AFR, ASI, and EUR SNVs, the proportions of the population-
specific variants were 12, 20, and 25% respectively. We categorized
Dataset 2 SNVs into the common (frequency > 0.01) and the rare
(frequency≤ 0.01) groups in order to compare the sharing of vari-
ants between the two. Most SNVs (3,709; 91%) fell into the rare
SNV group (Figure 3A); only 383 SNVs (9%) were in the common
group (Figure 3B). The proportion of population-specific variants
was higher in the rare group (40%) than in the common group
(15%). The proportion of shared variants across populations was
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FIGURE 3 |The distribution of the shared variants. The X -axis indicates
each SNV of Dataset 2. The Y -axis indicates the fraction of the copies of the
non-reference allele present in each of the three populations. The length of

red, yellow, and blue in each bar shows the fraction of AFR, ASI, and EUR
respectively. (A) The rare SNVs with frequency≤0.01 (3,709 SNVs). (B) The
common SNVs with frequency > 0.01 (383 SNVs).

very low among the rare SNVs. In contrast, most common SNVs
(85%) shared at least two populations.

It is likely that the population-specific variants were generated
very recently after population splits, while the shared common
variants have existed for a long time, preceding the population
splits, and their frequency increased across populations. The lack
of shared variants between populations suggests divergent sub-
populations within the human population. On the other hand, the
large proportion of rare variants and the small amount of diversity
in non-AFR is likely to be a result of recent non-AFR population
expansions, as is known to be the case for nuclear variants (Gravel
et al., 2011). The demographic history of the human population
can play an important role in the distribution of variants in mt
genomes.

The short genome size and the high mutation rate of mtDNA
could limit inference of the accurate demographic history. We
therefore tested three demographic models (Marth et al., 2004;
Voight et al., 2005; Gutenkunst et al., 2009) to determine the
best-fit model for the 7,098 mt genomes (see Materials and Meth-
ods; Figure A1 in Appendix). From the comparison of the Π

values of three populations of the 7,098 genomes and the sim-
ulated genomes, we determined Gutenkunst et al.’s (2009) model
to be the best-fit model for our dataset (Table A3 in Appendix;
Figure 4). This model includes the exponential population growth
that followed severe population bottlenecks for the non-Africans
population, which is consistent with the distribution of variants
of our datasets.

THE ESTIMATION OF THE FREQUENCY OF DELETERIOUS MUTATIONS
For the identification of disease-related mutations among mt
variants in the human population, we intended to ascertain the

frequency of a deleterious mutation within the demographic his-
tory of the AFR, ASI, and EUR populations through the use of
simulation studies. Based on the demographic model determined,
we performed forward simulations for AFR, ASI, and EUR, sep-
arately, to ascertain the frequency of a deleterious mutation in
each population (see details in Materials and Methods). These
simulations generated 10,000 datasets regarding the frequency of
mutation for each population. The occurrence of the frequency
of the mutations among the datasets became our empirical prob-
ability which we used to ascertain the frequency of a deleterious
mutation (Figure A3 in Appendix). In this simulation, the fre-
quency increased from zero to one. The highest frequency among
10,000 datasets was defined as the“threshold frequency”of a muta-
tion (Figure 5). The higher frequency than the threshold frequency
is unlikely occurred.

The threshold frequency was determined according to the level
of selective constraint, s. Under neutral evolution (s= 0), the
threshold frequency in AFR, ASI, and EUR was 70.7, 99.7, and
99.1%, respectively (Figure 5A). The AFR threshold was low com-
pared to the non-AFR threshold because AFR had not experienced
a population bottleneck and had maintained its large effective
ancestral population size. The chance for the fixation of a mutation
in the larger population is smaller, and then the high frequency of
a new mutation was unlikely even under neutrality. On the other
hand, EUR and ASI had small effective ancestral population sizes,
following severe population bottlenecks, but recently their popu-
lation sizes have exponentially increased. This dynamic change in
population size might give a high likelihood of increased frequency
of a neutral mutation due to genetic drift.

Under the constraint of negative selection, a mutation is lim-
ited in its ability to increase its frequency in any population.
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The frequency of a mutation dramatically decreases in any selec-
tive constrains, compared to a neutral mutation. We tested var-
ious level of selective coefficients: the higher selective coefficient
resulted in the lower threshold frequency (Figure A3; Table A4 in
Appendix). Our simulations traced a frequency of a new muta-
tion during evolution. If the mutation is slightly deleterious, the
behavior of the mutations is nearly neutral (Ohta, 1992). Under

FIGURE 4 |The best-fit demographic model for the human mt
genomes. The parameters of the model are illustrated in the figure:
passage of time is shown in the left side bars, with the most recent at the
bottom. The population growth for ASI and EUR starts 848 generations ago
from the present. The growth rate is also shown in the figure: the width of
bars represents the size of the effective population. The population size was
adjusted for mt genomes, under an assumption that the sex ratio is 1:1.

the weak selective pressure (s= 0.01), distribution of the fre-
quency of a mutation was similar to that of the frequency of a
neutral mutation (Figure A3 in Appendix). Here we focused on
disease-related mutations in the mtDNA, which contains mostly
coding sequences. Therefore, we chose s= 0.05 which is deleteri-
ous enough to predominate against random drift in its effect on
mutation behavior.

