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Werner syndrome (WS) is a rare human autosomal recessive premature aging disorder
characterized by early onset of aging-associated diseases, chromosomal instability, and
cancer predisposition. The function of the DNA helicase encoded by WRN, the gene
responsible for WS, has been studied extensively. WRN helicase is involved in the
maintenance of chromosome integrity through DNA replication, repair, and recombination
by interacting with a variety of proteins associated with DNA repair and telomere
maintenance. The accelerated aging associated with WS is reportedly caused by telomere
dysfunction, and the underlying mechanism of the disease is yet to be elucidated. Although
it was reported that the life expectancy for patients with WS has improved over the last
two decades, definitive therapy for these patients has not seen much development. Severe
symptoms of the disease, such as leg ulcers, cause a significant decline in the quality of
life in patients with WS.Therefore, the establishment of new therapeutic strategies for the
disease is of utmost importance. Induced pluripotent stem cells (iPSCs) can be established
by the introduction of several pluripotency genes, including Oct3/4, Sox2, Klf4, and
c-myc into differentiated cells. iPSCs have the potential to differentiate into a variety of cell
types that constitute the human body, and possess infinite proliferative capacity. Recent
studies have reported the generation of iPSCs from the cells of patients with WS, and
they have concluded that reprogramming represses premature senescence phenotypes in
these cells. In this review, we summarize the findings of WS patient-specific iPSCs (WS
iPSCs) and focus on the roles of telomere and telomerase in the maintenance of these
cells. Finally, we discuss the potential use of WS iPSCs for clinical applications.
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INTRODUCTION
Werner syndrome (WS) is a rare human autosomal recessive
disorder characterized by early onset of aging-associated dis-
eases, chromosomal instability, and cancer predisposition (Goto,
1997, 2000). Fibroblasts from patients with WS exhibit premature
replicative senescence (Salk et al., 1981b). WRN, the gene respon-
sible for the disease, encodes a RecQ-type DNA helicase (Oshima
et al., 1996; Yu et al., 1996; Goto et al., 1997; Matsumoto et al.,
1997) that is involved in the maintenance of chromosome integrity
during DNA replication, repair, and recombination (Shimamoto
et al., 2004; Rossi et al., 2010).

WRN is a member of the RecQ helicase gene family, and other
members of the family include BLM and RTS/RECQL4, which
are mutated in Bloom syndrome (BS) and Rothmund–Thomson
syndrome (RTS), respectively (Ellis et al., 1995; Kitao et al., 1999).
BS and RTS, along with WS, are characterized by chromosomal
instability, due to which RecQ helicases are considered to be the
guardian angels of the genome (Shimamoto et al., 2004; Bohr,
2008). There are five members in the RecQ helicase gene family,
including RECQL1 (Seki et al., 1994) and RECQL5 (Kitao et al.,
1998; Shimamoto et al., 2000), the mutations of which have yet to
be identified in human diseases.

Major clinical symptoms of WS include common age-
associated diseases, such as insulin-resistant diabetes mellitus, and
atherosclerosis. Recent advances in drug therapy for these diseases
are available and are known to increase the lifespan of patients
with WS. However, there is no effective therapy for intractable
features, such as severe skin ulcers leading to a decrease in qual-
ity of life (QOL), which is a serious problem in patients with
WS. Thus, there is an urgent need to develop a new treatment
strategy for this syndrome. Regenerative medicine, such as autol-
ogous cell transplantation, could be considered as one of the
therapeutic strategies for WS, and a potential choice is the use
of patient-specific iPSCs.

Somatic cell reprogramming follows the introduction of sev-
eral pluripotency genes, including Oct3/4, Sox2, Klf4, c-myc,
Nanog, and Lin-28, into differentiated cells such as dermal fibrob-
lasts, blood cells, and others (Takahashi and Yamanaka, 2006;
Takahashi et al., 2007; Yu et al., 2007; Aoi et al., 2008; Stadtfeld
and Hochedlinger, 2010; Okita and Yamanaka, 2011). Dur-
ing reprogramming, somatic cell-specific genes are suppressed,
while embryonic stem cell (ESC)-specific pluripotency genes
are induced, leading to the generation of induced pluripotent
stem cells (iPSCs) with undifferentiated states and pluripotency
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(Stadtfeld et al., 2008). Somatic cell reprogramming generates
iPSCs characterized by pluripotency and infinite proliferative
potential similar to the ESCs, and this technology opens up new
possibilities for tailor-made regenerative medicine (Stadtfeld and
Hochedlinger, 2010; Okita and Yamanaka, 2011).

