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DNA methylation, the reversible addition of methyl groups at CpG dinucleotides,
represents an important regulatory layer associated with gene expression. Changed
methylation status has been noted across diverse pathological states, including cancer.
The rapid development and uptake of microarrays and large scale DNA sequencing has
prompted an explosion of data analytic methods for processing and discovering changes
in DNA methylation across varied data types. In this mini-review, we present a compact
and accessible discussion of many of the salient challenges, such as experimental design,
statistical methods for differential methylation detection, critical considerations such as
cell type composition and the potential confounding that can arise from batch effects.
From a statistical perspective, our main interests include the use of empirical Bayes
or hierarchical models, which have proved immensely powerful in genomics, and the
procedures by which false discovery control is achieved.
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1. INTRODUCTION
Epigenomics can be defined as the genome-wide investigation
of stably heritable phenotypes resulting from changes in a chro-
mosome without alterations in the DNA sequence (Berger et al.,
2009). DNA methylation is the most well-studied epigenetic mark
and notably, the enzymatic mechanism for mitotically copying
methylation status is well understood (Bird, 2002), unlike the
mechanism for maintaining chromatin state (Moazed, 2011). In
this review, we focus on differential methylation (DM) for methyl
groups added to cytosines in the CpG dinucleotide context, since
this is the predominant form observed in differentiated mam-
malian cells (Varley et al., 2013). However, some of the statistical
methods and technologies discussed here can be applied more
generally.

In the last decade, considerable progress has been made in
(observationally) characterizing epigenetic phenomena across a
wide spectrum of normal and disease states, predominantly
due to large-scale explorative studies using emerging disrup-
tive technologies, such as microarrays and large-scale sequenc-
ing of DNA (Satterlee et al., 2010; Ziller et al., 2013). These
studies have highlighted the important causal associations of
DNA methylation with gene regulation and its potential in
diagnosing or stratifying patients according to their com-
bined genomic/epigenomic molecular state (e.g., Szyf, 2012).
Robust and efficient statistical and computational frameworks
must be developed to facilitate interpretation of the growing
masses of data. For CpG methylation, the main workhorse
is treatment of DNA with sodium bisulphite (Clark et al.,
2006), which preserves methylated cytosines while converting
unmethylated cytosines to uracil. This transformation can allow

high-throughput readouts, whether by microarray hybridiza-
tion or DNA sequencing, to quantify the (relative) level of
methylation.

While an individual’s (pathologically normal) genome is
almost completely static in all cells, the epigenome is highly
dynamic both in time (e.g., through development) and across cell
types. Since the epigenome is a combinatorial assembly of regula-
tory factors (e.g., DNA methylation, histone modifications, non-
coding RNAs, etc.), comprehensively profiling the epigenome is
orders of magnitude more difficult than genome sequencing.
Therefore, accurately measuring DNA methylation or other lay-
ers of the epigenome requires additional considerations to ensure
that detected changes are not confounded with external factors,
such as cell type.

Not surprisingly, the community has embraced consortium
science to scale up data collection efforts. Prominent projects
that involve large-scale profiling of DNA methylation include
the ENCODE Roadmap Epigenomics Consortium (Bernstein
et al., 2010), The Cancer Genome Atlas and International Cancer
Genome Consortium (Hudson et al., 2010; Chin et al., 2011), the
BLUEPRINT project (Martens and Stunnenberg, 2013) and the
International Human Epigenome Consortium (Bae, 2013). See
Table 1 for further description.

2. TECHNOLOGIES
Present techniques for interrogating methylation fall into
three categories: methylation-specific enzyme digestion, affin-
ity enrichment, and chemical treatment with bisulphite (BS).
Techniques have been used in combination (e.g., enzyme
digestion then BS, commonly known as RRBS; see Laird, 2010),
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Table 1 | List of production science projects with significant DNA methylation data collection.