In a selective constraint (s= 0.05), the distribution of the
frequency data was concentrated in the rare frequency. Most fre-
quencies (at least 80% of the frequency data) were lower than
0.1% in any population. The threshold frequency was determined
to be 1.98, 0.55, and 0.92%, in AFR, ASI, and EUR, respectively
(Figure 5B; Table A4 in Appendix). The difference in threshold
frequency among the three populations resulted from their dif-
ferent demographic history. AFR demonstrated as lightly higher
threshold frequency than non-AFR, and EUR also demonstrated
a slightly higher threshold frequency than ASI. The population
growth rates could cause the differences in the threshold fre-
quency. The current population size in the demographic model
was 3,075, 13,403, and 7,381 in AFR, ASI, and EUR, respectively.
AFR had no change in its size for 8,800 generations and was the
smallest in size among the three populations. Although the size
of ASI was smaller than that of EUR at population bottleneck,
the higher population growth rate of ASI resulted in the larger
final population size. Most mutations recorded in the simula-
tions occurred very recently, and the frequency of the mutations
in ASI was likely very low in the large population. Moreover,
it is likely that the large population size in very recent history
increased the efficacy of the operation of negative selection on
the new deleterious mutation in non-AFR. The selective con-
straint could have more effect on the frequency of a mutation
than genetic drift in the very recent population history for the
non-AFR population.

FIGURE 5 |The distribution of the frequency of a mutation among the
simulations. The X -axis represents bins of the frequency of a mutation in
each population. The Y -axis indicates the occurrence of each bin of the
mutation frequency in the simulated 10,000 datasets of mutation frequency.
Each bar graphs the occurrence of the mutation frequency, and the solid line
represents the accumulation of those occurrences for each population of AFR

(red), ASI (yellow), and EUR (blue). The highest frequency data among 10,000
datasets was defined to “threshold frequency.” The threshold frequency in
each population is shown below the X -axis, designated by the colored
percentile figures. (A) Illustrates the threshold frequency under neutral
evolution. (B) Illustrates the threshold frequency under negative selection
(s=0.05).
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THE IDENTIFICATIONS OF PATHOGENIC MUTATIONS IN THE 7,098 MT
GENOMES
To detect pathogenic mutations, we applied the threshold fre-
quency for our dataset and used the 506 diseases-associated mt
mutations listed in the MITOMAP2. Those mutations have been
reported to be associated with diseases, and based upon con-
sistency of independent studies, were categorized as “Reported,”
“Unclear,” or “Conflicting.” Fifty-two of the 506 mutations were
categorized as “Confirmed,” indicating that at least two or more
independent laboratories have published reports on their patho-
genicity. We used these confirmed mutations as positive controls
in detection of pathogenic diseases.

First, we examined the frequency of the 506 pathogenic muta-
tions in our datasets. Among the mutations, 5, 9, and 7% showed
a higher frequency than the threshold frequency in AFR, ASI, and
EUR respectively (Figure A4 in Appendix). Of the 52 confirmed
pathogenic mutations, 19 mutations were found in our datasets: 1,
7, and 17 mutations in AFR, ASI, and EUR respectively. Among the
19 mutations,18 showed much lower frequency than threshold fre-
quency, especially for AFR and EUR (Figure 6A). Only one muta-
tion, 11778A, showing a higher frequency than the threshold in
ASI, is one of the most well known pathogenic mutations, being the
primary mutations of LHON (Wallace et al., 1988). In the case of
LHON, factors in addition to the mutation may have an important
role. In particular, the 11778A mutations showed an increase in
the incidence of the disease penetrance along with the haplogroup
J, which is of European origin (Brown et al., 1997; Carelli et al.,
2006; Hudson et al., 2007; Ghelli et al., 2009). Therefore, selective
constraint could fluctuate, depending upon the haplotypes. Inter-
estingly, this effect of haplotype is consistent with our finding that
the frequencies of the mutations are lower than the threshold in
EUR but not in ASI. The mutations might be less deleterious in
the ASI haplotypes and could increase in frequency in ASI.