Recently, two groups reported the generation of iPSCs from
the cells of patients with WS and came to the similar conclusion
that reprogramming repressed premature senescence phenotypes
in WS cells (Cheung et al., 2014; Shimamoto et al., 2014). They
demonstrated the successful reprogramming of cells from patients
with WS into iPSCs with restored telomere function and stable
karyotypes, suggesting that the induction of the gene encoding
human telomerase reverse transcriptase (hTERT) during repro-
gramming suppresses telomere dysfunction in WS cells lacking
WRN. In this review, we summarize the findings of WS patient-
specific iPSCs (WS iPSCs) reported in the literature, and focus
on the roles of telomere and telomerase in maintenance of these
cells. We also review the recent progress in the clinical manage-
ment of WS and explore stem cell therapy as a new strategy for
WS treatment. WS iPSCs will provide opportunities not only for
a better understanding of the pathogenic processes and model-
ing of the complex features of WS, but also for drug screening as
well as the discovery and development of a new strategy for its
treatment.

FUNCTION OF WRN HELICASE
Prolonged S-phase and reduction in frequency of DNA replica-
tion initiation observed in WS cells have implicated the role of
WRN helicase in DNA replication (Hanaoka et al., 1983; Poot
et al., 1992). The fact that WRN helicase interacts with several fac-
tors involved in DNA replication, including RPA, PCNA, FEN-1,
and Topoisomerase I, supports this theory (Figure 1; Shimamoto
et al., 2004; Rossi et al., 2010). WS cells are hypersensitive to

a Topoisomerase I inhibitor, camptothecin (Okada et al., 1998;
Poot et al., 1999), and WRN nuclear foci induced by the DNA
damage caused by camptothecin are co-localized with RPA in
the S-phase (Sakamoto et al., 2001). In addition, WRN helicase
forms or unwinds the Holliday junction intermediate associated
with a regressed replication fork (Sharma et al., 2004; Machwe
et al., 2007). These observations suggest that the WRN helicase
is involved in the re-initiation of a stalled replication fork. WS
cells also show hypersensitivity to 4NQO that induces oxidative
damage (Gebhart et al., 1988). Since accumulation of oxidative
DNA damage is associated with aging, it is suggested that the
WRN helicase is associated with one of the oxidative repair mech-
anisms, base excision repair (BER), and is known to interact
with BER factors, polδ, polβ, PCNA, RPA, FEN-1, and PARP-
1 (Figure 1; Rossi et al., 2010). Furthermore, the WRN helicase
unwinds a BER substrate produced by uracil-DNA glycosylase
and AP endonuclease (Ahn et al., 2004). It is also known that
the helicase interacts with the double-strand break repair fac-
tors Ku, DNA-PKcs, and the Mre11-Rad50-Nbs1 complex, as
well as the telomeric DNA protecting proteins, TRF1, TRF2,
and POT1 (Figure 1; Shimamoto et al., 2004; Rossi et al., 2010).
Additionally, Tahara et al. (1997) reported abnormal telomere
dynamics in WS lymphoblastoid cell lines (LCLs) with weak or
no telomerase activity. These findings suggest that the WRN
helicase is involved in telomere metabolism. WRN helicase
is shown to resolve Holliday junctions (Sharma et al., 2004),
G-quadruplexes formed in telomere G-rich sequences (Mohaghegh
et al., 2001), and higher-ordered DNA structures, such as the
D-loop (Opresko et al., 2004). These DNA structures formed at
telomere ends must be resolved during DNA replication to be
accessible to DNA polymerases and telomerase, therefore, WRN
helicase might function in the resolution of higher order structures
in telomeric DNA.

