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In biology, networks are used in different contexts as ways to represent relationships
between entities, such as for instance interactions between genes, proteins or
metabolites. Despite progress in the analysis of such networks and their potential to
better understand the collective impact of genes on complex traits, one remaining
challenge is to establish the biologic validity of gene co-expression networks and to
determine what governs their organization. We used WGCNA to construct and analyze
seven gene expression datasets from several tissues of mouse recombinant inbred
strains (RIS). For six out of the 7 networks, we found that linkage to “module QTLs”
(mQTLs) could be established for 29.3% of gene co-expression modules detected in
the several mouse RIS. For about 74.6% of such genetically-linked modules, the mQTL
was on the same chromosome as the one contributing most genes to the module, with
genes originating from that chromosome showing higher connectivity than other genes
in the modules. Such modules (that we considered as “genetically-driven”) had network
statistic properties (density and centralization) that set them apart from other modules
in the network. Altogether, a sizeable portion of gene co-expression modules detected
in mouse RIS panels had genetic determinants as their main organizing principle. In
addition to providing a biologic interpretation validation for these modules, these genetic
determinants imparted on them particular properties that set them apart from other
modules in the network, to the point that they can be predicted to a large extent on
the basis of their network statistics.

Keywords: genetics, network inference, mouse recombinant inbred strains, gene co-expression modules,

chromosome domain

INTRODUCTION
In recent years, new technologies such as microarrays have made
it possible to generate large numbers of gene expression datasets.
To understand how genes interact with one another, methods
have been developed to construct gene co-expression networks,
and then identify modules of highly connected genes. “Weighted
Gene Co-expression Network Analysis” (WGCNA) is the most
established and widely used of such methods (Langfelder and
Horvath, 2008). Several studies have used these methods to
construct (on the basis of gene expression datasets) gene co-
expression networks, and then identify modules of highly con-
nected genes (Califano et al., 2012; Cho et al., 2012; Weiss et al.,
2012). One common premise of such analyses is that co-expressed
genes within modules are more likely to share biological func-
tions. Accordingly, it has been reported several times that some
modules detected by gene co-expression analysis show enrich-
ment for genes originating from a particular biologic pathway
(Gargalovic et al., 2006; Yang et al., 2009; Rhinn et al., 2013).

The properties of gene co-expression modules can be ana-
lyzed in several ways. Eigengenes are values that represent the first
principal component of all expression profiles in modules. When
networks are constructed using expression data from individuals
in a genetic cross, genetic mapping can be performed to test

whether the eigengenes of modules show linkage to quantita-
tive trait loci (QTLs), the latter being called “module QTLs”
(mQTLs). For instance, mQTLs have been detected in some
mouse F2 genetic crosses, with some of them having profiles
matching that of phenotypic QTLs (Davis et al., 2012; Leduc et al.,
2012). Such findings suggest that the same genetic determinants
may link to both a phenotype and the expression levels of genes
within the associated module. This suggests that genetic linkage,
rather than function, may contribute to coexpression modules
detected in genetic crosses However, it is currently not known
whether the contributions of genetic determinants to gene co-
expression modules represent a common phenomenon, and/or
whether corresponding modules have distinctive properties.

Recombinant inbred strain (RIS) are organisms derived from
the progenies of crosses of parental inbred strains, and where
recombination events between parental chromosomes have been
made permanent by long-term inbreeding. When tissue gene
expression is measured in RIS by using several animals per strain
(to provide both biologic and technical replicates), genetic vari-
ations constitute the main cause of variance in gene expression
level. Moreover, RIS are homozygous at all loci, which maximizes
the potential effect of genetic variation on gene expression. Panels
of RIS therefore constitute sensitive backgrounds to study links
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Network Inference

• Type of Biological Networks
The analyzed networks correspond to gene-co-expression networks constructed from gene expression data obtained
in mouse genetic crosses, where genetic variants are the main cause of gene expression variance.

• Utility of the Inferred Networks
We focused on the detection of gene co-expression network modules showing linkage to quantitative trait loci in
multiple independent datasets. We tested the reproducibility of our findings across multiple datasets and across
two network inference methods.

• Summary of Results
In tissues from mouse recombinant inbred strain (RIS) panels, a sizeable portion of gene co-expression modules had
genetic determinants as their main organizing principle. These modules had particular properties that set them apart
from other modules in the network, to the point that they can be predicted on the sole basis of their gene expression
profile characteristics and associated network statistics.

between genomic variants and gene expression. To test to which
extent genomic variants may link to coordinate gene expression
within gene co-expression modules, we analyzed publicly avail-
able gene expression datasets obtained in several tissues from
two kinds of mouse RIS panels. In such panels, we found that
a sizeable proportion of gene co-expression modules showed
linkage to mQTLs. Moreover, such modules had network statis-
tics that set them apart from other modules in the network.
Lastly we observed that these network statistics are sufficiently
discriminative to predict, solely on the basis of gene expression,
which modules are likely to be genetically-driven.