Subsequently, we identified candidates for deleterious variants
in the Datasets 1 and 2 SNVs. We assumed that the nucleotide
sequence of Homo neanderthalensis (NC_011137) had an ances-
tral type and calculated frequency of derived type for each SNV
in each population. For Dataset 1, the numbers of AFR, ASI, and
EUR SNVs showing a frequency lower than the threshold were
respectively 1,703 (82%), 2,826 (83%), and 3,787 (91%; Figure 6B;
Table A5 in Appendix). For Dataset 2, 1,369 (77%), 2,112 (78%),
and 2,735 (87%) SNVs in the three respective populations had
a frequency below the threshold. Surprisingly, most of the SNVs
in our dataset were candidates for deleterious variants. Among
them, the proportion of confirmed pathogenic mutations that we
detected in AFR, ASI, and EUR Dataset 1 SNVs, was very low, 0.06,
0.25, and 0.45% in the three respective populations (Figure 6B).
We found a similarly small proportion in Dataset 2 (Table A5 in
Appendix). Even considering all 506 pathogenic mutations, they
represented only a small subset of candidates, about 1, 6, and 11%
for AFR, ASI, and EUR, respectively. This low ratio of patho-
genic mutations detected among the candidates was apparently
an outcome of the large proportion of rare variants in the human
population.

2www.mitomap.org

As mentioned before, rapid expansions of the human popula-
tion have resulted in an excess of rare variants. The large number
of these rare variants can be a major factor in limiting the possi-
ble detection of pathogenic mutations. In conclusion, our study
showed that the recent population history of humans limits the
detection of pathogenic mutations in mt genomes.

DISCUSSION
In this study, we analyzed 7,098 human mt genomes and identified
the largest number of SNVs in the mt genomes (Figure 1). Most of
the identified variants were rare, and a much smaller proportion of
rare compared to common variants was shared across the AFR and
non-AFR populations (Figures 2 and 3). The main factor in this
distribution of variants was the incidence of recent population
bottlenecks followed by exponential population growth. Under
the assumption of population history (Figure 4), we estimated the
threshold frequency of a deleterious mutation in the human pop-
ulation (Figure 5). Although the threshold frequency is very low,
we detected a large number of candidate variants that potentially
relate to diseases and examined the small proportion of the known
pathogenic mutations within the candidates (Figure 6).

Only 19 pathogenic mutations in the 7,098 mt genomes were
detected. The largest number of genomes carrying pathogenic
mutations among those 19 mutations was 1/685, 12/2,685, and
13/3,755 in AFR, ASI, and EUR, respectively. To detect one genome
with a pathogenic mutation, at least 685, 222, and 289 genomes
of the three respective populations are needed. The sample size
of 7,098 genomes was not sufficient for identifying 33 out of the
52 known pathogenic mutations. Detection of significant associ-
ations of rare variants with particular diseases in genome-wide
association studies has been considered challenging (Asimit and
Zeggini, 2010; Bansal et al., 2010). For example, if the ratio of
the frequency of a candidate mutation of the case versus control
populations is two, and the frequency of the mutation is the same
as the threshold frequency, to attain the significant difference of
the frequency of the mutation between the case population and
the control population (P < 0.01, Fisher’s-exact test), total sample
sizes of at least 2400, 4800, and 7400 are required for AFR, ASI,
and EUR respectively (Figure A5 in Appendix). This suggests that
a huge sample size is needed in order to detect a single pathogenic
mutation.

As noted throughout the manuscript, the main reason for path-
ogenic mutations being so rarely found in the human population
is exponential population growth. Recent studies inferring the
population history of humans have estimated various rates of
population growth (Gutenkunst et al., 2009; Coventry et al., 2010;
Gravel et al., 2011; Li and Durbin, 2011). The growth rate we used
for EUR (Gutenkunst et al., 2009) was lower than the rate inferred
by Coventry et al. (2010). We tested the higher growth rate and
found that the chance of survival of a deleterious mutation was
smaller. When we used the higher growth rate, the threshold fre-
quency became lower (Figure A6 in Appendix). This suggests that
our estimation of the threshold frequency is conservative and that
the threshold to determine pathogenic mutations is likely to be
much lower than our estimation for EUR.

In addition, our findings suggest that rare variants in the mt
genomes could play a major role in causing mt diseases. Although
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FIGURE 6 |The candidates and confirmed pathogenic mutations. (A)
The frequency of the 19 out of 52 confirmed pathogenic mutations. The X -
and Y -axes indicate positions of each of 19 confirmed pathogenic
mutations and its frequency in each population. A bar shows the
frequency, and the line represents the threshold frequency. One mutation

(11778A) showed the frequency higher than the threshold. (B) For each
population, the candidate variants of a deleterious mutation in Dataset 1
were determined by using the threshold frequency. Among the
candidates, the confirmed pathogenic mutations are indicated by the
approximate size of Venn diagram.

