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Controlled shortening of the poly(A) tail of mRNAs is the first step in eukaryotic mRNA decay
and can also be used for translational inactivation of mRNAs. The CCR4–NOT complex is
the most important among a small number of deadenylases, enzymes catalyzing poly(A)
tail shortening. Rates of poly(A) shortening differ between mRNAs as the CCR4–NOT
complex is recruited to specific mRNAs by means of either sequence-specific RNA binding
proteins or miRNAs.This review summarizes our current knowledge concerning the subunit
composition and deadenylation activity of the Drosophila CCR4–NOT complex and the
mechanisms by which the complex is recruited to particular mRNAs. We discuss genetic
data implicating the complex in the regulation of specific mRNAs, in particular in the context
of development.
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INTRODUCTION
The poly(A) tails of eukaryotic mRNAs, which are added with a
more or less uniform but species-specific length during 3′ end pro-
cessing in the nucleus, are subject to shortening in the cytoplasm,
a process termed deadenylation. Deadenylation is the first step in
mRNA decay, and subsequent steps are triggered by shortening
of the poly(A) tail below a certain, not very well defined, thresh-
old. The rates of deadenylation vary between different mRNAs
and determine, to a large extent, the specific half-lives of mRNAs.
Thus, controlled deadenylation contributes to the regulation of
the steady-state levels of mRNAs and, as a consequence, protein
output. Deadenylation rates are determined by regulatory proteins
or RNAs that bind to specific sites in mRNAs, typically in the 3′
UTR, and recruit deadenylases (Goldstrohm and Wickens, 2008;
Houseley and Tollervey, 2009; Wahle and Winkler, 2013). Dead-
enylation, in combination with opposing poly(A) tail extension,
is also used to regulate the translation of mRNAs. Whereas this
type of regulation has been investigated in detail in oocytes, early
animal embryos, and neurons (Barckmann and Simonelig, 2013;
Villalba et al., 2011; Weill et al., 2012), it does not appear to operate
in other cells (Subtelny et al., 2014).

Three main poly(A)-specific 3′ exonucleases, or deadenylases,
are known: the poly(A)-specific ribonuclease (PARN; Harnisch
et al., 2012; Godwin et al., 2013; Virtanen et al., 2013), the
Pan2/Pan3 complex (Harnisch et al., 2012; Wahle and Winkler,

Note added in proof: A link between piRNAs and CAF1-dependent deadenyla-
tion has been validated in mouse spermatogenesis: Gou et al., Cell Res. 2014, doi:
10.1038/cr.2014.41. Pachytene piRNAs instruct massive mRNA elimination during
late spermatogenesis.

2013; Wolf and Passmore, 2014), and the CCR4–NOT complex.
The CCR4–NOT complex, which has been covered in several
recent reviews (Goldstrohm and Wickens, 2008; Collart and
Panasenko, 2012; Harnisch et al., 2012; Wahle and Winkler, 2013),
is the predominant deadenylase in all biological systems and, to our
knowledge, for all mRNAs examined. Here, we will focus specif-
ically on the structure and function of the CCR4–NOT complex
in Drosophila. We will limit ourselves to a discussion of the role
of the complex in mRNA deadenylation, including recruitment of
the CCR4–NOT complex by mRNA-specific factors. In addition to
deadenylation, the complex can repress translation independently
of deadenylation (Cooke et al., 2010; Braun et al., 2011; Cheku-
laeva et al., 2011; Bawankar et al., 2013; Zekri et al., 2013; Bhandari
et al., 2014; Chen et al., 2014a; Mathys et al., 2014), and a role in
transcription is also being investigated (Collart and Panasenko,
2012). These other functions will not be covered. We will briefly
discuss CCR4–NOT- versus Pan2/Pan3-dependent deadenylation.
PARN is not conserved in Drosophila.

SUBUNITS OF THE CCR4–NOT COMPLEX, THEIR GENES, AND
FUNCTION IN mRNA DEADENYLATION
Table 1 lists the eight known subunits of the Drosophila CCR4–
NOT complex together with their genes, their yeast and human
orthologs. Known functional domains of the polypeptides are
shown schematically in Figure 1A. Note that the subunit POP2 is
called CAF1 in most publications. However, the gene name Pop2
(under which the corresponding yeast gene was first described) is
used in Flybase (flybase.org), whereas the abbreviation CAF1 is
used for Chromatin Assembly Factor 1. In this article, we will
adopt the Flybase nomenclature. Two polypeptides associated
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Table 1 | Subunits of the CCR4–NOT complex in Drosophila and their orthologs in yeast and man.

Name of subunit Annotation symbol; gene Yeast ortholog(s) Human ortholog(s)

CCR4 CG31137; twin Ccr4 CCR4a = CNOT6C; CCR4b = CNOT6L

POP2 CG5684; Pop2 Caf1 = Pop2 Caf1a = CNOT7 = CAF1; Caf1b = CNOT8 = CALIF = POP2

NOT1 CG34407; Not1 Not1 CNOT1

NOT2 CG2161; Regena (Rga) Not2 CNOT2

NOT3 CG8426; Not3 Not3Not5 CNOT3

CAF40 CG14213; Rcd1 Caf40 CAF40 = CNOT9 = Rcd1 = RQCD1

NOT10 CG18616; Not10 – CNOT10

NOT11 = C2orf29 CG13567; Not11 – CNOT11

with the CCR4–NOT complex in other organisms have not
been identified in the Drosophila genome. These are CAF130
(Chen et al., 2001), which appears to be yeast-specific, and the
mammalian protein TAB182 (Lau et al., 2009). The function
of these proteins in the CCR4–NOT complex, when present,
has not been analyzed, and TAB182 has not been found con-
sistently in all preparations (Mauxion et al., 2013). NOT4 is
a component of the CCR4–NOT complex in Saccharomyces
cerevisiae. Whereas the protein is conserved, it is not stably
associated with the CCR4–NOT complex in flies or mammals
(Harnisch et al., 2012; Wahle and Winkler, 2013). Even in yeast,
not4 mutants have at most a marginal deadenylation pheno-
type (Tucker et al., 2002). In Drosophila, the subunits CCR4,
POP2, and NOT1-3 are expressed at all developmental stages,
including early embryos before the activation of the zygotic
genome, and they are found mostly in the cytoplasm, as would
be expected for an mRNA deadenylating enzyme (Temme et al.,
2004, 2010).