FIGURE 1 | Function of WRN helicase. WRN helicase functions through interaction with factors involved in replication (RPA, PCNA, FEN-1, Topoisomerase I),
base excision repair (BER; polδ, polβ, PCNA, RPA, FEN-1, PARP-1), double-strand break repair (Ku, DNA-PKcs, Mre11-Rad50-Nbs1 complex), and telomere
maintenance, (TRF1, TRF2, POT1).
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ROLES OF TELOMERE IN REPLICATIVE LIFESPAN AND
IMMORTALITY
Telomeres, the ends of linear chromosomes in eukaryotes, are
ribonucleoprotein-containing specialized structures essential for
the protection of chromosomes from a sensing mechanism of
double-stranded DNA breaks (Chan and Blackburn, 2004). Mam-
malian telomeres are composed of TTAGGG repeat sequences,
while their specific binding protein complex, shelterin, is com-
posed of the six proteins TRF1, TRF2, RAP1, TIN2, POT1, and
TPP1. The chromosome ends are capped by t-loop structures
formed by the telomeric DNA and shelterin complex to pro-
tect them from DNA damage responses (Palm and de Lange,
2008). In normal human cells, progressive telomere shortening
occurs with each successive cell division because of the “end repli-
cation problem,” wherein regions of RNA primers involved in
lagging strand DNA synthesis at most chromosome ends can-
not be replaced with DNA during DNA replication (Harley et al.,
1990; Levy et al., 1992). Most of the cells in the human body,
such as terminally differentiated cells, have no detectable telom-
erase activity. Further, tissue stem cells such as hematopoietic
stem cells (Vaziri et al., 1994; Allsopp et al., 2001, 2003), epi-
dermal stem cells (Flores et al., 2005), and neural stem cells
(Ferron et al., 2004) do not exhibit substantial telomerase activ-
ity that can add telomeric repeats sufficient to prevent their
chromosomal ends from attrition with successive cell division,
which is a major cause of human and other organismal aging
(Blasco, 2007). On the other hand, germline stem cells and
cancer cells express high levels of telomerase that maintains
telomere length sufficient for their immortality (Flores et al.,
2006). The human telomerase holoenzyme complex consists of
a telomerase reverse transcriptase subunit, hTERT, and a tem-
plate RNA, TERC, which are the basic components required
for catalytic activity. (Egan and Collins, 2012) In addition, it
also consists of other accessory proteins, including dyskerin,
NHP2, NOP10, and NAF1 required for its assembly and stabil-
ity (Egan and Collins, 2012). Introduction of hTERT is necessary
and sufficient for the activation of telomerase in cells, as other
components are already expressed in most normal cells and tis-
sues (Nakayama et al., 1998; Chang et al., 2002). hTERT can
elongate telomeres, extend the lifespan of normal cells, and
immortalize cells such as dermal diploid fibroblasts (Bodnar et al.,
1998; Vaziri and Benchimol, 1998; Jiang et al., 1999; Morales et al.,
1999). Homologous recombination between telomeres, known
as ALT (alternative lengthening of telomeres) is an alternative
mechanism for the maintenance of telomere length, and has been
observed in subsets of cancer cells, telomerase-deficient ESCs
and iPSCs (Dunham et al., 2000; Niida et al., 2000; Wang et al.,
2012). These findings indicate that the telomerase-dependent and
-independent mechanisms of telomere maintenance are essential
for cellular immortality.

WS FIBROBLASTS EXHIBIT PREMATURE REPLICATIVE
SENESCENCE
Intrinsic DNA damage caused by the loss of WRN helicase could
activate stress responses leading to cellular senescence. Senescence
is defined as a state of permanent cell cycle arrest mediated by
the p53-p21Cip1/Waf1 and p16INK4A-RB pathways. It is one of