most new mutations could be eliminated by genetic drift in
an equilibrium population, such a population could also attain
many new mutations due to increase in population size (Coven-
try et al., 2010). If population expansion was recent, these could
include deleterious mutations, as insufficient time for elimina-
tion of such mutations by purifying selection would have passed
(Lohmueller et al., 2008). We determined more than 83 and 91%
of the variants that existed in the ASI and EUR population were
rare enough to be candidates for deleterious variants. The pro-
portions were larger than the proportion (82%) of candidates
within the AFR, which has not experienced recent exponential
population growth (Figure 6). The non-AFR population histories
have resulted in a greater genetic load of rare variants within the

populations. It has been suggested that the accumulation of rare
variants in a genome could play a role in causes of complex dis-
eases (Keinan and Clark, 2012). The accumulation of rare variants
in the mt genomes also could be a contributing cause of common
diseases.

Our study clearly showed the impact of population history on
the detection of disease mutations in mt genomes and the difficulty
of that detection. Our approach could produce some expectation
regarding the detection of disease-related mutations in nuclear
genomes. The previous study analyzed the nuclear variants in the
data from the 1000 Genomes project (1000 Genomes Project Con-
sortium et al., 2010) and showed a distribution of variants similar
to that of our dataset: a large proportion of rare variants and a low
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proportion of shared variants across populations due to popula-
tion growth (Gravel et al., 2011). The disease-related mutations
in nuclear genomes have been believed to be rarely found in the
human population (Manolio et al., 2009; Cirulli and Goldstein,
2010). The rarity of the mutations responsible for diseases can give
rise to difficulties in detecting the mutation in nuclear genomes
too. To apply our approach to nuclear genomes, it is necessary to
incorporate other representative factors, such as recombination.
Recombination does not occur randomly across genomes, causing
various selection constraints. The low nucleotide diversity of the
nuclear genome compared to that of the mt genome means that an
extraordinarily large sample size is required to detect rare variants.

With these factors in mind, future studies can apply our approach
to nuclear variants for the discovery of pathogenic mutations.

ACKNOWLEDGMENTS
We would like to thank Andrew G. Clark, Yoko Satta, Webb Miller,
Peggy Anthony, Oscar C. Bedoya-Reina, and George Church for
their extensive discussion and correction of the manuscript.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at
http://www.frontiersin.org/Evolutionary_and_Population_
Genetics/10.3389/fgene.2013.00013/abstract

REFERENCES
1000 Genomes Project Consortium,

Abecasis, G. R., Altshuler, D., Auton,
A., Brooks, L. D., Durbin, R. M., et
al. (2010). A map of human genome
variation from population-scale
sequencing. Nature 467, 1061–1073.

Asimit, J., and Zeggini, E. (2010). Rare
variant association analysis methods
for complex traits. Annu. Rev. Genet.
44, 293–308.

Bansal, V., Libiger, O., Torkamani,
A., and Schork, N. J. (2010).
Statistical analysis strategies for
association studies involving rare
variants. Nat. Rev. Genet. 11,
773–785.

Bergstrom, C. T., and Pritchard, J.
(1998). Germline bottlenecks and
the evolutionary maintenance of
mitochondrial genomes. Genetics
149, 2135–2146.

Bogenhagen, D. F. (1999). DNA
REPAIR’ 99 repair of mtDNA in
vertebrates. Am. J. Hum. Genet. 64,
1276–1281.

Brown, M. D., Sun, F., and Wallace, D.
C. (1997). Clustering of Caucasian
Leber hereditary optic neuropathy
patients containing the 11778 or
14484 mutations on an mtDNA
lineage. Am. J. Hum. Genet. 60,
381–387.

Calvo, S. E., Tucker, E. J., Comp-
ton, A. G., Kirby, D. M., Craw-
ford, G., Burtt, N. P., et al. (2010).
High-throughput, pooled sequenc-
ing identifies mutations in NUBPL
and FOXRED1 in human com-
plex I deficiency. Nat. Genet. 42,
851–858.

Carelli, V., Achilli, A., Valentino, M.
L., Rengo, C., Semino, O., Pala, M.,
et al. (2006). Haplogroup effects
and recombination of mitochon-
drial DNA: novel clues from the
analysis of Leber hereditary optic
neuropathy pedigrees. Am. J. Hum.
Genet. 78, 564–574.

Carter, R. W. (2007). Mitochondr-
ial diversity within modern human

populations. Nucleic Acids Res. 35,
3039–3045.

Chadeau-Hyam, M., Hoggart, C. J.,
O’Reilly, P. F., Whittaker, J. C.,
De Iorio, M., and Balding, D.
J. (2008). Fregene: simulation of
realistic sequence-level data in
populations and ascertained sam-
ples. BMC Bioinformatics 9:364.
doi:10.1186/1471-2105-9-364

Cirulli, E. T., and Goldstein, D. B.
(2010). Uncovering the roles of
rare variants in common disease
through whole-genome sequencing.
Nat. Rev. Genet. 11, 415–425.