Project Website Goals/Aims

ENCODE/Roadmap http://www.roadmapepigenomics.org/ Reference epigenomes across a variety of human cell types

ICGC https://icgc.org/ Comprehensive catalogs of genomic abnormalities in tumors in 50

different cancer types (some DNA methylation)

TCGA https://tcga-data.nci.nih.gov/tcga/ Twenty-five tumor types; gene expression profiling, copy number variation

profiling, SNP genotyping, DNA methylation profiling, microRNA profiling

BLUEPRINT http://www.blueprint-epigenome.eu/ Distinct types of haematopoietic cells from healthy individuals

and malignant leukaemic counterparts; at least 100 reference epigenomes

and with high-throughput readout. Early demonstrations were
able to distinguish methylcytosine from cytosine with third-
generation technologies (Flusberg et al., 2010), but no com-
mercially viable offering has yet appeared. Methylation profiling
techniques vary in resolution from low (∼100–200 base pair)
to high (individual CpG sites) and their costs vary widely. Each
platform has its own limitations related to cost, resolution, scal-
ability, and the amount of starting DNA required (Laird, 2010;
Robinson et al., 2010; Bock, 2012). For example, enzyme diges-
tion studies remain dependent on the location and frequency
of enzyme restriction sites; the prominent BS-based microarray
platform is only available for human; the sensitivity of enrich-
ment approaches depends on CpG density, while genome-scale
sequencing-based BS methods are costly and require consider-
able computing resources (Riebler et al., 2014). Depending on
the biological question and resources available, a platform may
be selected based on these tradeoffs.

Notably, BS-based methods cannot distinguish between
methylcytosine and other variants, such as hydroxymethylcyto-
sine (Huang et al., 2010), although additional treatment steps
can readily allow this (Booth et al., 2012). The methods we dis-
cuss below are agnostic to this technicality, aside from specific
biological questions regarding the interplay between methylation
states. Another biological phenomenon we sidestep in this review
is methylation in non-CpG contexts, shown to be prominent in
pluripotent cells (Varley et al., 2013). Interestingly, a recent report
using whole genome BS-seq across various cell types found that
CpG methylation is only “dynamic” in approximately 20% of
sites (Ziller et al., 2013), suggesting that BS-seq could be more
directed. Enzyme digestion (and size selection) with BS-seq is
already a favored method to reduce sequencing depth, but is dif-
ficult to tailor to specific genomic regions. An alternative reduced
complexity strategy is to first capture fragments of interest, for
example by using the Agilent SureSelect system (Borno et al.,
2012).

A popular, cost-efficient and scalable technology for profil-
ing DNA methylation on a “genome-scale” is the Illumina 450k
microarray. The platform can be thought of as genotyping BS-
treated DNA to reveal the relative proportion of methylated and
unmethylated alleles (Pidsley et al., 2013). For every CpG site,
measurements are either made with two separate physical beads
(Type I) or through a single bead across two fluorescence chan-
nels (Type II); properties of these probe types are vastly different
and require careful normalization (Maksimovic et al., 2012; Aryee
et al., 2014).

With the decreasing costs of single-base resolution DNA
methylation data, enrichment techniques that capture methylated
DNA fragments appear to have gone somewhat out of favor.
Methylated DNA immunoprecipitation (MeDIP) or methyl-
binding domain enrichments share many features of chromatin
immunoprecipitation experiments. However, they are plagued
by enrichment biases associated with CpG density, some of
which can be fixed in silico (Down et al., 2008; Pelizzola
et al., 2008; Riebler et al., 2014). Recently, a combination
approach of MeDIP-seq and methylation-sensitive restriction
enzyme sequencing (MRE-seq) has become available, promis-
ing to quickly compare methylomes at lower cost (Zhang et al.,
2013).

Table 2 summarizes the methods reviewed and gives brief
details on some of the important features: (i) data type; (ii) abil-
ity to define regions; (iii) support for covariate adjustment; (iv)
statistical tests used.

3. EXPERIMENTAL DESIGN
Ultimately, the same experimental design concepts that apply
broadly to any scientific investigation, such as sampling, random-
ization, and blocking, are assumed. Excepting single-cell DNA
methylation studies (e.g., Guo et al., 2013), it is crucial to remem-
ber that every experimental unit represents a population of cells.
This implies that a consensus methylation estimate of 50% could
mean 50% of the alleles are methylated in all cells (e.g., allele-
specific methylation) or 50% of the cells are fully methylated (e.g.,
mixtures of cell types), or any combination thereof. Only BS-seq
data can properly decompose this information, and at the same
time infer allele-specific patterns, using the methylation status
from individual DNA fragments (Fang et al., 2012; Statham et al.,
2012; Song et al., 2013). But, there are limits: since small frag-
ments are observed, it remains challenging to relate the allelic
methylation status at one loci to another genomically distant
loci without additional haplotype information (Kuleshov et al.,
2014).