The CCR4–NOT complex deadenylates mRNAs by means of
two exonucleolytic subunits, POP2 and CCR4. In vitro assays have
shown that orthologs of both proteins from various organisms
possess poly(A)-specific 3′ exonuclease activity (Harnisch et al.,
2012; Wahle and Winkler, 2013). Such evidence currently does
not exist for the Drosophila proteins. However, in support of
enzymatic activity, overexpression of POP2 carrying point muta-
tions in its active site has dominant negative effects, as discussed
below (Temme et al., 2010; Petit et al., 2012). POP2, like PARN
and PAN2, the catalytic subunit of the Pan2/Pan3 complex, is
a member of the DEDD nuclease family. The eponymous con-
served active site residues, which serve to bind two divalent metal
ions to catalyze hydrolysis of the phosphodiester bond, are con-
served in the Drosophila protein. CCR4 has a conserved C-terminal
domain responsible for the catalytic activity. Based on sequence
alignments and crystal structures, this domain is a member of the
exonuclease-endonuclase-phosphatase (EEP) family of enzymes,
which, like the DEDD enzymes, catalyze hydrolysis of phosphate
ester bonds by a two-metal-ion mechanism (Harnisch et al., 2012;
Wahle and Winkler, 2013). In Drosophila CCR4, the catalytic
domain in general and the active site residues in particular are
conserved (Dupressoir et al., 2001). A phenotype caused by a
strong hypomorphic allele of the gene encoding CCR4 is only

partially rescued by an active site mutant, supporting catalytic
activity of the protein, as described in more detail below (Joly
et al., 2013).

Interactions between the subunits have been studied by pull-
down assays and similar experiments and, more recently, by X-ray
crystallography of partial assemblies of the yeast and human com-
plexes (Bhaskar et al., 2013; Boland et al., 2013; Chen et al., 2014a;
Mathys et al., 2014; earlier work reviewed in Harnisch et al., 2012;
Wahle and Winkler, 2013). Interaction assays in combination with
mutagenesis revealed that all interactions are conserved in the
Drosophila complex (Bawankar et al., 2013; Figure 1B). Briefly,
NOT1, a large protein of more than 2500 amino acids in flies,
the exact size depending on the splice variant, serves as the cen-
tral scaffold of the complex. Large fragments of NOT1 have
been crystallized; all except the CAF40 binding domain (CN9BD
for CAF40/CNOT9 binding domain) form HEAT repeats. The
central portion of NOT1 associates with POP2, which in turn
associates with a leucine-rich repeat (LRR) domain of CCR4
(Basquin et al., 2012; Petit et al., 2012). The active sites of the
two exonucleases are quite distant from each other, and their
conformations are not affected by incorporation into the com-
plex. NOT2 and NOT3 form a heterodimer via their C-terminal
homologous NOT boxes, and the pair binds tightly to the C-
terminal portion of NOT1 (Bhaskar et al., 2013; Boland et al.,
2013). Binding of CAF40 to the CN9BD, which forms a three helix
bundle, is independent of any of the other subunits (Chen et al.,
2014a; Mathys et al., 2014). An N-terminal fragment of NOT1
has recently been shown to associate with a NOT10–NOT11 het-
erodimer in flies and in man (Bawankar et al., 2013; Mauxion et al.,
2013).

When the Drosophila CCR4–NOT complex was immunopuri-
fied by means of a monoclonal antibody directed against NOT1
and elution with the antigenic peptide, all subunits listed were
co-precipitated, although NOT10 was at the limit of detection
(Temme et al., 2010). NOT4, which was identified as a subunit
of the yeast CCR4–NOT complex (Chen et al., 2001), was not
found to be associated, in agreement with results obtained in
human cells (reviewed in Harnisch et al., 2012; Wahle and Winkler,
2013). All subunits for which antibodies were available, CCR4,
POP2 and NOT1-3, were visibly depleted from the supernatant of
the immunoprecipitation, suggesting that at least a large fraction
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FIGURE 1 | Subunits of the Drosophila CCR4–NOT complex, their

domains and interactions. (A) Domain structures of subunits. The size of
each polypeptide (in amino acids) is indicated on the right. Note that this
can vary due to alternative splicing. Each large rectangle corresponds to a
structured domain. CCR4 contains a leucine-rich repeat (LRR) and an
exonuclease-endonuclease-phosphatase (EEP) domain. POP2 consists of a
single nuclease domain of the DEDD class. NOT1 contains a NOT10/NOT11
binding domain at its N-terminus, a series of HEAT repeats, a middle-of-4G
(MIF4G) domain, and a CAF40/CNOT9 binding domain (CN9BD) in the
middle. The C-terminus is formed by a conserved NOT1 superfamily
homology (NOT1 SH) domain. The MIF4G, and the NOT1 SH domains are

also composed of HEAT repeats. Both NOT2 and NOT3 contain a C-terminal
NOT box preceded by a NOT1 anchor region (NAR), NOT3 also has a
predicted N-terminal coiled–coil domain. CAF40 consists of armadillo (ARM)
repeats. NOT10 has no known or predicted domain, and NOT11 contains a
domain of unknown function. (B) Interactions between the subunits of the
CCR4–NOT complex. Domains are indicated with the same color code as in
(A). The orientation of the coiled–coil domain of NOT3 is arbitrary.
Interactions shown are based on experimental data for the Drosophila
complex and comparison to the yeast and mammalian complexes
(Bawankar et al., 2013). The L-shape indicated for the complex is based on
cryo EM images (Nasertorabi et al., 2011).