Coventry, A., Bull-Otterson, L. M., Liu,
X., Clark, A. G., Maxwell, T. J.,
Crosby, J., et al. (2010). Deep rese-
quencing reveals excess rare recent
variants consistent with explosive
population growth. Nat. Commun.
1, 131.

Czarnecka, A. M., and Bartnik, E.
(2011). The role of the mitochon-
drial genome in ageing and carcino-
genesis. J. Aging Res. 2011, 136435.

Ghelli, A., Porcelli, A. M., Zanna, C.,
Vidoni, S., Mattioli, S., Barbieri,
A., et al. (2009). The background
of mitochondrial DNA hap-
logroup J increases the sensitivity
of Leber’s hereditary optic neu-
ropathy cells to 2,5-hexanedione
toxicity. PLoS ONE 19:e7922.
doi:10.1371/journal.pone.0007922

Giles, R. E., Blanc, H., Cann, H. M.,
and Wallace, D. C. (1980). Maternal
inheritance of human mitochondr-
ial DNA. Proc. Natl. Acad. Sci. U.S.A.
77, 6715–6719.

Gravel, S., Henn, B. M., Gutenkunst,
R. N., Indap, A. R., Marth, G.
T., Clark, A. G., et al. (2011).
Demographic history and rare allele
sharing among human populations.
Proc. Natl. Acad. Sci. U.S.A. 108,
11983–11988.

Gutenkunst, R. N., Hernandez, R.
D., Williamson, S. H., and Bus-
tamante, C. D. (2009). Inferring
the joint demographic history

of multiple populations from
multidimensional SNP frequency
data. PLoS Genet. 5:e1000695.
doi:10.1371/journal.pgen.1000695

Hartl, D. L., and Clark, A. G. (2007).
Principles of Population Genetics, 4th
Edn. Sunderland: Sinauer Associates,
Inc.

Hudson, G., Carelli, V., Spruijt, L., Ger-
ards, M., Mowbray, C., Achilli, A.,
et al. (2007). Clinical expression
of Leber hereditary optic neuropa-
thy is affected by the mitochondrial
DNA-haplogroup background. Am.
J. Hum. Genet. 81, 228–233.

Hudson, R. R. (2002). Generating
samples under a Wright-Fisher
neutral model. Bioinformatics 18,
337–338.

Ingman, M., Kaessmann, H., Paavo, S.,
Gyllensten, U. (2000). Mitochondr-
ial genome variation and the ori-
gin of modern humans. Nature 408,
708–713.

Johansen, C. T., Wang, J., Lanktree,
M. B., Cao, H., McIntyre, A. D.,
Ban, M. R., et al. (2010). Excess
of rare variants in genes identified
by genome-wide association study
of hypertriglyceridemia. Nat. Genet.
42, 684–687.

Katoh, K., Kuma, K., Toh, H., and Miy-
ata, T. (2005). MAFFT version 5:
improvement in accuracy of mul-
tiple sequence alignment. Nucleic
Acids Res. 33, 511–518.

Keinan, A., and Clark, A. G. (2012).
Recent explosive human population
growth has resulted in an excess of
rare genetic variants. Science 336,
740–743.

Kloss-Brandstätter, A., Pacher, D.,
Schönherr, S., Weissensteiner, H.,
Binna, R., Specht, G., et al. (2011).
HaploGrep: a fast and reliable
algorithm for automatic classi-
fication of mitochondrial DNA
haplogroups. Hum. Mutat. 32,
25–32.

Li, H., and Durbin, R. (2011).
Inference of human population

history from individual whole-
genome sequences. Nature 475,
493–496.

Lohmueller, K. E., Indap,A. R., Schmidt,
S., Boyko, A. R., Hernandez, R. D.,
Hubisz, M. J., et al. (2008). Pro-
portionally more deleterious genetic
variation in European than in
African populations. Nature 451,
994–997.

Manolio, T. A., Collins, F. S., Cox, N.
J., Goldstein, D. B., Hindorff, L. A.,
Hunter, D. J., et al. (2009). Finding
the missing heritability of complex
diseases. Nature 461, 747–753.

Marth, G. T., Czabarka, E., Murvai, J.,
and Sherry, S. T. (2004). The allele
frequency spectrum in genome-
wide human variation three large
world populations. Genetics 166,
351–372.

Nei, M., and Li, W. H. (1979). Mathe-
matical model for studying genetic
variation in terms of restriction
endonucleases. Proc. Natl. Acad. Sci.
U.S.A. 76, 5269–5273.