MATERIALS AND METHODS
DATASETS PREPROCESSING
Discovery datasets were used to test whether gene co-expression
modules showing linkage to mQTLs had properties and network
statistics that set them apart from other modules. In follow-up
experiments, validation sets were used to test whether the prop-
erties and network statistics of gene co-expression modules (as
determined in the validation sets) could be used to predict accu-
rately whether gene co-expression modules corresponded to a
particular type of modules. The discovery sets comprised data
obtained in five tissues and one purified cell population from
BxD mouse RIS, as well as one tissue from AxB/BxA mouse
RIS (Table 1). The validation sets comprised data obtained in
one purified cell population from BxD and one tissue from
AxB/BxA mouse RIS (Table 1). All data were obtained from the
www.genenetwork.org web site, and comprised both gene expres-
sion data as well as genomic maps. For gene expression analysis,
we used for each gene the one single probe that corresponded
to the most variant one. To reduce computation time and facil-
itate the comparisons between networks, we used the data for
the 20,000 most variant genes in each tissue (corresponding to
the number of genes that was the smallest common denominator
among all datasets used).

NETWORK CONSTRUCTION AND MODULES DETECTION
We used the “Weighted Gene Co-expression Network Analysis”
(WGCNA) R package (Langfelder and Horvath, 2008)
to construct the gene co-expression networks. To avoid
computationally intensive tuning of WGCNA parameters, we
used all default parameters as proposed previously (Zhang and

Horvath, 2005). Within a network, each gene represents a node,
and the connections between nodes are defined as edges. To
obtain comparable networks between the different datasets, we
utilized the top 25% most significant edges in each network. To
define modules (i.e., clusters of highly interconnected genes),
we used the dynamic tree cut algorithm implemented in the
dynamicTreeCut function. “Eigengenes” are summary values
representative of the gene expression profiles in corresponding
modules. Accordingly, eigengene values can be used to detect
“module-QTLs” (mQTLs), i.e., QTLs showing linkage to entire
gene co-expression modules(Davis et al., 2012; Leduc et al.,
2012). For each module, we used WGCNA to calculate its
corresponding eigengene value, and performed QTL mapping
with the “R-QTL” tool (Broman et al., 2003), using a detection
threshold corresponding to a “logarithm-of-the-odds” (LOD)
score of 3.3 (Lander and Kruglyak, 1995). Modules shown for
illustration were drawn using the Cytoscape software (Shannon
et al., 2003).

In order to test the robustness of our findings with respect
to the network inference approach, we also used the GeneNet R
package (Schaefer et al., 2006) to construct the gene co-expression
networks. This method uses partial correlation to calculate the
link between two genes and has the advantage of not requiring
any parameter (with the exception of the correlation threshold
used to select the most relevant edges). The results derived from
GeneNet are reported in Supplementary Information.

COMPARISONS BETWEEN MODULES
To estimate the contribution of each chromosome to a module,
we calculated the percentage of genes that each chromosome con-
tributed to the module. The one chromosome with the highest
percentage was considered as the “top contributing” chromo-
some, and the corresponding percentage value was considered as
the “enrichment index for single chromosome contribution.” To
calculate a normalized index (and thus allow comparisons across
modules), the enrichment index value was divided by the mean
of the percentages of genes contributed by all other chromosomes
in the module.

Each module was also characterized in terms of its “net-
work statistics” (also known as “fundamental network concepts”)
(Dong and Horvath, 2007). We thus calculated the values
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Table 1 | Gene expression datasets from tissues of mouse RIS used for either discovery or validation analyses in the present study.