resides in the complex. In support of obligatory complex forma-
tion, individual RNAi-mediated depletion of POP2 or NOT1-3
led to strongly reduced levels of the other three subunits, presum-
ably due to destabilization of incomplete complexes (Temme et al.,
2010; Boland et al., 2013). Similarly, depletion of POP2 reduced
the amount of CCR4, and, conversely, ovaries mutant for CCR4
show decreased levels of POP2 (Temme et al., 2004).

Functional studies support the idea that the polypeptides listed
assemble for the purpose of mRNA deadenylation. Individual
knock-down of POP2, NOT1, NOT2, or NOT3 in Schneider
cells led to an increase in bulk poly(A) tail length and a reduced

rate of deadenylation of the unstable Hsp70 mRNA or a reporter
mRNA carrying the Hsp70 3′ UTR (Temme et al., 2004, 2010;
Bönisch et al., 2007; Boland et al., 2013). Note that, because of
the co-depletion of other subunits, these experiments only con-
firm the involvement of the complex in deadenylation but allow no
conclusion regarding individual subunits. Knock-down of NOT4
had no effect, in agreement with its absence from the complex.
Depletion of CAF40 and, surprisingly, CCR4, also had no effect
on bulk poly(A) or the rate of Hsp70 mRNA deadenylation in
Schneider cells (Temme et al., 2010). Overexpression of an inac-
tive point mutant of POP2 retarded deadenylation of CCR4–NOT
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substrates (Temme et al., 2010; Petit et al., 2012) but overex-
pression of mutant CCR4 did not (Temme et al., 2010). These
experiments suggest that POP2 carries the main catalytic activity,
at least in Schneider cells and for the mRNA examined. However,
genetic experiments support a role of CCR4 in deadenylation, as
will be discussed below. Tethering of any of the subunits of the
CCR4–NOT complex to a reporter RNA was sufficient to desta-
bilize and repress the translation of this RNA; presumably, any
subunit, when tethered to the RNA, can recruit the entire complex,
including the polypeptides relevant for mRNA destabilization and
repression (Bawankar et al., 2013). The potential subunit NOT4
was not tested in these assays. CAF40 was as repressive and destabi-
lizing as most of the other subunits. However, NOT10 and NOT11
were notably less effective, and an N-terminal deletion variant of
NOT1 unable to associate with NOT10 and 11 was as potent as
the wild-type. Thus, NOT10 and 11 may be dispensable for the
function of the complex in post-transcriptional control. This is
in agreement with knock-down experiments in mammalian cells,
which showed no effect of NOT10 or NOT11 depletion on mRNA
deadenylation (Mauxion et al., 2013). Interestingly, in the tether-
ing experiments, variants of the complex that should be unable
to associate with the catalytic subunits were still able not only
to repress but also to destabilize the reporter message (Bawankar
et al., 2013). Thus, it is conceivable that either there are addi-
tional, yet unknown, contacts between the catalytic subunits and
the others or that the complex has a destabilizing function that is
independent of deadenylation, for example by stimulating decap-
ping through association with the DEAD box RNA helicase Me31B
(Chen et al., 2014a; Mathys et al., 2014). Drosophila Me31B and
its orthologs in diverse species have been characterized as transla-
tional repressors (Nakamura et al., 2001; Weston and Sommerville,
2006), but the yeast ortholog Dhh1p is known to also enhance
decapping (Nissan et al., 2010).

Drosophila CCR4 is encoded by the twin gene (Morris et al.,
2005). Flies homozygous for any of the known twin alleles are
viable, but show various degrees of female sterility, and embryos
derived from twin mutant mothers have a reduced viability
(Temme et al., 2004; Morris et al., 2005; Zaessinger et al., 2006).
The molecular basis of these phenotypes will be discussed below.
Adult flies bearing a null allelic combination of twin have an
increased steady-state bulk poly(A) tail length, and the decay
of Hsp70 mRNA in twin mutant first instar larvae is slower
than in wild-type (Temme et al., 2004). These results support an

involvement of CCR4 in deadenylation in vivo. NOT2 is encoded
by Regena (Rga; Frolov et al., 1998). A homozygous strong Rga
allele causes lethality at embryonic and larval stages (Frolov et al.,
1998; Temme et al., 2004). Bulk poly(A) tails are slightly but
detectably longer in the mutant (Temme et al., 2004). Genetic stud-
ies of the CCR4–NOT complex will be discussed in more detail in
the section dealing with developmental functions of the complex.

PROTEINS RELATED TO THE CCR4–NOT COMPLEX
Proteins discussed in this section are listed in Table 2.

Most organisms have, in addition to one or several CCR4
orthologs, three types of CCR4-related proteins, called 3635, Angel
and Nocturnin. They all share the catalytic domain but lack the
LRR that mediates the association of CCR4 with POP2 and, thus,
the incorporation into the CCR4–NOT complex (Dupressoir et al.,
2001).

