
HYPOTHESIS AND THEORY ARTICLE
published: 19        November 2013

doi: 10.3389/fgene.2013.00241

Enhancing systems medicine beyond genotype data by
dynamic patient signatures: having information and using
it too
Frank Emmert-Streib1* and Matthias Dehmer2

1 Computational Biology and Machine Learning Laboratory, Faculty of Medicine, Health and Life Sciences, Center for Cancer Research and Cell Biology, School of
Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, UK

2 Institute for Bioinformatics and Translational Research, UMIT, Hall in Tyrol, Austria

Edited by:

Galina Glazko, University of
Arkansas for Medical Sciences, USA

Reviewed by:

Galina Glazko, University of
Arkansas for Medical Sciences, USA
Dov J. Stekel, University of
Nottingham, UK

*Correspondence:

Frank Emmert-Streib, Computational
Biology and Machine Learning
Laboratory, Faculty of Medicine,
Health and Life Sciences, Center for
Cancer Research and Cell Biology,
School of Medicine, Dentistry and
Biomedical Sciences, Queen’s
University Belfast, 97 Lisburn Road,
Belfast, BT9 7BL, UK
e-mail: v@bio-complexity.com

In order to establish systems medicine, based on the results and insights from basic
biological research applicable for a medical and a clinical patient care, it is essential
to measure patient-based data that represent the molecular and cellular state of the
patient’s pathology. In this paper, we discuss potential limitations of the sole usage of
static genotype data, e.g., from next-generation sequencing, for translational research.
The hypothesis advocated in this paper is that dynOmics data, i.e., high-throughput data
that are capable of capturing dynamic aspects of the activity of samples from patients, are
important for enabling personalized medicine by complementing genotype data.
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1. INTRODUCTION
After the completion of the HUMAN GENOME PROJECT (Lander
et al., 2001; Venter et al., 2001; Consortium, International
Human Genome Sequencing, 2004) a new era started aiming to
bring results from basic biology and biomedical research into
the clinic to the patients. This is often called “from bench to
bedside” and defines the general idea underlying translational
research and its particular realization in the form of person-
alized medicine. From a practical point of view, in order to
accomplish such a translation of basic research results into the
daily clinical routine, it is necessary to be able to generate cost-
efficient patient data on the molecular and cellular level (Butte,
2008; Lussier et al., 2010). Fortunately, technological progress
within the last 15 years has led to a variety of different exper-
imental assays that provide such opportunities, even on the
genomic-scale involving large portions of an organism’s genes.
For example, in biological research different types of “Omics”
data (Ghosh and Poisson, 2009; Moreno-Risueno et al., 2010; The
ENCODE Project Consortium, 2011), e.g., genomics, transcrip-
tomics, proteomics, metabolomics and epigenomics data (Lee
et al., 2002; Förster et al., 2003; Rual et al., 2005; Stelzl et al.,
2005; Palsson, 2006; Sechi, 2007; Garbett et al., 2008; Yu et al.,
2008) are frequently employed and could, principally, also be
used in translational bioinformatics for studying patient data.
Instead, currently, one could gain the feeling that genotype data
from sequencing technologies, including next-generation DNA
sequencing (Mardis, 2008; Shendure and Ji, 2008; Ansorge, 2009;
Metzker, 2009), are dominating the discussions and the initial

practical endeavours in this context (Alkan et al., 2009; Werner,
2010; Fernald et al., 2011; Zhang et al., 2011; Highnam and
Mittelman, 2012; Ziegler et al., 2012). For instance, in Ng et al.
(2009) direct-to-consumer (DTC) DNA tests are reviewed that
are already offered by companies to identify potential disease
risks of patients. Similar examples are presented in Stepanov
(2010); Chin et al. (2011) with an emphasize on the utilization
of DNA variations. Also, it has been argued that a genetically
guided personalized medicine (GPM) has the potential to enable a
patient-based treatment by utilizing sequenced DNA information
from the individual patients that can be used to influence medi-
cal care decisions in the clinical practice (Welch and Kawamoto,
2012).