Discovery Mouse RIS panel Tissue Microarray # of WGCNA modules # of GeneNet modules

datasets platform total/gen total/gen

GN373 24 AXB-BXA Liver Affy 95/10 313/31

GN207 68 BXD Whole eyes Affy 49/11 42/16

GN160 47 BXD Lung Affy 42/12 124/34

GN389 48 BXD Pituitary Affy 52/15 65/21

GN122 33 BXD Regulatory T cells Affy 77/11 311/34

GN260 38 BXD Spleen Illumina 45/13 177/52

GN323 46 BXD Brain amygdala Affy 34/0 168/32

VALIDATION DATASETS

GN210 24 AXB-BXA Whole eyes Illumina 43/4 74/6

GN319 31 BXD T cell helper Helper T cells Affy 68/12 280/39

First column: GeneNetwork ID number of the dataset. Second column: type of mouse RIS and number of strains used in the study. Third column: name of tissue or

type of cell used. Fourth column: microarray platform used in the study. Fifth column: number of gene co-expression modules (total and “type 1” genetic) detected

in each network using WGCNA for construction of the network. Since no genetic module was detected in dataset GN323 using default parameters, this dataset

was not used for analysis of WGCNA modules. Sixth column: number of gene co-expression modules (total and “type 1” genetic) detected in each network using

GeneNet for construction of the network.

of heterogeneity, centralization, and density, using the func-
tion “fundamentalNetworkConcepts” of WGCNA R package
(Langfelder and Horvath, 2008). Comparisons between groups
were performed using either the non-parametric Wilcoxon
Signed Rank test (for binary comparisons) or the Kruskal
Wallis test (for comparisons involving more than 2 classes).
Combined P-values were calculated using the Z transform
approach (Whitlock, 2005), using the survcomp R package
(Schröder et al., 2011).

VALIDATION TESTS
In the datasets used for validation (Table 1), we first calculated
the values of heterogeneity, centralization, density and normal-
ized enrichment index in order to identify which modules could
be considered as being “genetically-driven” (according to our own
definition: see below). We then ranked all modules according to
corresponding values by grouping them in “top percentile” win-
dows ranging from the top 5% to the top 80% (in successive 5%
steps). We then: (1) tested whether modules in the top percentile
windows corresponded or not to genetically-driven modules, and
(2) calculated the accuracy with which each network statistic
value categorized corresponding modules. For the latter tests, we
calculated the numbers of modules whose characteristics were
truly positively predicted (TP), truly negatively predicted (TN),
falsely positively predicted (FP) and falsely negatively predicted
(FN), and we calculated the receiving operating characteristics
(ROC) curves based on sensitivity and specificity, using the ROCR
package in R.

All network statistics (heterogeneity, centralization, density
and normalized enrichment index) were analyzed independently.

RESULTS:
GENETICALLY-LINKED AND GENETICALLY-DRIVEN MODULES
Gene co-expression networks were built using WGCNA for seven
RIS mouse expression datasets (Table 1). Since the datasets were
obtained using different microarray platforms for different tissues
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FIGURE 1 | The bar graphs represent normalized enrichment indices

(mean ± SD) in the 6 tested discovery datasets. The indices quantify to
which extent genes in co-expression network originate from a single
chromosome. Black bars: values for “genetically-driven” modules (type 1
genetic modules); gray bars: values for the other “genetic” modules (type
2); white bars: values for “non-genetic modules.” ∗P < 0.05 (Kruskal Wallis
tests).

from different animal crosses, we built gene co-expressions net-
work using the same number of genes (the 20,000 most varying
genes) and selected the 25% most significant edges in the net-
works. This approach allowed us to generate networks with com-
parable characteristics. For each network, we extracted modules
containing at least 30 genes, and found that networks contained
in average 56 modules (Table 1). Genomic mapping analyses
were performed for the eigengenes of all modules to deter-
mine whether we could detect linkage of modules to mQTLs.
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We found that in 6/7 networks, we could detect modules that
could be considered as “genetically-linked,” on the basis of
showing linkage to a mQTL. In these 6 networks, the pro-
portion of such genetically-linked modules averaged 29.3% (sd
8.4%) (with values ranging from 15.7 to 36.7%)., could be.
For 74.6% of these genetically-linked modules, the chromo-
some harboring the mQTL corresponded to the top-contributing
chromosome. Since in such cases the location of the mQTL
corresponded to the chromosome that contributed most genes
to the modules, we considered these particular modules to
be “genetically-driven.” In further comparisons, we called such
modules “type 1 genetic modules”; genetically-linked modules
where the top-contributing chromosome was not the same as
the one harboring the mQTL were called “type 2 genetic mod-
ules.” For both types of genetic modules, we calculated the
“normalized enrichment index for single chromosome contribu-
tion,” and compared it to that of other modules that did not
show linkage to any mQTL (“non-genetic modules”) (Figure 1).
In all 6 tested WGCNA networks, normalized enrichment

index of type 1 genetic modules was significantly higher than
that of other types of modules, with type 2 genetic modules
showing no difference in comparison to non-genetic modules
(Figure 1).