The fly protein 3635 is encoded by the gene CG31759.
The mammalian 3635 ortholog is identical with phosphodi-
esterase 12 (PDE12), which was identified as a mitochondrial
deadenylating enzyme in humans (Poulsen et al., 2011; Ror-
bach et al., 2011). Thus, 3635 is not directly related to the
CCR4–NOT complex. In agreement with the mitochondrial
function of mammalian PDE12, an N-terminal mitochon-
drial targeting peptide is predicted for the Drosophila ortholog
(http://ihg.gsf.de/ihg/mitoprot.html; Claros and Vincens, 1996).
Co-immunoprecipitation experiments in Schneider cells revealed
no association of 3635 with the subunits of the CCR4–NOT
complex, and knock-down of the protein (which is expressed
in Schneider cells based on RT-PCR analysis) or overexpres-
sion of an active site mutant had no effect on the deadenyla-
tion of the Hsp70 mRNA (Temme et al., 2010). In summary,
the current evidence suggests no involvement of 3635 in cyto-
plasmic mRNA deadenylation. Drosophila 3635 is encoded in
the first intron of the gene aret, which complicates a genetic
analysis.

Drosophila Angel is encoded by the angel gene (CG12273;
Kurzik-Dumke and Zengerle, 1996), which is located in the intron
of another gene (CG30183) on the opposite DNA strand. The
protein has a conserved nuclease active site but, as for 3635,
experiments in Schneider cells did not provide evidence for an
association with the CCR4–NOT complex or a role in the degra-
dation of the Hsp70 mRNA (Temme et al., 2010). Mammalian
Angel (=Ccr4d) is associated with a distant CAF1/POP2 relative,

Table 2 | Other genes/proteins discussed in this review.

Name of polypeptide Annotation symbol; gene Yeast ortholog(s) Human ortholog(s)

3635 CG31759 none PDE12

Angel CG12273; angel none ANGEL1, ANGEL2

Nocturnin CG31299; curled none Nocturnin = CCRN4L

TOB CG9214 none BTG1-4, TOB1, TOB2

GW182 CG31992; gawky (gw ) none TNRC6A, B, C

Pan2 CG8232 Pan2 Pan2

Pan3 CG11486 Pan3 Pan3
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Caf1z (Wagner et al., 2007; Godwin et al., 2013). [Note that Nousch
et al. (2013) have come to the conclusion that Caf1z is more closely
related to PARN than to CAF1.] Apparently, Caf1z is not conserved
in flies.

Drosophila Nocturnin is encoded by curled (CG31299; Grönke
et al., 2009). Nocturnin proteins in other organisms have been
shown to have poly(A) degrading activity in vitro (Harnisch et al.,
2012; Godwin et al., 2013), and active site residues are conserved
in the fly protein. Immunoprecipitation experiments suggested
that Nocturnin can associate with other subunits of the CCR4–
NOT complex in Schneider cells, and expression of an active
site mutant delayed deadenylation of the Hsp70 mRNA (Temme
et al., 2010). These data, which reveal a potential involvement in
mRNA decay of Nocturnin via the CCR4–NOT complex, are sur-
prising, as Nocturnin is lacking the LRR, which is believed to
be indispensable for the association of CCR4 with the complex;
thus, these results need to be confirmed by additional experi-
ments. Nocturnin is a cytoplasmic protein in Drosophila larvae
(Grönke et al., 2009). Homozygous curled mutants are viable and
fertile; curled wings are the only overt phenotype. Vertebrate
Nocturnin is expressed in a circadian rhythm, but the protein
is not essential for circadian rhythms, as homozygous knock-
out mice do not have a circadian phenotype (Stubblefield et al.,
2012). Mouse Nocturnin is also involved in the regulation of sev-
eral metabolic processes (Stubblefield et al., 2012). In Drosophila,
expression of Nocturnin is induced by food deprivation, consis-
tent with a role in the regulation of metabolism (Grönke et al.,
2009). Beyond that, no connections to metabolism or circadian
rhythms have been reported, and mRNA targets of Nocturnin are
not known.

THE Drosophila CCR4–NOT COMPLEX IS REQUIRED FOR
VIABILITY
In yeast, deadenylation by the CCR4–NOT complex is not essen-
tial for viability (Tucker et al., 2001). Drosophila mutants have
been analyzed for NOT2 (Rga; Frolov et al., 1998), NOT3 (Neely
et al., 2010) and POP2 (Busseau et al., unpublished data) and
are lethal at embryonic to larval stages. In addition, knock-
downs of Not1 and Pop2 specifically in neuroblasts using RNAi
are also lethal (Neumüller et al., 2011). In contrast, a null allelic
combination of twin, which encodes CCR4, is not lethal but
female sterile (Temme et al., 2004; Zaessinger et al., 2006). This
requirement of NOT1 and POP2 for viability, and of CCR4
for fertility is conserved in Caenorhabditis elegans (Nousch et al.,
2013). Because the role of POP2 in deadenylation is more promi-
nent than that of CCR4 in somatic tissues, in both Drosophila
(Temme et al., 2010) and C. elegans (Nousch et al., 2013), these
data could be consistent with deadenylation by CCR4–NOT being
required for viability, with a major role of POP2 as deadenylase.
However, current data cannot rule out that the vital function
of the CCR4–NOT complex depends on another of its molec-
ular activities such as translational repression or transcriptional
regulation.

A tissue-specific RNAi screen in Drosophila has implicated
several subunits of CCR4–NOT (NOT1-4) in the function and
myofibrillar organization of the heart. The role of NOT3 in heart
function was also analyzed in mouse and found to be conserved

(Neely et al., 2010). Because treatments with inhibitors of his-
tone deacetylases reduced the impairment of heart function, a role
of the CCR4–NOT complex in histone acetylation was proposed
to underlie its role in cardiac function. Whether or not CCR4–
NOT activity in mRNA deadenylation might be involved was not
addressed.