We would like to emphasize that it is unquestioned that geno-
type data, as represented for instance by single nucleotide poly-
morphisms (SNPs) (Collins et al., 1997; Sachidanandam et al.,
2001; Wheeler et al., 2007; LaFramboise, 2009), microsatellites or
whole genome sequences, provide a valuable source of informa-
tion for translational bioinformatics and personalized medicine
(Fernald et al., 2011). However, in this paper, we discuss potential
limitations of approaches that are solely based on genotype data
and emphasize the need for considering high-throughput data
that are capable of capturing dynamic states and activity levels
of physiological conditions of the patients. In order to distinguish
such Omics high-throughput data from genotype data, we will
term the latter “dynOmics” data.

This paper is organized as follows. In the next section, environ-
mental and epigenetic influences on the genotype are discussed.
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Further, we characterize the static nature of genotype data. In sec-
tion 3 we discuss limitation of genotype data as a consequence
of the three factors discussed in section 2. In section 4 we define
dynOmics data and discuss gene expression and RNA-seq data as
a sources of information for such dynamic high-throughput data.
Finally, in section 5 we present three application examples that
utilize dynOmics data for their analysis. This paper finishes with
concluding remarks.

2. ENVIRONMENTAL AND EPIGENETIC FACTORS AND THE
STATIC NATURE OF GENOTYPE DATA

It is unquestioned that the DNA within biological cells plays
an eminent role in the description of the development and
evolution of an organism and the transcription regulation of
the gene it encodes. Aside from the understanding of such
fundamental processes, the usage of genetic information has
been proven useful in studying diseases. For instance, DNA
copy number variations (CNVs) (Freeman et al., 2006; Pinto
et al., 2011) have been used for elucidating their role in com-
plex disorders (McCarroll and Altshuler, 2007). Specifically, in
Stephens et al. (2009); Beroukhim et al. (2010) the effect of
somatic copy number alternations (SCNA) and rearrangements
has been investigated for a variety of different cancer types,
including breast cancer, non-small cell lung cancer, and acute
lymphoblastic leukaemia. In Beroukhim et al. (2010) 158 sig-
nificant regions with a focal SCNA have been identified includ-
ing a large number of sites without known cancer target genes
that constitute potential key players in form of tumor suppres-
sor or oncogenes in the more than 20 different cancer types
studied. Also, they found that a large majority of SCNAs can
be identified in several different cancers revealing a potential
similarity of the molecular pathology among these disorders.
Further, in Stephens et al. (2009) it has been found that tan-
dem duplications are particularly frequent, which might indi-
cate a specific type of defect in DNA maintenance. A clinical
connection between CNVs and patient survival was found in
Kresse et al. (2010) by studying malignant fibrous histiocytoma
(MFH). This finding is of particular interest because it shows
a concrete example for a medical application of CNV for the
diagnosis of MFH.

Despite these promising results and applications of genetic
information, it is known that the information stored in the DNA
alone is not sufficient to understand, and explain, the pheno-
typic appearance of an organism. The reason for this is that
there are genotype-environment interactions that have an impor-
tant influence on this as well (Falconer and Mackay, 1996; Lynch
and Walsh, 1998). This means, usually, it is not possible to
map a certain genotype uniquely to a phenotype. This genotype-
environment interrelation is well know from genome-wide asso-
ciation studies (GWAS) and leads to a considerable increment
in the complexity of the problem (Manolio et al., 2009) if one
wants to apply genotype data in the medical and clinical practice,
because one needs to control environmental factors. An example
of environmental influences are given by mutagens. These phys-
ical or chemical agents have the ability to mutate the content of
the DNA of an organism and, hence, are capable of changing the
transcription of genes and the functioning of biological processes

like DNA repair. Particular examples of mutagens are carcino-
gens, e.g., asbestos, formaldehyde, mustard gas or X-rays, that
have been shown to have an influence on the development of can-
cer and its progression (Soffritti et al., 1989; Murthy and Testa,
1999; Hecht, 2003).