Nejentsev, S., Walker, N., Riches, D.,
Egholm, M., and Todd, J. A. (2009).
Rare variants of IFIH1, a gene impli-
cated in antiviral responses, protect
against Type 1 diabetes. Science 324,
387–389.

Ohta, T. (1992). The nearly neutral the-
ory of molecular evolution. Annu.
Rev. Ecol. Syst. 23, 263–286.

Roberts, L. (2011). 9 Billion? Science
333, 540–543.

Shigenaga, M. K., Hagen, T. M., and
Ames, B. N. (1994). Oxidative dam-
age and mitochondrial decay in
aging. Proc. Natl. Acad. Sci. U.S.A.
91, 10771–10778.

van den Ouweland, J. M., Lemkes, H.
H., Ruitenbeek, W., Sandkuijl, L. A.,
de Vijlder, M. F., Struyvenberg, P.
A., et al. (1992). Mutation in mito-
chondrial tRNA Leu (UUR) gene
in a large pedigree with maternally
transmitted type II diabetes mel-
litus and deafness. Nat. Genet. 1,
368–371.

www.frontiersin.org February 2013 | Volume 4 | Article 13 | 9

http://www.frontiersin.org/Evolutionary_and_Population_Genetics/10.3389/fgene.2013.00013/abstract
http://www.frontiersin.org/Evolutionary_and_Population_Genetics/10.3389/fgene.2013.00013/abstract
http://dx.doi.org/10.1186/1471-2105-9-364
http://dx.doi.org/10.1371/journal.pone.0007922
http://dx.doi.org/10.1371/journal.pgen.1000695
http://www.frontiersin.org
http://www.frontiersin.org/Evolutionary_and_Population_Genetics/archive


Kim and Schuster Poor man’s 1000 genome project

Voight, B. F., Adams, A. M., Frisse, L. A.,
Qian, Y., Hudson, R. R., and Rienzo,
A. D. (2005). Interrogating multiple
aspects of variation in a full rese-
quencing data set to infer human
population size changes. Proc. Natl.
Acad. Sci. U.S.A. 102, 18508–18513.

Wallace, D. C. (2005). A mitochondrial
paradigm of metabolic and degen-
erative diseases, aging, and cancer:
a dawn for evolutionary medicine.
Annu. Rev. Genet. 39, 359–407.

Wallace, D. C. (2010). Mitochondr-
ial DNA mutations in disease and
aging. Environ. Mol. Mutagen. 51,
440–450.

Wallace, D. C., Brown, M. D., and Lott,
M. T. (1999). Mitochondrial DNA
variation in human evolution and
disease. Gene 30, 211–230.

Wallace, D. C., Singh, G., Lott, M. T.,
Hodge, J. A., Schurr, T. G., Lezza,
A. M. S., et al. (1988). Mitochon-
drial DNA mutation associated with
Leber’s hereditary optic neuropathy.
Science 242, 1427–1430.

Waterson, G. (1975). On the number of
segregating sites in genetical mod-
els without recombination. Theor.
Popul. Biol. 7, 256–276.

Yao, Y. G., Salas, A., Logan, I., and
Bandellt, H. J. (2009). mtDNA data

mining in GenBank needs surveying.
Am. J. Hum. Genet. 85, 929–933.

Conflict of Interest Statement:
Our research was conducted in the
absence of any commercial or financial
relationships that could be construed
as a potential conflict of interest.

Received: 19 October 2012; accepted: 28
January 2013; published online: 28 Feb-
ruary 2013.
Citation: Kim HL and Schuster SC
(2013) Poor man’s 1000 genome project:
recent human population expansion
confounds the detection of disease

alleles in 7,098 complete mitochon-
drial genomes. Front. Genet. 4:13.
doi:10.3389/fgene.2013.00013
This article was submitted to Frontiers in
Evolutionary and Population Genetics, a
specialty of Frontiers in Genetics.
Copyright © 2013 Kim and Schuster .
This is an open-access article distrib-
uted under the terms of the Creative
Commons Attribution License, which
permits use, distribution and reproduc-
tion in other forums, provided the orig-
inal authors and source are credited
and subject to any copyright notices
concerning any third-party graphics
etc.