ROLE OF CCR4–NOT-DEPENDENT DEADENYLATION IN GERM
CELLS AND STEM CELLS
Among the subunits of the complex, CCR4 is unique in that
twin mutants are female sterile, and here data support the notion
that impaired deadenylation is responsible for this phenotype.
Very tight translational regulation is particularly important in the
germline and early embryos, and sterility in twin mutant is con-
sistent with CCR4 being absolutely required for this regulation. A
recent study showing that a deadenylase-dead form of CCR4 can
only partially rescue the twin mutant phenotype in germline stem
cells indicates that both the deadenylase activity and another role
of CCR4 in translational repression are important in these cells
(Joly et al., 2013).

In the Drosophila female, all germ cells derive from two to three
germline stem cells localized at the anterior-most region of the
ovary, in a structure called the germarium. The germline stem
cells divide asymmetrically to self-renew (generate a new germline
stem cell) and produce a cell that differentiates into a cystoblast.
The cystoblast then divides four times synchronously to produce a
16-germline-cell cyst, among which 15 cells differentiate as nurse
cells and one as the oocyte. twin mutants show several defects in
oogenesis, namely impaired germline stem cell self-renewal (Joly
et al., 2013; see below), defects in the synchronous divisions of
the cystoblast leading to either more or less than 16 germ cells
per cyst, defects in oocyte specification resulting either in the lack
of or two oocytes per cyst, and germ cell death (Morris et al.,
2005; Zaessinger et al., 2006). Mitotic defects have been correlated
with elongated poly(A) tails of cyclin A and cyclin B mRNAs and
increased levels of the corresponding proteins in the germarium
(Morris et al., 2005).

The specific requirement for CCR4 in germ cells and early
embryos results from the regulation of specific mRNAs by the
CCR4–NOT complex in those cells. This is achieved by the recruit-
ment of the complex by mRNA binding proteins. The RNA
binding proteins involved in CCR4–NOT-dependent regulation
of cyclin A and cyclin B mRNAs in the germarium have not been
identified. However, to date, three RNA binding proteins that
interact with the CCR4–NOT complex have been reported in
germ cells: Nanos, Pumilio, and Bicaudal-C (Figure 2A). Nanos
and Pumilio were first shown to mediate cyclin B mRNA repres-
sion by CCR4–NOT in primordial germ cells, the progenitors
of germline stem cells in the embryo (Kadyrova et al., 2007).
This regulation is required to limit the proliferation of primor-
dial germ cells before they have migrated to the gonad. Pumilio
recognizes specific motifs in the cyclin B 3′ UTR and recruits
the CCR4–NOT complex through direct interaction with POP2.
This Pumilio-POP2 interaction is conserved from yeast to man
(Goldstrohm et al., 2006, 2007; Kadyrova et al., 2007; Goldstrohm
and Wickens, 2008). Regulation of cyclin B also requires Nanos,
and, in tethering assays, Nanos alone was able to repress cyclin B
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FIGURE 2 | Interactions between RNA binding proteins and the

CCR4–NOT complex in germ cells (A) and early embryos (B). Black lines
represent mRNAs, gray boxes are coding sequences, white boxes are
binding motifs for specific RNA binding proteins [NRE, nanos response
element bound by Pumilio (Pum); SRE, Smaug recognition element]. The
CCR4–NOT complex is in green. CCR4 is shown degrading the poly(A) tail,
but the division of labor between POP2 and CCR4 remains to be analyzed.
(A) PGCs, primordial germ cells; GSCs, germline stem cells. In contrast to
most other examples, the Bicaudal-C (Bic-C) binding element is localized in
the 5′ UTR in Bic-C mRNA (Chicoine et al., 2007). (B) The red comb
represent piRNAs. The interaction between Smaug and POP2 is suggested
from co-immunoprecipitation assays, but has not been verified in vitro.
Me31B and Trailer Hitch (Tral) are translational repressors interacting with
Cup, which are found in both SRE binding complexes (Jeske et al., 2011) and
NOT1 interacting proteins (Temme et al., 2010) in embryo extracts. A direct
interaction between the human homolog of Me31B and NOT1 has recently
been reported (Chen et al., 2014a; Mathys et al., 2014). A role of Me31B and
Tral in Smaug-dependent deadenylation has not been investigated.

mRNA. Nanos was found to interact with NOT4 in yeast two-
hybrid assays, which might indicate that NOT4 can be a part
of the CCR4–NOT complex after all, perhaps in specific tis-
sues. This interaction was not tested in vivo, however (Kadyrova
et al., 2007). Nanos function in germ cell development and its
interaction with the CCR4–NOT complex are conserved in the
mouse, where Nanos2 directly binds NOT1 (Suzuki et al., 2010,
2012). This Nanos-NOT1 interaction was recently validated with
human proteins by an X-ray structure revealing the association
of a short motif in Nanos1 with a hydrophobic pocket in the
C-terminal domain of NOT1. This motif is not conserved in
Drosophila Nanos though, consistent with the recruitment of the
CCR4–NOT complex through different interactions (Bhandari
et al., 2014).

A role of CCR4 has recently been established in germline stem
cells in the adult ovary (Joly et al., 2013). The physical inter-
action between Nanos/Pumilio and the CCR4–NOT complex

has been confirmed in these cells as well, by means of co-
immunoprecipitation experiments. Nanos and Pumilio, together
with CCR4, have a crucial role in the self-renewal of germline
stem cells. This function is thought to result from the transla-
tional repression of mRNAs encoding differentiation factors. One
of these mRNAs, mei-P26, encodes a protein of the Trim-NHL
family, which has conserved functions in stem cell biology through
the modulation of microRNA (miRNA)-dependent silencing. The
CCR4–NOT complex is recruited to mei-P26 mRNA via bind-
ing of Pumilio to its 3′UTR (Figure 2A), and the repression of
mei-P26 by CCR4 plays a major role in germline stem cell main-
tenance, since the loss of germline stem cells in the twin mutant
is partially rescued by lowering mei-P26 gene dosage. The fact
that the loss of germline stem cells in twin mutant ovaries is not
completely rescued by a deadenylase-dead form of CCR4 indicates
that the deadenylase activity of CCR4 is involved in twin function
in germline stem cells (Joly et al., 2013). Knock-down of Not1 in
germ cells results in a complete loss of germline stem cells and
germ cells in adult ovaries, consistent with the whole CCR4–NOT
complex being required for germline stem cell self-renewal (Joly
et al., 2013).