In addition to environmental influences that have an effect on
the genetic information, there are epigenetic factors, e.g., DNA
methylation (Ehrlich et al., 1982; Law and Jacobsen, 2010), that
have also an important influence on the cell function and, hence,
possibly on the phenotypic characteristics of an organism. For
instance, the gene expression in normal and disease cells is known
to be influenced by DNA methylation by controlling the protein-
DNA binding (Richardson, 2002; Baylin, 2005; Robertson, 2005).
Other examples for epigenetic factors are histone modifications
and RNA interference (Egger et al., 2004; Moss and Wallrath,
2007; Ballestar and Esteller, 2008; Djupedal and Ekwall, 2009).
So far it is largely unknown to what extend the epigenetic code
contributes non-genetic factors to the regulation, control and
maintenance of a cellular phenotype (Turner, 2007), although,
within recent years important progress has been made (Dawson
and Kouzarides, 2012; Sassone-Corsi et al., 2012).

A different problem in using genotype data alone for a medi-
cal application is that the DNA represents only static information
about a cellular phenotype. This static information is stored in
the form of nucleotide sequences representing putative programs,
which may be activated under certain signaling, environmental
or epigenetic conditions. That means for instance that mutations
in coding or non-coding regions may or may not have an influ-
ence on the expression of genes or proteins in a particular cell
type that effects the phenotype of an organism. Here, we would
like to emphasize that the term “static” can also be interpreted as
“passive,” because from the content of the DNA alone one cannot
conclude on the activity level of its genes.

3. LIMITATIONS OF GENOTYPE DATA
As a consequence of the heterogeneity induced by environmen-
tal and epigenetic factors, but also of the static nature of the
DNA, there are limitations in the explanatory power of geno-
type data. Quantitatively, these limitations can be seen from the
results of GWAS studies. Typically, GWAS studies lead only to
a very small number of putative gene-associations with com-
plex traits that are statistically significant (Sladek et al., 2007;
Yeager et al., 2007). In contrast, there is usually a larger num-
ber of loci that is right below the significance threshold and,
hence, these do not allow for definite conclusions. This implies
that such studies suffer from a limited power and an increase
is only possible by significantly increasing the number of the
participating subjects (McCarthy et al., 2008). Unfortunately,
this constitutes enormous practical problems for the organiza-
tion and initiation of such studies and it cannot be expected
that within the next few years larger studies with the required
sample sizes are available which could potentially lead to the
clarification of the causal involvement of genes in particular
complex disorders. On a more fundamental note, we want to
briefly remark that even if a locus is significantly associated with
a phenotype it is not straight forward to identify the relevant
gene(s) in the proximity of that locus that are implicated in
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FIGURE 1 | Schematic visualization of a situation when three different

genotype-environment constellations lead to the same phenotype.

Here it is important to note that the similarity of the three
genotype-environment configurations can only be judged on the phenotype
level of the organism.

the underlying disorder (Pearson and Manolio, 2008; Manolio,
2010). Further, even for significantly associated genes, their causal
involvement in the explanation of a clinical phenotype is not
guaranteed.

From a practical analysis perspective there is an additional
problem provided by the many detectable events (variables) on
the genotype-level, for instance in form of SNPs, CNVs or DNA-
methylations that do not lead to actual consequences for, e.g.,
the survival rates of patients or other observable phenotype char-
acteristics. This leads to a non-negligible amount of data that
can be seen as genetic noise because it is distorting the analysis.
Statistically, this constitutes non-trivial problems for the feature
selection and dimension reduction of such data sets (Izenman,
2008; Clarke et al., 2009).

In Figure 1 we show a visualization of the general problem. If
the measurement is limited to genotype data only, it is necessary
to catalog all equivalent genetic, environmental and epigenetic
variations because otherwise they may be mistakenly considered
as different from each other and one would expect them leading
to different phenotypes.

4. OMICS HIGH-THROUGHPUT DATA THAT PROVIDE
DYNAMIC INFORMATION

In order to obtain information about the activity of molecular
and cellular programs as encoded in the DNA of an organ-
ism, it is necessary to measure entities that reflect these activ-
ity states appropriately. In this respect, the expression levels of
genes or proteins provide valuable information to close this
gap (Speed, 2003). For example, by using DNA microarray or
next-generation sequencing technologies, gene expression and
RNA-seq data can be obtained representing the abundance of
mRNAs in a given sample (Wang et al., 2009). By comparison
with different samples, e.g., taken from a normal or a con-
trol group of patients, it is possible to infer which genes are
(statistically significant) expressed or not expressed (Ge et al.,
2003; Storey and Tibshirani, 2003). This information can be a
valuable surrogate for the activity of these genes in their under-
lying physiological conditions, provided by the samples. Such a
comparison is not limited to individual genes, but can also be
conducted for gene-sets or groups of genes that correspond for
example to biological pathways; either defined by expert knowl-
edge or databases like Gene Ontology or KEGG (Subramanian
et al., 2005; Abatangelo et al., 2009; Emmert-Streib and Glazko,