Frontiers in Genetics | Evolutionary and Population Genetics February 2013 | Volume 4 | Article 13 | 10

http://dx.doi.org/10.3389/fgene.2013.00013
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Evolutionary_and_Population_Genetics
http://www.frontiersin.org/Evolutionary_and_Population_Genetics/archive


Kim and Schuster Poor man’s 1000 genome project

APPENDIX

FIGURE A1 | Illustrations of three human demographic models. The
parameters of the three models were illustrated in the figure. Time flows
from past (top) to present (bottom) and shown at the left side of bars. The
width of bars represents the size of effective population. The parameters
were originally estimated from the nuclear genomes and were modified for
mt genomes, under an assumption of that the sex ratio is 1:1. Therefore, the
population size is one fourth of that for the nuclear genome. The ms
command line for the three models is following. (A) Gutenkunst et al.’s (2009)
model: ms7098 1000 -t 63.31 -I 3 685 2658 3755 -en 0.1379 3 0.0813 -en

0.1379 2 0.0415 -g 3 33.73 -g 2 24.55 -eg 0.1379 2 0.0 -em 0.1379 2 3 0.5904
-em 0.1379 3 2 0.5904 -em 0.1379 1 2 0.1169 -em 0.1379 2 1 0.1169 -em
0.1379 3 1 0.1845 -em 0.1379 1 3 0.1845 -ej 0.1379 3 2 -en 0.9106 2 0.1707
-em 0.9106 1 2 0.1538 -em 0.9106 2 1 0.1538 -ej 0.9106 2 1 -en 1.4309 1
0.5935. (B) Voight et al.’s (2005) model: ms7098 1000 -t 63.31 -I 3 685 2658
3755 -en 0.07 3 0.47 -en 0.09 1 1 -en 0.11 2 0.47 -ej 0.14 3 2 -en 0.14 3 0.09
-ej 0.28 2 1 -en 0.28 2 0.09. (C) Marth et al.’s (2004) model: ms7098 1000 -t
63.31 -I 3 685 2658 3755 -en 0.33 3 1.11 -en 0.36 3 1.39 -en 0.39 3 0.11 -ej
0.39 3 2 -en 0.42 2 0.17 -ej 0.42 2 1 -en 0.83 1 1.

FIGURE A2 | Sharing distribution of SNVs across populations. The X -axis indicates each of all Dataset 2 SNVs, 4,092 SNVs, and the Y -axis indicates the
proportion of three populations in the genomes carrying a non-reference allele for each SNV. Red, yellow, and blue bars show the proportion of AFR, ASI, and
EUR, respectively.
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FIGURE A3 | Estimation of the frequency of a deleterious mutation. (A) AFR, (B) EUR, (C) ASI. The X -axis indicates the frequency of a deleterious mutation,
and the Y -axis indicates the probability of the frequency, from simulation studies. The probability changed depending on the selection coefficient (s=0∼0.1).
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FIGURE A4 | Proportions of rare variants in the pathogenic mutations.
The 506 pathogenic and the 52 confirmed pathogenic mutations were
categorized into three groups by frequency of a mutation in the 7,098
genomes: zero frequency (light green), lower than the threshold frequency
(yellow), and larger than the threshold frequency (purple). The proportion of
the 52 confirmed mutations with a frequency larger than the threshold was
smaller than that of the 506 pathogenic mutations.

FIGURE A5 | Sample sizes for statistical power. Supposing two
populations of case and control, chi-square tests were carried out to test
differences of the frequency of a mutation between two populations. Two
populations have the same size. We fixed the frequency of 1.98, 0.92, and
0.55% (the threshold frequencies of AFR, EUR, and ASI) for the control
population and supposed a ratio of frequency of case to control as 2, 3, and
4, indicated at X -axis. In each case, we gave a range of population sizes for
the chi-square test, and the Y -axis represented total population size of case
and control to show a significant difference (P < 0.01) of the frequency
between two populations.

FIGURE A6 | Distribution of frequency of a mutation in various
population growth rate. For EUR, the parameter of population growth rate
was 0.4% per generation in Gutenkunst’s model. We tested the larger
growth rate, 0.5%, also. In both case of neutral evolution and negative
selection, a frequency of a mutation decreased in the larger growth rate.
The threshold frequency (P < 0.01) under negative selection (s= 0.05) was
0.19%, which was much lower than the threshold frequency in the
simulation with 0.4% population growth rate (0.35%).
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Table A1 |The frequency of mitochondrial haplogroups.

Haplogroup No. of haplotypes No. of genomes Freq.

L0 43 121 0.017

L1 33 107 0.015

L2 45 172 0.024

L3 74 241 0.034

L4 8 23 0.003

L5 7 14 0.002

L6 2 7 0.001

AFR (L) 212 685 0.096

M 309 1250 0.176

C 70 318 0.045

D 173 781 0.110

E 13 86 0.012

G 28 136 0.019

Q 9 29 0.004

Z 15 58 0.008

ASI (M) 668 2658 0.374

N 47 177 0.025

A 49 286 0.040

F 30 109 0.015

B 85 290 0.041

H 139 816 0.115

HV 15 104 0.015

I 12 44 0.006

J 50 213 0.030

K 60 279 0.039

O 2 4 0.001

P 17 33 0.005

R 93 279 0.039

S 5 11 0.002

T 35 173 0.024

U 166 630 0.089

V 19 103 0.015

W 20 88 0.012

X 33 89 0.013

Y 6 27 0.004

EUR (N) 832 3755 0.529

Non-African (M&N) 1500 6413 0.034

Total 1712 7098 1.000
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Table A2 |The frequency and nucleotide diversity (Π) of each population.