The miRNA pathway is also essential for germline stem cell self-
renewal in the Drosophila ovary (Jin and Xie, 2007; Park et al., 2007;
Yang et al., 2007). Although a direct link between components
of this pathway and the CCR4–NOT complex is likely for this
function (see below), the question has not been addressed yet.

Intriguingly, a role of CCR4–NOT-dependent deadenylation in
adult stem cell biology has also recently been described in planari-
ans (Solana et al., 2013). In this species, however, deadenylation,
as assayed by knock-down of Not1, is required for stem cell dif-
ferentiation and for the down-regulation of self-renewal mRNAs,
in contrast to the situation in Drosophila, where deadenylation
by CCR4–NOT is required for germline stem cell self-renewal.
Because the specificity of the CCR4–NOT complex for mRNAs
depends on RNA binding proteins, its potential role in both stem
cell self-renewal and differentiation through interaction with dif-
ferent RNA binding proteins is not unexpected. Alternatively, this
difference in the requirement of CCR4–NOT for Drosophila and
planarian stem cell biology might reflect species specificities.

Bicaudal-C (Bic-C) is the third RNA binding protein
known to regulate CCR4–NOT function in Drosophila oogenesis
(Figure 2A). Bic-C binds mRNAs encoding proteins involved in
oogenesis and cytoskeletal regulation. It directly interacts with the
NOT3 subunit of the CCR4–NOT complex and mediates dead-
enylation of several of these mRNAs, including its own, during the
first half of oogenesis (Chicoine et al., 2007).

ROLE OF THE CCR4–NOT COMPLEX IN EMBRYONIC
DEVELOPMENT
Deadenylation by CCR4–NOT also plays a crucial role in early
embryonic development. During the two first hours of Drosophila
embryogenesis, developmental processes depend on maternal
mRNAs, after which the zygotic genome takes over and mater-
nal mRNAs are degraded. Females bearing hypomorphic mutant
combinations of twin produce embryos that die before larval stage
and show asynchrony of mitoses in the syncytial embryo, con-
sistent with defective regulation of mRNAs involved in cell cycle

Frontiers in Genetics | Non-Coding RNA May 2014 | Volume 5 | Article 143 | 6

http://www.frontiersin.org/Non-Coding_RNA/
http://www.frontiersin.org/Non-Coding_RNA/archive


Temme et al. The CCR4–NOT complex in Drosophila

control (Zaessinger et al., 2006). In the embryo, a master regulator
of maternal mRNA decay at the maternal-to-zygotic transition
is the RNA binding protein Smaug (Tadros et al., 2007; Chen
et al., 2014b). A mechanistic analysis of Smaug-dependent decay
has been performed for two maternal mRNAs, nanos and Hsp83,
and showed that Smaug induces deadenylation by CCR4–NOT
(Semotok et al., 2005; Jeske et al., 2006; Zaessinger et al., 2006).
Smaug physically interacts with the CCR4–NOT complex, and
together these data have led to the idea that the general maternal
mRNA decay induced by Smaug in the early embryo depends on
its role in the recruitment of CCR4–NOT to mRNAs containing
Smaug recognition elements (SREs; Figure 2B). SRE-dependent
deadenylation observed in a cell-free system derived from early
Drosophila embryos was ATP-dependent, but the role of ATP
in deadenylation has not yet been elucidated (Jeske et al., 2006).
Smaug also associates with the protein Cup in the embryo (Nel-
son et al., 2004). Cup has recently been reported to interact with
the CCR4–NOT complex and mediate deadenylation (Igreja and
Izaurralde, 2011). Therefore, Cup could participate in the Smaug-
dependent tethering of CCR4–NOT to these specific maternal
mRNAs.

nanos mRNA deadenylation and translational repression by
Smaug and the CCR4–NOT complex in the somatic part of the
embryo (Zaessinger et al., 2006; Jeske et al., 2011) plays a key
role in embryonic patterning, Nanos itself being a translational
repressor which represses anterior determinant mRNAs if ectopi-
cally expressed anteriorly (Gavis and Lehmann, 1992). Although a
functional link between the miRNA pathway and the CCR4–NOT
complex has not been addressed in embryos, such a link with
another family of small non-coding RNAs, the Piwi-interacting
RNAs (piRNAs, 23–30 nt), has been reported for the regulation of
nanos. piRNAs mostly derive from transposable element sequences
in Drosophila. Two piRNAs were found to target a region in the
nanos 3′ UTR by complementarity and nucleate a complex con-
taining the Argonaute proteins Aubergine and Argonaute 3, as well
as Smaug and CCR4 (Figure 2B). These piRNAs, together with the
Argonaute proteins, are required for nanos mRNA deadenylation
and for anterior–posterior patterning of the embryo (Rouget et al.,
2010). Like most other piRNAs, those targeting the nanos 3′ UTR
are produced from transposable elements. This provides a func-
tional link between transposable elements and mRNA regulation,
with an essential role in development.