2011; Tripathi and Emmert-Streib, 2012). In this way it is pos-
sible to enable a systems approach to medicine, acknowledging
the fact that genes do not operate in isolation but function collec-
tively in a variable manner (Ahn et al., 2006; Emmert-Streib et al.,
2012b).

In order to distinguish “dynamic” from “static” Omics data
that allow capturing dynamic aspects of the samples from
patients, we suggest the following terminology.

DynOmics Data: Omics data that represent dynamic aspects of
a molecular and cellular system by reflecting the activity level of
genes and gene products.

Particular examples for dynOmics data are transcriptomics, pro-
teomics and metabolomics data.

In Figure 2 we provide a summary of the connection between
the genetic, genomic and phenotype level, as described in the
previous sections. A direct mapping from the genotype to the
phenotype, as indicated by the red arrow, could principally pro-
vide a shortcut in explaining for instance clinical patient char-
acteristics. However, the danger is that this incurs problems by
neglecting valuable information about the dynamic activity state
of the cells, as represented, e.g., by the expression levels of genes
or proteins. In other words, due to the static nature of geno-
type data this information should be seen as potential functional
information about a patient, because information about the activ-
ity or usage of the diverse genetic programs is not captured
by such data at all. Here by potential functional information we
mean that the DNA is just a storage or a database of informa-
tion (Noble, 2008) and this information is not indicative of the
activity of the stored entities. For example, despite the fact that
the CNV or the methylation of the DNA can change over the
time of the evolution of a tumor, this does not say anything
definite about the actual expression of the genes and, hence, their
activation.

We would like to note that the consideration of dynamic
high-throughput data, e.g., in the form of gene expression or
proteomics data, does not only allow to identify differentially
expressed genes or gene sets, but for sufficiently large samples
sizes and variable sample conditions such data allow also to
infer gene regulatory or protein networks (Belcastro et al., 2011;
Emmert-Streib et al., 2012a; Emmert-Streib, 2013). These net-
works have the additional advantage of holding expedient clues
for the molecular causes of the observed phenotypes (Emmert-
Streib and Dehmer, 2011) that can be explored, e.g., by triggering
follow-up experiments in the biomedical sciences. The difference
to studies, e.g., utilizing DNA biomarkers to estimate the patient’s
disease risk (Ng et al., 2009) is that, e.g., regulatory networks pro-
vide direct insights into the molecular interaction structure of
gene products (de Matos Simoes et al., 2013) and, hence, bio-
logical disease mechanisms on a level of detail that is absent
in biomarker studies that are merely aiming to predict a phe-
notypic outcome. Furthermore, such networks can be utilized
in identifying drug targets or drug mechanisms to extend tra-
ditional pharmacogenomics and pharmacodynamics approaches
(Hopkins, 2008; Arrell and Terzic, 2010; Ghosh and Basu, 2012;
Leung et al., 2012; Madhamshettiwar et al., 2012).
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FIGURE 2 | The connection between the genetic, genomic and phenotype level. Gene networks form one particular type of information that can be
inferred from dynOmics data.

Finally, we just want to briefly mention that, strictly, there are
two different types of dynOmics data that can be distinguish. The
first type of dynOmics data contains explicit information about
the temporal behavior of molecular entities as, e.g., provided
by time series data of the concentration of mRNAs. In contrast,
the second type of dynOmics data contains implicit information
about the temporal behavior. An example for such dynOmics data
are condition specific samples, e.g., from treatment and control
patients. In the latter case, no time series (or longitudinal) data
are available, yet, the data provide information about the activ-
ity level of genes in the form: “Is gene X active (expressed) or
not.” For reasons of simplicity, we termed both types of dynamic
information dynOmics data. However, as the above discussion
indicates, a more refined subdivision is possible and, depending
on the context, sensible.