NETWORK STATISTICS
For further analyses, we studied the three following network
statistics (Dong and Horvath, 2007): (I) density (which corre-
sponds to the mean connectivity of the network); (II) centraliza-
tion (which takes the value 0 if the network has a star topology
and the value 1 if all nodes have the same connectivity); and (III)
heterogeneity (which is the coefficient of variation of the connec-
tivity of the network). Within each studied network, we calculated
these three values for genetically-driven (type 1 genetic) mod-
ules, and compared them to that obtained other modules in the
network (including both the type 2 genetic and the non-genetic
modules) (Figure 2). Density was significantly higher (P < 0.05)
in genetically-driven modules for all six networks, whereas cen-
tralization was significantly higher in genetically-driven modules
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FIGURE 2 | The bar graphs represent the heterogeneity, centralization and density values (mean ± SD) of modules within networks from the 6 tested

discovery datasets. Black bars: “genetically-driven” modules; gray bars: other modules. ∗P < 0.05 (Wilcoxon Signed Rank test).
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for 5 out of 6 of the studied networks (Figure 2). We did not
observe a consistent trend for heterogeneity (Figure 2). When
all six modules were combined to calculate overall P-values,
the differences between type 1 genetic modules vs. all other
modules were significant for centralization (p = 9.68e-06) and
density (p = 2.02e-08), but not for heterogeneity (p = 0.457).
Differences in network statistics were not due to differences in
the sizes of the modules since the latter showed no significant
difference in genetically-driven networks compared to the other
modules.

Given that (I) density was higher in genetically-driven mod-
ules; and (II) these modules showed enrichment in genes
originating from one single chromosome, we tested in these
modules whether the connectivity of genes from the top-
contributing chromosome was higher than that of other genes
in the modules We found that this was indeed the case,
with differences being significant for genetically-driven mod-
ules in 5 out of the 6 networks tested (Figure 3). When all
datasets were combined, the overall P-value for connectivity was
5.8e-18.

VALIDATION TESTS
We used two independent validation datasets to test how robustly
network statistics values could discriminate genetically-driven
modules from the other ones. In the GN319 dataset, the “area
under the curve” (AUC) values for ROC curves were all higher
than 0.9, with normalized enrichment index and centralization
being most predictive (Figure 4). Even in GN210 (where the pro-
portion of type 1 genetic networks was <10%), network statistics
still had good predictive power, since all AUC values were greater
than 0.7 (data not shown).
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FIGURE 3 | Comparisons (for the genetically driven modules detected

in the 6 tested discovery datasets) of the mean connectivity values of

genes originating from the top-contributing chromosome vs. that of

other genes in the modules. The bars represent mean ± SD. ∗P < 0.05
(Wilcoxon Signed Rank test).

ALTERNATIVE NETWORK INFERENCE METHOD
To test the robustness of our findings we performed the analy-
ses previously described using GeneNet (Schaefer et al., 2006) as
an alternative method to build networks of gene co-expression.
Interestingly, whereas the number of modules detected in the
WGCNA networks averaged 60 (sd = 21), we detected a higher
number of modules averaging 172 (sd = 118) in the corre-
sponding networks built using GeneNet, although this differ-
ence was not significant (p-value = 0.06 by two-sided paired
Wilcoxon signed rank test). Nonetheless, regardless of the method
used for network inference, our observations concerning the
differences between genetic and non-genetic modules held true
(with in addition heterogeneity also being significantly higher
in genetically-driven modules than in non-genetic modules).
The various differences in network statistics are further illus-
trated in two modules of similar sizes detected in the GN122
dataset on the basis of networks constructed with GeneNet
(Figure 5)

DISCUSSION
Complex genetic quantitative traits result from the many inter-
actions of genetic variants with environmental factors, and only
a minority of are believed to result from the dysregulation of
only one gene (Plomin et al., 2009). Moreover, biological sys-
tems are typically organized as modular networks where genes act
synergistically rather than representing the sum of their individ-
uals actions (Cho et al., 2012; Weiss et al., 2012). Consequently,
gene co-expression network analyses have been proposed as a
means to better understand the mechanisms of complex regu-
latory biologic processes (Califano et al., 2012; Cho et al., 2012;
Weiss et al., 2012). Up until now, much of the interpretation of
gene co-expression has relied on empirical observations.