In contrast to genome sequencing studies, collecting relevant
populations of cell types is important for epigenome profiling
projects. Many population-scale profiling studies may consider
using readily accessible bodily fluids such as blood, which rep-
resents a rich milieu of cell types that may vary in compo-
sition across the experimental units being studied. If the cell
types and cell surface markers of interest are known, it may
be beneficial to first sort cells into subpopulations and pro-
file each individually (Houseman et al., 2012). Doing so will
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Table 2 | List of recent methods to detect differentially methylated loci or regions.

Method Citation Designed for Determines regions Accounts for Statistical elements

or uses predefined covariates used

Minfi Aryee et al., 2014 450k Determines Yes Bump hunting

IMA Wang et al., 2012 450k Predefined No Wilcoxon

COHCAP Warden et al., 2013 450k or BS-seq Predefined Yes FET, t-test, ANOVA

BSmooth Hansen et al., 2012a BS-seq Determines No Bump hunting on smoothed t-like score

DSS Feng et al., 2014 BS-seq Determines No Wald

MOABS Sun et al., 2014 BS-seq Determines No “Credible methylation difference”

BiSeq Hebestreit et al., 2013 BS-seq Determines Yes Wald

DMAP Stockwell et al., 2014 BS-seq Predefined Yes ANOVA, χ2, FET

methylKit Akalin et al., 2012 BS-seq Predefined Yes Logistic regression

RADMeth Dolzhenko and Smith, 2014 BS-seq Determines Yes Likelihood-ratio

methylSig Park et al., 2014 BS-seq Predefined No Likelihood-ratio

Bumphunter Jaffe et al., 2012 General Determines Yes Permutation, smoothing

ABCD-DNA Robinson et al., 2012 MeDIP-seq Predefined Yes Likelihood ratio

DiffBind Ross-Innes et al., 2012 MeDIP-seq Predefined Yes Likelihood ratio

M&M Zhang et al., 2013 MeDIP-seq+MRE-seq Determines No (Similar to) FET

give a more focused interrogation of methylation and improved
signal over noise. However, there are many situations where
pre-sorting is not possible. Importantly, profiling mixtures of
cell types and looking for changes in DNA methylation can be
misleading when the cell composition is associated with an exter-
nal factor, such as age of the patient (Jaffe and Irizarry, 2014).
However, there are now various emerging computational tech-
niques to deconvolute the cell composition signals in silico (see
Section 6).

Another design consideration for BS-seq experiments is
whether money is better allocated toward deeper sequencing
or additional replicates. Because of the local smoothing frame-
works available for methylation measurements (e.g., BSmooth,
Hansen et al., 2012b), it is considered better to sequence addi-
tional replicates than to gather deep information on fewer
samples.

4. FINDING DIFFERENTIAL LOCI
We first focus on the methodology for discovering individual dif-
ferentially methylated CpG sites for single-base resolution assays.
BS-seq data can be summarized as counts of methylated and
unmethylated reads at any given site. Many early BS-seq stud-
ies profiled cells without collecting replicates and used Fisher’s
exact test (FET) to discern DM (Lister et al., 2009). While this
strategy may be sufficient for comparing cell lines, we stress that
the use of FET should be generally avoided; most systems have
inherent biological variation and FET does not account for it. For
example, in a two-condition comparison, FET requires the data to
be condensed to counts for each condition, completely ignoring
the within-condition variability. This will underestimate variabil-
ity and overstate differences, leading to a high false positive rate.
Likewise, using the binomial distribution, e.g., within a logistic
regression framework (e.g., methylKit; Akalin et al., 2012), does
not facilitate estimation of biological variability unless an overdis-
persion term is used. While BSmooth uses a “signal-to-noise”
statistic to quantify DM evidence at individual CpG sites, it is

not used directly for inference of differential sites (more details
in Section 5).

The most natural statistical model for replicated BS-seq DNA
methylation measurements is beta-binomial. Conditional on the
methylation proportion at a particular site, the observations are
binomial distributed, while the methylation proportion itself
can vary across experimental units (e.g., patients), according
to a beta distribution. It is therefore no surprise that beta-
binomial assumptions are made in several recent packages, such
as BiSeq (Hebestreit et al., 2013), MOABS (Sun et al., 2014),
DSS (Feng et al., 2014), RADMeth (Dolzhenko and Smith,
2014), and methylSig (Park et al., 2014). Similarly, empirical
Bayes (EB) methods fit naturally for modeling and inference
across many types of genomic data, including DNA methy-
lation assays. MOABS and DSS both implement hierarchical
models and use the full dataset to estimate the hyperparame-
ters of the beta distribution; RADMeth, BiSeq and methylSig use
standard maximum likelihood without any moderation. While
BiSeq and RADMeth do not moderate parameter estimates, they
provide facilities for complex designs through design matri-
ces, which MOABS, DSS and methylSig do not currently offer.
Inference for parameters of interest (i.e., changes in methyla-
tion) are conducted using standard techniques, such as Wald
tests (DSS, BiSeq) and likelihood ratio tests (RADMeth, methyl-
Sig). Notably, MOABS introduces a new metric, called credible
methylation difference, which is a conservative estimate of the
true methylation difference, calibrated by the statistical evidence
available.