the tumor suppressor mechanisms exerted in cells that undergo
replicative aging with telomere attrition, generation of reactive
oxygen species, abnormal proliferation by oncogene activation,
and DNA damage activated by DNA damaging agents such as
ionizing radiation (Kuilman et al., 2010; Salama et al., 2014).
Stress-associated p38 mitogen-activated protein kinase is consti-
tutively activated in WS fibroblasts (Davis et al., 2005). Activation
of p38 is known to mediate cellular senescence in the presence of
elevated p21 levels (Haq et al., 2002; Iwasa et al., 2003), and p38
inhibitors can suppress premature senescence phenotypes of WS
fibroblasts by reducing p21 expression (Davis et al., 2005). These
observations indicate that p38 is a major mediator of the reduced
replicative lifespan of WS fibroblasts. Meanwhile, activation of
p38 also mediates induction of the senescence-associated secretory
phenotype (SASP; Freund et al., 2011) that is the hallmark of aging.
It is widely accepted that age-associated inflammatory responses
contribute to human aging mechanisms (Goto, 2008). WS fibrob-
lasts express inflammatory cytokines (Kumar et al., 1993), and WS
is associated with inflammatory conditions responsible for com-
mon age-associated diseases, such as atherosclerosis, diabetes, and
osteoporosis (Rubin et al., 1992; Murano et al., 1997; Yokote et al.,
2004a; Davis and Kipling, 2006). Taken together, these findings
suggest that premature replicative senescence with concomitant
induction of p21 and SASP, mediated by the activation of p38,
could be pathogenic hallmarks of WS.

TELOMERASE BYPASSES PREMATURE REPLICATIVE
SENESCENCE IN WS FIBROBLASTS
As mentioned previously, WRN helicase might play an impor-
tant role in telomere maintenance. This has been verified by
Crabbe et al. (2004) wherein, defects in WRN helicase caused
impairment of telomeric lagging-strand synthesis and accelerated
telomere loss during DNA replication. Moreover, the telomere
loss caused by mutation in the WRN gene involved telomere dys-
function such as chromosome end fusions (Crabbe et al., 2007).
It is postulated that the absence of WRN causes stalled replica-
tion forks at the sites of unresolved G-quadruplexes at the lagging
telomere, which would produce degradable substrates for factors
involved in DNA repair and recombination, leading to accelerated
telomere shortening (Figures 2A,B; Multani and Chang, 2007).
More importantly, telomerase prevented sister telomere loss (STL)
caused by defective telomeric lagging-strand synthesis and sup-
pressed chromosome end fusions in WRN-deficient cells (Crabbe
et al., 2004, 2007). These results demonstrate that telomerase can
provide WS fibroblasts with a complementation effect by adding
telomeric DNA “TTAGGG” to lagging telomeres that are lost dur-
ing replication (Figure 2C). Since telomerase is also known to
bypass premature replicative senescence in WS fibroblasts (Wyllie
et al., 2000), it is suggested that premature senescence in WS cells
might be caused by defects in telomeric lagging-strand synthe-
sis followed by telomere loss during DNA replication (Sugimoto,
2014).

PATHOLOGY IN RECENT WS PATIENTS AND THEIR LIFESPAN
Although WS patients usually grow normally until they reach the
late teens, they generally exhibit short stature during adulthood
due to impaired maturation. In their 20s and 30s, WS patients start
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FIGURE 2 |Telomerase bypasses premature replicative senescence in

WS fibroblasts. (A) G-quadruplexes at the lagging telomere are normally
unwound by WRN helicase, making it possible to complete replication of
lagging strand G-rich telomeres. (B) The absence of WRN causes stalled
replication forks at the sites of unresolved G-quadruplexes at the lagging
telomere, which would produce degradable substrates for factors

involved in DNA repair and recombination, leading to accelerated
telomere shortening. (C) Telomerase can add telomeric DNA “TTAGGG”
to lagging telomeres that are lost during replication in WS cells, which
overcomes the lack of WRN, enabling complete replication of lagging
strand G-rich telomeres. This figure is based on reference (Multani and
Chang, 2007).

to prematurely develop common age-associated diseases, includ-
ing cataract, graying of hair and hair loss, atrophic skin, skin
ulcers, abdominal fat accumulation, osteoporosis, insulin resis-
tant diabetes mellitus, hypogonadism, atherosclerosis, and cancer
(Epstein et al., 1966; Goto, 1997; Mori et al., 2001). Recent increase
in life expectancy of patients with WS as well as normal individuals
suggest that present-day environment, including diet and medi-
cal treatment, might have an effect in delaying and/or improving
common age-associated diseases. The clinical review of recent WS
case reports was updated in a recent study (Goto et al., 2013). In
addition, a nation-wide epidemiological survey was conducted in
Japan from 2009 to 2011 to elucidate the current clinical picture
of WS, as most patients suffering from this disease are of Japanese
origin (Takemoto et al., 2013).

