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A commentary on

Finding the sources of missing heritability
in a yeast cross
by Bloom, J. S., Ehrenreich, I. M., Loo, W. T.,
Lite, T. L., and Kruglyak, L. (2013). Nature
494, 234–237. doi: 10.1038/nature11867

Since “the case of the missing heri-
tability” was highlighted 5 years ago
(Maher, 2008), scientists have been inves-
tigating various possible explanations for
this issue (Manolio et al., 2009; Slatkin,
2009; Eichler et al., 2010; Zuk et al.,
2012). Recently, Bloom et al. (2013) con-
ducted a linkage analysis in a large yeast
Saccharomyces cerevisiae cross with high
statistical power to map functional quan-
titative trait loci (QTL) and found that
nearly all the additive genetic contribution
can be explained by the detected QTL. It
is striking that the “old-fashioned” linkage
analysis can resolve the missing heritabil-
ity problem arisen in the high-throughput
genome-wide association study (GWAS)
era. Compared to human population stud-
ies, an intercross creates large linkage
disequilibrium (LD) blocks that greatly
enhance statistical power but also reduce
QTL mapping resolution. Simple simu-
lations (Figure 1) indicate that the real
sources or architecture of missing heri-
tability will remain undiscovered due to
LD. Breaking down LD would provide bet-
ter resolution but reduce the power. This
commentary is raised to emphasize the
trade-off between resolution and statistical
power in mapping functional loci.

Linkage analysis or QTL interval map-
ping in an experimental design is a classic
method in quantitative genetics to detect
QTL, which allows inferring QTL effects
in an un-typed chromosomal interval har-
bored by flanking genetic markers (Lynch

and Walsh, 1998). In an F2 cross, the
observed LD blocks are often very large,
due to limited number of recombination
events happened in the F1 individuals,
though the recombination rate in yeast
is relatively high. For example, among
the detected QTL for yeast growth in E6
berbamine (Figure 3 in Bloom et al., 2013),
the two QTL on chromosome 1 cov-
ered the two clear LD blocks (not shown)
on the chromosome, and the QTL on
chromosome 9 covered most of the chro-
mosome. The finding that the detected
QTL can explain almost all the narrow
sense heritability (h2) is expected given
that the kinship estimates using only the
significant QTL are similar to the genomic
kinship. Even a small number of randomly
selected markers can resemble the genomic
kinship and give similar heritability esti-
mates (Figure 1B), because the number of
LD blocks in the entire genome is lim-
ited. The prediction of trait values using
detected QTL was good according to cross
validation, because the specific F2 popu-
lation share similar LD patterns, but such
prediction would not perform as supe-
rior in another population with different
LD pattern. Related empirical evidence
can be seen in human height (Makowsky
et al., 2011) and marker-assisted selection
(Dekkers, 2004), where detected QTL were
unsuccessful for out-sample prediction
purposes.

If a future generation (e.g., F8) with
small LD blocks is developed from the F2,
the statistical power for mapping QTL will
decrease. One reason is that a single-locus
test for QTL within a large LD block is very
likely boosted by multiple QTL within the
LD block whose effects are much smaller.
The single QTL effect can be simply a
combined effect of multiple QTL, and its
standard error is underestimated without

considering the linkage with other QTL
in the same LD region. Assume that there
are two functional SNPs x1 and x2 in a
chromosomal region with high LD, and
the phenotype y is determined by y =
x1β1 + x2β2 + e (1), where β1 and β2 are
the effects of the two SNPs; y, x1, and x2

are column vectors of data; e is a vector of
residuals. Due to the high LD, x1 ≈ x2 if x1

and x2 are on the same scale, so that y ≈
x1(β1 + β2) + e. In a regression model on
the single SNP x1, y = x1β + e (2), the
estimated effect for β will be approximately
β1 + β2, i.e., a combined effect of both
variants. Comparing regression models (1)
and (2), the standard error (s.e.) of the
estimated β is an underestimate of the s.e.
of β1. This is because the s.e. of β1 is
inversely proportional to

√
1 − r2 where

r is the correlation coefficient between x1

and x2, which is close to 1 due to the high
LD, therefore the s.e. of β1 becomes much
larger than that of β. When the large LD
blocks are broken down, such a combined
effect will substantially decrease, leading
to lack of statistical power for mapping
multiple QTL in the original large LD
blocks. One previous empirical example
was found in chicken advanced intercross
lines (AIL), where only five out of nine
QTL detected in the F2 were confirmed by
the AIL (Besnier et al., 2011).

Bloom et al.’s study clearly shows that
nearly all the h2 in yeast is written in the
DNA, which improves our understanding
of missing heritability though some reso-
lution is sacrificed. Researchers are search-
ing for genetic architecture that answers
not only where but also what and how
the sources contribute to the heritability.
However, the curse of missing heritability
forces us to choose between resolution and
power. For many complex traits, such as
human height (Yang et al., 2011), their
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FIGURE 1 | Information captured by randomly selected markers in the

yeast cross6. (A) Proportion of variance explained in the caffeine phenotype
by different numbers of randomly selected markers across the genome.
Hundred times of random sampling were replicated for each value on the
x-axis. The thick and thin horizontal dashed lines indicate Bloom et al.’s6

estimates of the total narrow sense heritability (h2) and the h2 explained by
their detected QTL. (B) Comparison of the elements in the genomic kinship

matrix (G) and those in the kinship matrix estimated by 32 randomly selected
markers (R) in the yeast cross. Two markers were randomly selected from
each of the 16 yeast chromosomes. G = ZZT /n, R = XXT /m, where n is the
number of markers across the genome (11,623), m is the number of
randomly selected markers (32), Z is an N (number of individuals)-by-n matrix
of genotype data and X is an N-by-m matrix for the selected markers. The
straight line indicates equality and is shown as a visual reference.

polygenic nature makes it extremely dif-
ficult to fine-map even the major contri-
bution of the heritability. In future stud-
ies, it is important to check the predic-
tion performance in a validation popu-
lation, in order to show the real sources
of missing heritability. Also, biological
information and useful tools other than
statistical methods need to be developed
and utilized.
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