Population No. of genomes Dataset 1 Dataset 2

Π Max Π Max

All 7,098 39.8 123 39.3 122

AFRa 685 (10%) 64.0 123 63.3 122

Non-AFRb 6,413 (90%) 35.4 71 34.9 68

ASIc 2,658 (37%) 30.1 62 29.6 61

EURd 3,755 (53%) 30.6 66 30.1 62

Bet. AFR and ASI 57.9 118 57.3 116

Bet. AFR and EUR 60.3 122 59.7 117

Bet. ASI and EUR 40.6 71 40.2 68

Bet. AFR and non-AFR 59.3 122 58.7 117

aL haplogroups.
bM and N haplogroups.
cM haplogroups.
dN haplogroups.

Table A3 | Comparisons of three demographic models.

All AFR Non-AFR ASI EUR

7,098 genomes 7,098 685 6,413 2,658 3,755

Observation 39.3 63.3 34.9 29.6 30.1

Gutenkunst et al.

Mean 50.6 66.5 28.9 11.4 32.4

SD 11.8 28.7 6.3 3.8 7.9

Difference 10.1 1.2 −6.7 −22.4 4.8

Voight et al.

Mean 69.0 62.2 62.9 54.6 54.7

SD 27.6 29.6 27.1 24.3 24.3

Difference 29.6 −1.1 27.9 24.9 24.5

Marth et al.

Mean 90.4 63.1 86.0 63.9 65.5

SD 29.9 29.6 29.7 31.5 24.0

Difference 51.1 −0.2 51.1 34.2 35.4

Thousand sets of mt genome sequences were simulated based on each the three models, and then the mean of the Π values of the 1,000 sets of simulated

genomes were compared with the corresponding Π values of the 7,098 genomes.The difference corresponds to the extent of subtraction of the simulation from the

observation.

Gutenkunst et al.’s model showed the closest Π values to the observation. The differences were within the standard deviation of 1,000 sets of Π of the simulated

genomes, with the exception of the ASI’s mean Π.The mean Π of ASI of the simulation was much smaller than that of the observation.The parameters for ASI in this

model were inferred from the CHB (Han Chinese) samples, whereas ASI included the genomes originated from more diverse Asian populations. Thus it is likely that

the mean Π for ASI in the simulation is smaller than the observed Π. The other models of Marth et al. (2004) and Voight et al. (2005) resulted in too-large Π values

compared to the observation, especially for non-AFR.
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Table A4 | Estimation of the threshold frequency of a deleterious mutation in each population.

Population Effective population size Neutral 0.01a 0.05a 0.1a

Frequency (P < 0.01)

AFR 3,075 70.7% 8.9% 1.98% 1.07%

ASI 13,403 99.7% 15.9% 0.55% 0.26%

EUR 7,381 99.1% 18.9% 0.92% 0.49%

Sample size The number of genomes

AFR 685 484 61 14 7

ASI 2,658 2,651 423 15 7

EUR 3,755 3,720 710 35 18

aSelection coefficient.

We estimated the frequency of a deleterious mutation in each population by simulations as shown in the upper part of the table. The number of genomes in the

sample size which was the same size of our data set (685 AFR, 2,658 ASI, and 3,755 EUR genomes) was calculated from the threshold frequency, and was shown

in the bottom part of the table.

Table A5 |The proportion of the rare SNVs.

Population AFR ASI EUR

Threshold frequency (%) 1.98 0.55 0.92

No. of genomes 685 2,568 3,755

Dataset 1 No. of total SNVs 2,071 3,385 4,182

No. of candidate SNVs 1,703 2,826 3,787

Proportion of candidates in total SNVs (%) 82 83 91

No. of pathogenic mutations 75 121 159

No. of confirmed pathogenic mutations 1 7 17

Proportion of confirmed pathogenic mutations in candidates (%) 0.06 0.25 0.45

Dataset 2 No. of total SNVs 1,778 2,701 3,141

No. of candidate SNVs 1,369 2,112 2,735

Proportion of candidates in total SNVs (%) 77 78 87

No. of pathogenic mutations 72 108 133

No. of confirmed pathogenic mutations 1 6 9

Proportion of confirmed pathogenic mutations in candidates (%) 0.07 0.28 0.33

The number of rare SNVs in the 7,098 genomes was the number of SNVs showing a frequency lower than the threshold frequency (Candidate SNVs). Red characters

represent the proportion of the rare SNVs among total SNVs in the datasets.
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