It was found that from 2004 to 2008, patients with WS gen-
erally survived until their early 50s; this life expectancy is higher
than that in 1966 (below the age of 40), with malignancy and
cardiac infarction being the major causes of death (Goto et al.,
2013). Several symptoms such as short stature with stocky trunk,
bilateral cataracts, graying of hair and hair loss, osteoporosis, and
atherosclerosis are still the hallmarks of WS. Skin abnormalities
including atrophy, sclerosis, ulcers, pigmentation, and subcu-
taneous calcification have also been observed recently in most
WS patients. Endocrine and metabolic diseases including insulin-
resistant diabetes mellitus, hypogonadism, and hyperlipidemia are
constantly reported, but not observed in all patients with this
disease (Goto et al., 2013).

Our recent epidemiological survey revealed that progeroid
changes of the hair, bilateral cataracts, soft-tissue calcifica-
tions, and skin abnormalities, including atrophy and intractable
ulcers, are the most prominent diagnostic clinical features of WS
(Takemoto et al., 2013). Bird-like face and abnormal voice are also
the discriminating features of WS. The following features are not
observed in all WS patients but are critical symptoms: endocrine
and metabolic diseases, such as glucose and/or lipid metabolism
abnormalities; bone diseases, such as osteoporosis; atherosclero-
sis; hypogonadism; short stature; and malignancy (Okabe et al.,
2012; Onishi et al., 2012; Takemoto et al., 2013). These endocrine
and metabolic symptoms are common age-associated diseases in
normal individuals, and recent longevity in the general Japanese
population could be attributed to recent advances in medicine.
In the same way, the use of current medical care for the treat-
ment of the several critical symptoms of patients with WS might
increase their life expectancy (Yokote and Saito, 2008; Goto et al.,
2013).

CURRENT STRATEGIES FOR TREATMENT OF WS
Recent advances in drug therapy for common age-associated dis-
eases are also available for patients with WS. For example, in most
of these patients, insulin-resistant diabetes improved by adminis-
tration of the PPAR-γ agonist pioglitazone that is generally used
for the treatment of type 2 diabetes mellitus. In these cases,
pioglitazone ameliorated glycemic irregularities and hyperlipi-
demia as well as impaired insulin sensitivity (Yokote et al., 2004b;
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Honjo et al., 2008). Insulin-resistant diabetes is also improved by
treatment with the dipeptidyl peptidase-4 inhibitor sitagliptin in
patients with WS (Kitamoto et al., 2012; Watanabe et al., 2013).
Furthermore, hyperlipidemia is one of the predictors of coronary
artery disease in WS, and statins have been shown to address this
issue in patients with WS (Kobayashi et al., 2000). Since premature
senescence in WS cells seem to be caused by accelerated telomere
loss during DNA replication (Crabbe et al., 2007), the relation-
ship between telomere and these drugs should be considered in
the light of protection against aging. It was reported that a short
telomere length is a risk factor for coronary heart disease, which is
attenuated when combined with the intake of statins (Brouilette
et al., 2007). This may be corroborated by a previous finding which
suggests that statins prevent telomere dysfunction caused by the
loss of telomere repeat-binding factor, TRF2, in cultured endothe-
lial progenitor cells (Spyridopoulos et al., 2004). A PPAR-γ agonist
was reported to increase the expression of TRF2 and prevent apop-
tosis of endothelial progenitor cells (Gensch et al., 2007). Thus, it
is likely that improvement in the condition of patients with WS is
associated with the effects of these drugs.

INCREASED LONGEVITY AND QOL IN WS PATIENTS
As mentioned earlier, recent protocols for drug therapy in patients
with WS have led to an improvement in their lifespan. The average
life expectancy of patients with WS at the Chiba University hospital
has increased by more than 10 years from 1987 to 2007 (Yokote and
Saito, 2008), and a most recent record reported that the longest-
living patient had survived until the age of 64 (Yokote, Personal
communication). This retrospective study revealed that 7 of the 11
living patients with WS after 1997 had a history of taking statins
and/or pioglitazone, suggesting that medical procedures, possibly
improved by drug development, as well as early detection and
early intervention may increase the life expectancy of patients with
WS. However, improvement in the QOL of these patients is also
imperative, as skin ulcers are known to have a negative effect on it
(Goto et al., 2013).