OTHER SUBSTRATES AND ACTIVATORS OF DEADENYLATION
As alluded to repeatedly, the Hsp70 mRNA is a well-characterized
substrate for deadenylation by the CCR4–NOT complex (Temme
et al., 2004, 2010). Transcription of the gene is induced by heat
shock and ceases immediately upon the return of cells to normal
growth temperature. Decay of the RNA commences under the
same circumstances [half-life 15–30 min (Petersen and Lindquist,
1988)], so that the Hsp70 mRNA can be used for simple tran-
scriptional pulse-chase experiments in the absence of actinomycin
D or other transcription inhibitors. The Hsp70 3′ UTR is suf-
ficient to induce rapid deadenylation and decay of a reporter
mRNA (Bönisch et al., 2007). However, specific destabilizing
sequences have so far not been mapped, and the factor inducing
deadenylation has not been identified.

Schneider cells are used to study the innate immune response
of Drosophila. As a response to stimulation by bacterial pepti-
doglycan, these cells express several antimicrobial peptides. The
mRNAs encoding some of these peptides are induced transiently.
For example, the cecropin A1 (CecA1) mRNA has a relatively short
half-life of 200 min, and a reporter RNA carrying the CecA1 3′ UTR
and induced independently of peptidoglycan treatment is even
more unstable. Deadenylation and decay of these RNAs is blocked
by RNAi-mediated depletion of POP2 and other subunits of the
CCR4–NOT complex. Interestingly, AU-rich elements (AREs) in
the CecA1 3′ UTR and the protein TIS11 are also required for
rapid deadenylation (Lauwers et al., 2009; Vindry et al., 2012).
TIS11 is the Drosophila ortholog of mammalian Tristetraprolin
(TTP), the best-studied protein destabilizing mRNAs by bind-
ing to AREs (Carballo et al., 1998; Brooks and Blackshear, 2013).
TTP is known to induce deadenylation by interaction with the
NOT1 subunit of the CCR4–NOT complex (Lykke-Andersen and
Wagner, 2005; Marchese et al., 2010; Sandler et al., 2011). A short
peptide motif at the very C-terminus of TTP has recently been
identified that mediates an interaction with HEAT repeats 10–
13 of NOT1. This interaction motif is conserved in Drosophila
TIS11 (Fabian et al., 2013). Thus, the mechanism of ARE-mediated
mRNA decay appears to be conserved between Drosophila and
man.

The family of TOB/BTG proteins, which has six members in
humans, is composed of general activators of deadenylation. The
mammalian TOB proteins have an antiproliferative activity in
tissue culture cells, which depends on a conserved N-terminal
domain (APRO or TOB domain) mediating their association with
CAF1/POP2 orthologs. Expression of TOB proteins increases the
rate of mRNA deadenylation by mechanisms which are not fully
understood, but may involve TOB interacting with specific RNA
binding proteins and thus recruiting the CCR4–NOT complex
(Horiuchi et al., 2009; Mauxion et al., 2009; Doidge et al., 2012;
Ezzeddine et al., 2012; Ogami et al., 2014). The single Drosophila
TOB protein has not been characterized with respect to its effect
on the CCR4–NOT complex, but the residues mediating the inter-
action between mammalian CAF1 and TOB are mostly conserved
in both corresponding Drosophila proteins. The two mammalian
TOB, but not the BTG proteins, carry, in their C-terminal domains,
conserved PAM2 (PABP interacting motif 2) motifs that permit an
association with the cytoplasmic poly(A) binding protein; these
motifs are also present in Drosophila TOB.

MicroRNAs repress gene expression both by inhibiting transla-
tion and promoting mRNA decay, and accelerated deadenylation
can achieve both. Several recent studies have come to the con-
clusion that deadenylation and destabilization of mRNAs is the
primary mode of action of miRNAs (Huntzinger and Izaurralde,
2011; Subtelny et al., 2014). MicroRNAs promote deadenylation
by both CCR4–NOT and Pan2/Pan3 and subsequent 5′ decay of
mRNAs in animal cells (Behm-Ansmant et al., 2006; Chen et al.,
2009; Fabian et al., 2009; Huntzinger and Izaurralde, 2011). The
effects of miRNAs are mediated by GW182 (glycine-tryptophan
repeat-containing protein of 182 kDa) proteins, which are compo-
nents of the miRISC (RNA-induced silencing complex) through
interaction with the miRNA-associated Argonaute (Ago) proteins.
In a Drosophila in vitro system, only Ago1 but not Ago2 induced