DNA methylation arrays, such as Illumina’s 27k or 450k array,
give fluorescence intensities that quantify relative abundance of
methylated and unmethylated loci, in contrast to the count-based
modeling assumptions for BS-seq based profiling. In particular,
the data used for downstream analyses can be either (i) log-ratios
of methylated to unmethylated intensities, or (ii) the beta-value,
which gives the ratio of the methylated to the total of methylated
and unmethylated intensities. Previous comparisons suggest that
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statistical inferences based on log-ratios are preferred (Du et al.,
2010), perhaps not surprisingly since they can rely on earlier suc-
cessful moderated statistical testing strategies (e.g., limma; Smyth,
2004). Much of the recent effort for the 450k array has been
dedicated to normalization and filtering (e.g., Price et al., 2013;
Aryee et al., 2014) and various options for inferring DM sites
from 27k/450k array data have been proposed. To test for DM,
IMA proposes Wilcoxon rank-sum tests on beta-values (Wang
et al., 2012). COHCAP operates either on methylation array data
or BS-seq data, using beta-values or methylation proportions as
input; they offer FET (see comment above), t-tests and ANOVA
analyses (without moderation), depending on the study design
(Warden et al., 2013). Ultimately, we speculate that moderated
t/F-statistics on the normalized log-ratios of intensities should
perform well.

5. FINDING DIFFERENTIAL REGIONS
Although there are occasions when researchers are interested in
relating single CpG sites to a phenotype (e.g., Weaver et al., 2004),
often differentially methylated regions (DMRs) are a more pre-
dictive feature. Another advantage is that while differences at any
individual site may be small, if they are persistent across a region,
statistical power to detect them may be greater. Methods that
operate on predefined regions must be distinguished from those
that define regions of DM. The latter is considerably more diffi-
cult because ensuring control of the false discovery rate (FDR)
at the region-level is non-trivial; in particular, FDR control at
the site-level does not give a direct way to region-level control
when the region itself is also to be defined (Lun and Smyth,
2014).

Therefore, the most straightforward approach is to use pre-
defined regions, such as CpG islands, CpG shores, UTRs, and
so on; statistical testing can be conducted fairly routinely at a
region-level. Many of the packages mentioned above, such as
IMA, COHCAP, DMAP, methylSig, and methylKit, do exactly
this. A special case is DMAP, which can operate on fragments
(using the sampled MspI-digested fragments as the region of
interest) or according to predefined regions (Stockwell et al.,
2014).

There are now many approaches for defining DMRs. For exam-
ple, Bumphunter can be applied quite generally across data types
(Jaffe et al., 2012), perhaps after transformation in the case of
count data. Notably, it also integrates a surrogate variable analysis
(Leek and Storey, 2007) to simultaneously account for potential
batch effects while permutation tests are used to assign FDR at
the region-level; users should set a smoothing window size and
a threshold on the percentile of the smoothed effect sizes (or t-
statistics) (Jaffe et al., 2012). Similarly, BSmooth searches for runs
of smoothed absolute t-like scores beyond a threshold, however,
does not suggest a permutation strategy to control region-level
FDR. From the same authors, minfi wraps bumphunting into
the suite of methods available for Illumina 450k arrays; in addi-
tion, they provide a module for block finding, which is essentially
bumphunting with a much greater window size (e.g., 250kbp)
(Aryee et al., 2014). BiSeq proposes, via a Wald test statistic
from the beta-binomial regression fit, a hierarchical testing strat-
egy that first considers target regions and controls error using a