5. PRACTICAL EXPLOITATION OF DYNOMICS DATA
Finally, we discuss a couple of particular examples of approaches
where dynOmics data sets have been utilized in disease diagnoses
and personalized medicine.

In Huang et al. (2010) data from the public gene expression
repository GENE EXPRESSION OMNIBUS (GEO), provided by

the NATIONAL CENTER FOR BIOTECHNOLOGY INFORMATION

(NCBI), have been utilized to construct a classifier for query
expression profiles. Specifically, expression data from over 9000
microarray experiments have been gathered for 110 different dis-
orders. These data sets have been used in combination with a
Bayesian approach to learn a classifier for these 110 disease classes.
This resulted in a method that allows to make (probabilistic) pre-
dictions about an unknown disease state as represented by a query
expression profile that could be, e.g., obtained from a patient.
Overall, the presented method has the capability to transform
biological knowledge, as provided by the GEO database, into
novel discoveries by means of the developed diagnoses tool.

For data providing information about the molecular interac-
tions of proteins, as represented by protein interaction networks,
similar approaches have been developed (Oti et al., 2006; Yang
et al., 2011). For instance, in Wu et al. (2008) a method called
CIPHER has been introduced that assumes that diseases with
a similar phenotype are the effect of functionally related pro-
teins that are close in a protein interaction network. In order
to predict potential disease-genes based on phenotypic informa-
tion about the disorder, CIPHER integrates two different types of
data to define three different, connected parts. First, the ONLINE
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MENDELIAN INHERITANCE IN MAN (OMIM) database is used to
estimate the similarity between disease phenotypes by using text
mining tools. Further, OMIM is also used to obtain information
about gene-phenotype associations. Second, in order to assess the
functional similarity between proteins the human protein inter-
action network is used. Here it is important to emphasize that
a protein interaction network provides information about the
activity of proteins in the form of their interactions and, hence,
represents a type of dynOmics data.

A seminal study that demonstrates impressively the advantages
of using dynOmics data has been conducted in Chen et al. (2012).
This study analyzed Omics profiles, comprising genetic, tran-
scriptomic, proteomic, metabolomic and autoantibody profiles
from a single individual measured over a period of 14 months. As
a result, it has been particularly highlighted that the measurement
of dynamic entities is crucial if one wants to make predictions
about a patient that go beyond potential effects.

6. CONCLUSIONS
Genome-wide high-throughput technologies provide an
unprecedented opportunity for systems medicine. The major
purpose of this paper has been to advocate high-throughput
data that provide dynamic information about cellular states,
which we termed dynOmics data. However, we would like to
emphasize that this does not mean that genotype data should
not be used for systems and personalized medicine. Instead,
the concern of the present paper is to balance the current trend
in this field that might give the misleading impression that the
usage of next-generation sequencing technologies to generate,
e.g., DNA-seq data is the only way to achieve the translation from
basic research to medical practice. Instead, we hypothesized that
dynOmics data provide an indispensable source of information
representing dynamic patient signatures that should be utilized
for the complementation of genotype data.

Due to the fact that gene expression data and proteomics
data contain a wealth of dynamic information that is per se
not contained in genotype data, there are inherent limitations
of approaches that are solely based on such data. Furthermore,
potentially, dynOmics data may represent denoised information
compared to sequence information, because the plurality of the
genetic information is decided on the functional cellular and
the phenotype level. Here it is important to distinguish between
“data” and “information” to comprehend the meaning of denoised
information. Whereas “data” refer only to the measured num-
bers, “information” implies a semantic biological content. For this
reason the fact that DNA sequencing can be performed with a
higher accuracy than, e.g., the measurement of the mRNA expres-
sion, does not contradict the observation that the uncertainly in
the interpretation of the functional meaning of these numbers is
generally reduced from the DNA to the mRNA and the protein
level.

Another important point for future developments in person-
alized medicine would be the integration of different types of
genotype and dynOmics data, e.g., from transcriptomics, pro-
teomics, metabolomics and epigenomics experiments. However,
in medical practise, we are far away from such a reality (Romero
et al., 2006; Ostrowski and Wyrwicz, 2009; Chan and Ginsburg,

2011) and much more basic research is necessary before we can
begin translating these results into practical patient care.
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