www.frontiersin.org May 2014 | Volume 5 | Article 143 | 7

http://www.frontiersin.org/
http://www.frontiersin.org/Non-Coding_RNA/archive


Temme et al. The CCR4–NOT complex in Drosophila

deadenylation (Iwasaki et al., 2009). This is explained by the fact
that only Ago1 interacts with GW182 and consistent with the func-
tional distinction between Ago1 acting in the miRNA pathway and
Ago2 acting in RNA interference (Rehwinkel et al., 2005; Behm-
Ansmant et al., 2006; Iwasaki et al., 2009). Like SRE-dependent
deadenylation (see above), miRNA-induced in vitro deadenyla-
tion was ATP-dependent. Both in mammalian and in Drosophila
Schneider cells, GW182 interacts directly with the Pan2/Pan3 as
well as the CCR4–NOT complex (Braun et al., 2011; Chekulaeva
et al., 2011; Fabian et al., 2011; Huntzinger et al., 2012; Christie
et al., 2013; Chen et al., 2014a; Mathys et al., 2014). The interac-
tions, which differ in molecular detail between Drosophila and
human proteins, are mediated by short tryptophan-containing
motifs that are spread over the C-terminal effector or silencing
domain and, in the case of the Drosophila protein, also addi-
tional, more N-terminal sequences of GW182. Corresponding
binding pockets for the tryptophan residues of GW182 reside
in the C-terminal domain of Pan3, in CAF40, and in NOT1.
Drosophila GW182, like its mammalian orthologs, also interacts
with the cytoplasmic poly(A) binding protein, PABPC (Fabian
et al., 2009; Zekri et al., 2009; Huntzinger et al., 2010, 2012; Jinek
et al., 2010). Whether or not this interaction is important for
miRNA-dependent deadenylation and mRNA repression has been
controversial (Fabian and Sonenberg, 2012). Data indicate that
PABPC binding contributes to the silencing activity of Drosophila
and human GW182, although the effect on deadenylation was not
examined specifically (Huntzinger et al., 2010, 2012). However,
in an in vitro system derived from Drosophila embryos, miRNA-
dependent deadenylation and translational repression were inde-
pendent of PABPC (Fukaya and Tomari, 2011). Drosophila GW182
is encoded by gawky (gw). Although gw message is also sup-
plied maternally, gw is among an extremely small group of genes
transcribed very early in the embryo, before large-scale zygotic
genome activation. In agreement with this very early expres-
sion, embryos mutant for zygotic gw expression show defects as
early as nuclear cycle 10, the beginning of the syncytial blasto-
derm stage (Schneider et al., 2006). While the molecular basis of
the gw phenotype has not been investigated, it may be related
to the role of miRNAs in the degradation of maternal mRNA
during early development (Bushati et al., 2008; Thomsen et al.,
2010).

Recruitment of the CCR4–NOT complex to specific mRNAs by
dedicated factors seems to be the rule. However, the complex itself
appears to be able to bind RNA not only in its nuclease active sites,
but also by means of the NOT1–NOT2–NOT3 module (Bhaskar
et al., 2013); thus the possibility of an inherent substrate selectivity
cannot be dismissed.

RELATIONSHIP OF CCR4–NOT-DEPENDENT DEADENYLATION
TO OTHER ASPECTS OF mRNA DECAY
As mentioned above, there are two other widely conserved
deadenylases in addition to the CCR4–NOT complex. The homod-
imeric enzyme PARN does not appear to be involved in bulk
mRNA deadenylation, but instead seems to act on a small set of
specific substrates, not all of them mRNAs (Berndt et al., 2012;
Yoda et al., 2013), and may play a particular role under stress
conditions (Harnisch et al., 2012; Godwin et al., 2013; Nousch

et al., 2013; Virtanen et al., 2013). PARN is not conserved in
Drosophila. The Pan2/Pan3 complex (Harnisch et al., 2012; Wahle
and Winkler, 2013), in which Pan2 carries the catalytic activ-
ity, does act in general mRNA decay, but its specific role is not
entirely clear. In S. cerevisiae, Pan2/Pan3 plays a secondary role
in mRNA decay, the more important part being played by the
CCR4–NOT complex. The action of Pan2/Pan3 appears to be
more prominent at the earliest stages of deadenylation (Brown
and Sachs, 1998; Tucker et al., 2001). Similar observations have
been made in mammalian cells (Yamashita et al., 2005; Zheng
et al., 2008; Chen et al., 2009). In C. elegans, in which a compre-
hensive genetic comparison of all three types of deadenylases has
been performed, mutants affecting Pan2/Pan3 (like those affecting
PARN) had much more subtle phenotypes than mutants affect-
ing the CCR4–NOT complex (Nousch et al., 2013). Pan2 and
Pan3 are conserved in Drosophila. In agreement with what has
been observed in other organisms, knock-down of Pan2/Pan3 in
Schneider cells had weaker, sometimes much weaker effects than
knock-down of the CCR4–NOT complex (Bönisch et al., 2007;
Lauwers et al., 2009; Braun et al., 2011), but a distinct order in
which the two deadenylases act was not obvious. While these
results have to be interpreted with the caveat that knock-down
efficiencies may be different, the fact that depletion of the CCR4–
NOT complex by itself produces a strong deadenylation defect
is persuasive evidence that this complex acts as the main dead-
enylase in Schneider cells. In most published studies that we are
aware of, the Pan2/Pan3 complex was found to act on the same
RNAs as the CCR4–NOT complex, but less efficiently. The ques-
tion why there are two conserved deadenylase complexes remains
to be answered.

Subsequent to deadenylation, mRNAs can be degraded either
by the 5′ pathway, consisting of cap hydrolysis and degradation
by the 5′ exonuclease XRN1, or by the 3′ pathway, exonucle-
olytic digestion by the exosome (Houseley and Tollervey, 2009).
In budding yeast, the 5′ decay pathway is thought to be domi-
nant. In Schneider cells, deadenylated decay intermediates of the
Hsp70 mRNA accumulated very dramatically upon depletion of
the decapping enzyme, and the same was true for a reporter mRNA
carrying the Hsp70 3′ UTR. Similar, although less dramatic, effects
were observed for a more stable reporter mRNA and for the Hsp83
and myc mRNAs (Bönisch et al., 2007) as well as for CecA1 (Vindry
et al., 2012). Finally, miRNA targets are stabilized by the depletion
of the DCP1/DCP2 decapping complex (Behm-Ansmant et al.,
2006). This might be explained not only by deadenylation trigger-
ing decapping, but also by CCR4–NOT-dependent recruitment of
Me31B, as extrapolated from the functions of its human and yeast
orthologs: human DDX6 binds to the MIF4G domain of NOT1
(Chen et al., 2014a; Mathys et al., 2014), and yeast Dhh1p favors
cap hydrolysis (Nissan et al., 2010). Consistent with conserved
interactions, Me31B was found in a complex with CCR4–NOT
in embryo extract (Temme et al., 2010). In summary, 5′ decay may
be the predominant mRNA decay pathway in Schneider cells.
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