cluster-wise weighted FDR strategy (Hebestreit et al., 2013); sec-
ondly, the differential clusters are trimmed using a second stage of
testing, analogous to methods used for spatial signals (Benjamini
and Heller, 2007). A clustering method, A-clust, proposes first to
cluster CpG sites according to correlation in methylation signal
across samples; within the clusters, associations can be mod-
eled with correlated error and fit using a generalized estimating
equation framework (Sofer et al., 2013). The DSS authors sim-
ply set some thresholds on the P-values, number of CpG sites
and length of regions, but they do not pursue FDR control (Feng
et al., 2014). The MOABS authors suggest grouping DM sites into
DMRs using a hidden Markov model or alternatively testing of
predefined regions, but no specific details are given. RADMeth
proposes a transformation of P-values (from a likelihood ratio
test) into a weighted Z-test that builds in the correlation of neigh-
boring probes (Kechris et al., 2010; Dolzhenko and Smith, 2014);
the same adjustment, also known as the Stouffer-Liptak test, is
used in the eDMR tool (Li et al., 2013). Also used in the context of
DMR detection for combining spatially correlated P-values, but
applicable more generally, is a tool called comb-p (Pedersen et al.,
2012).

Enrichment assays, such as MeDIP-seq, are by their very
nature of capturing fragments, only capable of finding regions
of DM. Packages for considering enrichment data, includ-
ing MEDIPS (Chavez et al., 2010; Lienhard et al., 2014),
ABCD-DNA (Robinson et al., 2012) and DiffBind (Ross-Innes
et al., 2012), compare relative abundance of fragment counts
by repackaging RNA sequencing statistical frameworks. In a
related assay, the M&M algorithm models normalized bin-
wise methylated counts (MeDIP-seq) and unmethylated counts
(MRE-seq) as jointly Poisson distributed with a shared param-
eter (Zhang et al., 2013). Analogous to the FET, the Poisson
model does not account for biological variability (Zhang et al.,
2013).

6. REDUCING THE IMPACT OF BATCH, CELL TYPE
COMPOSITION, OR OTHER CONFOUNDING EFFECTS

Researchers need to carefully design studies that associate phe-
notypes with DNA methylation. Some aspects, such as cell type
composition, cannot be readily controlled by design; patients and
therefore individual DNA samples simply differ in their cell type
composition. A recent report has highlighted that many of the
DNA methylation markers that have been associated with age
are actually driven by age-related changes in cell composition
(Jaffe and Irizarry, 2014). Whole blood is a mixture of several
cell types; using an independent dataset of methylation profiles
of the dominant cell types (Monocytes, CD4+ and CD8+ T
cells, Granulocytes, B cells, natural killer cells) from flow sort-
ing, patient profiles were deconvoluted using a reimplementation
of the Houseman algorithm (Houseman et al., 2012; Jaffe and
Irizarry, 2014). From the methylation profiles of pure cell pop-
ulations, cell-type-specific markers are selected and then used to
“calibrate” a regression model that associates methylation obser-
vations to a response of interest (Carroll, 2006; Houseman et al.,
2012). Of course, this approach requires advance knowledge
of the dominant cell types and methylation profiles for them,
preferably across multiple replicates to seed the deconvolution
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algorithm with appropriate methylation markers. However, a
recent study has highlighted that advanced statistical modeling
can correct for cell type composition without the need for pure-
cell profiles; starting from uncorrected standard model fits, the
method regresses principal components within a linear mixed
model until control for the inflation of the test statistics (e.g., rel-
ative to a uniform distribution of P-values) is achieved (Zou et al.,
2014).

7. DISCUSSION
In this review, we briefly explored the various methodologies
available for deciphering DMRs across the main data types and
highlighted some of the common themes and current chal-
lenges. The tradeoffs made by method developers are apparent.
In fact, it’s a lot to ask of a single statistical framework to do
everything: moderate parameter estimates using genome-wide
information or accurately and robustly smooth local estimates,
accommodate low coverage data, account for batch effects and
cell type composition, allow complex experimental designs and
accurately control FDR at the site- and/or region-level. In addi-
tion, identification of DMRs is only the discovery step; validating
these detections, perhaps by associating them with other bio-
logical outcomes in silico requires additional frameworks, some
of which have already been integrated alongside the packages
reviewed here.

On the statistical and computational side, the field is moving
fast and several advanced methods have been proposed. One of
the next challenges will be to comprehensively compare method
performance, in terms of statistical power, ability to control FDR,
robustness, and scalability to large datasets and large studies.
Representative simulation frameworks will be fundamental for
this task. Given the large number of methods available, this will
already be a large undertaking. To avoid bias, these comparisons
should be done either independently of the method development
process, or collectively with all method developers. Advanced
deconvolution algorithms and batch effect removal strategies are,
at present, targeted at 450k array data. The development and vet-
ting of similar techniques that can be readily applied to count
data, such as BS-seq data, are well underway (Leek, 2014; Risso
et al., 2014).
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