FIGURE 4 | Receiver operating characteristic (ROC) curves illustrating

how 3 different network statistics discriminate genetically-driven

modules from other modules in a validation set.
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FIGURE 5 | Ilustrative examples of gene expression modules detected

in the GN122 dataset from regulatory T cells (on the basis of the gene

co-expression network being built using GeneNet). Each module was of
equal size as they both contained a total of 75 genes; (A): non-genetic
module; (B): genetic module. Each node is represented by a circle, either
full (when the corresponding gene originates from the top contributing
chromosome) or empty (other genes). The edges are colored according to a
gray scale, where the darkness of the edge is proportional to the
connectivity between 2 nodes. It can be seen that the genetically-driven
module contains a higher number of genes from the top-contributing
chromosome. Moreover, that module contains a core a several genes
displaying connectivity levels that are much higher than other genes in the
module, which corresponds to the fact that the values of density and
centralization were higher in genetically-driven modules.

For instance, one common strategy has been to rely on anno-
tations (either gene ontology or pathway information) to test
whether module show enrichment for genes related to anno-
tated functions. However, the drawbacks are that: (1) “canonical”
pathways are often still incomplete, and in fact represent “over-
simplifications”; and (2) enrichment analyses are biased toward
what we already know (Carro et al., 2010; Farber, 2013).

In some instances, gene co-expression modules have shown
linkage to mQTLs in genetic animal crosses, with some of them
having profiles matching that of phenotypic QTLs (Davis et al.,
2012; Leduc et al., 2012). In such cases, it is likely that a valid
biologic process drives gene co-expression in the module. To test
to which extent such mechanisms could underlie the organization
of gene co-expression modules in genetic crosses, we performed
gene co-expression network analyses of datasets originating from
eight different tissues and two different panels of mouse RIS.
We found (on the basis of detection of mQTLs) evidence of
genetic contributions for an average of 29% of the modules. For
about 73% of these genetically-linked modules, the influence of
the genetic determinants appeared to be even stronger, as the
mQTL was located on the same chromosome that was the highest
contributor of genes to the module. In such modules, the normal-
ized enrichment index for single chromosome contribution was
significantly higher than in other types of modules. Given this
clustering of co-expressed genes around mQTLs, we considered
such modules as being “genetically-driven.” These modules also
appear to have specific features in terms of network statistics: (1)
their density was higher, indicating that their mean connectivity
was higher than that of other modules; (2) their centralization
value was higher, which is compatible with the presence of a core
several highly connected genes (in opposition to the presence of

one main hub gene regulating all others in the module). Since
genetically-driven modules show enrichment for genes originat-
ing from one chromosome, these differences in network statistics
might be explained if these genes showed higher connectivity than
that of other genes in the module. We thus tested this possibility,
and found that within genetically-driven modules, connectivity
of genes from the top-contributing chromosome was in average
2.25 higher than that of other genes in the module. Our observa-
tions did not depend on network inference approaches, as similar
conclusions were reached using either WGCNA or GeneNet.

Thus, the gene composition and network statistics of
genetically-driven modules indicate that one of their main com-
ponent is constituted by several highly connected genes origi-
nating from one chromosome. In mammals, co-expressed genes
have been reported to cluster both at either short-range (1 Mb)
or long-range (>10 Mb) levels (Woo et al., 2010). Moreover, we
have recently reported in mouse RIS the existence of clusters of
co-expressed genes that all show linkage to one common QTL
(Scott-Boyer and Deschepper, 2013). Corresponding genomic
regions showed a greater abundance of polymorphic SINE retro-
transposons, the latter showing enrichment for the motifs of
binding sites for various regulators of transcription. We postu-
late that such mechanisms may account (at least in part) for the
presence of several high co-expressed genes within chromosome
domains, which constitute the core of gene co-expression mod-
ules that have characteristics that set them apart from other kinds
of modules.

In mouse RIS, genetically-driven modules are not a rare occur-
rence, since they constitute in average 21% of all modules. Their
network statistics differ substantially from that of other modules,
with high AUC values being obtained for the normalized enrich-
ment index as well as the density and centralization valuesThis
suggests that genetically-driven modules can, to some extent, be
predicted solely on the basis of their gene expression patterns.

In summary, genetic determinants constitute one main orga-
nizing principle of a sizeable portion of gene-co-expression mod-
ules detected in mouse RIS panels, which provides a biologic
validation for corresponding modules. In addition, these mod-
ules appear to derive from cores of highly inter-connected genes
clustering on one chromosome. This may constitute one partic-
ular mechanism driving gene co-expression, which imparts on
genetically-driven modules particular properties. These proper-
ties set them apart from other modules in their network, to the
point that they can be predicted to a large extent on the basis of
their network statistics. Of note, it is possible that RIS panels pro-
vide a background that is particularly appropriate for the detec-
tion of genetically-driven modules. It remains to be seen to which
extent they will be detectable in other types of genetic crosses.
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