Excruciatingly painful skin ulcers in patients with WS are con-
sidered to be caused by multiple factors, including dermal fragility
caused by a decrease in connective and fat tissues, a delay in wound
healing caused by impaired proliferative ability of dermal cells,
and poor circulation associated with diabetes and arteriosclerotic
lesions, and are extremely difficult to treat (Yeong and Yang, 2004;
Takemoto et al., 2013). Severe ulcers are commonly found in heels,
ankles, elbows, and other areas subject to pressure, and can be sur-
gically treated in some cases only (Yeong andYang,2004). However,
drug therapy including basic fibroblast growth factor spray, hydro-
colloid dressing, and PGE1 preparation have little effect on the
ulcers in WS, although it is reported that topical platelet-derived
growth factor-BB and the endothelin receptor antagonist bosen-
tan has shown some beneficial effects (Wollina et al., 2004; Noda
et al., 2011). Most deep and severe leg ulcers with necrosis require
amputations (Yeong and Yang, 2004; Goto et al., 2013). In spite
of the increase in the average of life expectancy in WS patients
due to the recent improvement in drug therapy for common age-
associated diseases, the decrease in QOL caused by excruciatingly
painful ulcers is still a major problem that needs to be addressed
in these patients.

Intractable skin ulcers also include diabetic ulcers, stasis ulcers,
arterial ulcers associated with arteriosclerotic obliteration and
Buerger’s disease, ulcers associated with connective tissue disease,
and radiation-induced ulcers. These ulcers might be treated with
debridement ointment under infection control for the enhance-
ment of granulation tissue with vascularization and connective
tissue repair (Brem and Lyder, 2004; Sorensen et al., 2004). If
the affected area contains necrotic tissue, surgical debridement
would be performed followed by skin grafting or flap as required
(Sorensen et al., 2004). However, as described above, ulcers in
patients with WS heal poorly because of atrophic connective
and fat tissues, impaired proliferative ability of dermal fibrob-
lasts, and poor circulation, leading to limited healing of skin
grafts and flap as a result of defective granulation tissue forma-
tion. At present, there is an urgent need to develop an effective
therapeutic strategy for the treatment of severe ulcers in patients
with WS.

TELOMERE REJUVENATION IN iPSCs BY REPROGRAMMING
Induced pluripotent stem cells are similar to ESCs, which are gen-
erated from individual somatic cells such as dermal fibroblasts,
blood cells, and other cell types by the introduction of several
pluripotency genes, including Oct3/4, Sox2, Klf4, c-myc, Nanog,
and Lin-28 (Takahashi and Yamanaka, 2006; Takahashi et al., 2007;
Yu et al., 2007; Aoi et al., 2008; Stadtfeld and Hochedlinger, 2010;
Okita and Yamanaka, 2011). Because of their ability to differenti-
ate into various cell types as well as their unlimited proliferative
potential, iPSCs, like ESCs, are expected to contribute to regenera-
tive medicine (Takahashi et al., 2007; Stadtfeld and Hochedlinger,
2010). However, unlike ESCs, iPSCs are generated from indi-
vidual patients, therefore, they can be applied to tailor-made
medicine based on syngeneic cell transplantation without allograft
rejection (Robinton and Daley, 2012; Lin et al., 2013; Takahashi
and Yamanaka, 2013). Moreover, disease-specific iPSCs that can
differentiate into multiple cell types can be used to resolve the
pathogenic processes of several diseases where cell types available
from patients are usually limited to patient-derived lymphocytes
and/or fibroblasts.

The reprogramming process includes several key events that
define the mechanism of reprogramming of somatic cells into
an ES-like state. One proposed idea separates the process into
three distinct phases in human and mouse (Figure 3; Samavarchi-
Tehrani et al., 2010; Golipour et al., 2012; David and Polo, 2014).
In the Oct3/4, Sox2, Klf4, and c-Myc (OSKM)-driven reprogram-
ming of mouse embryonic fibroblasts, changes in the expression of
genes related to the mesenchymal-to-epithelial transition (MET)
are observed in the initiation phase (Mikkelsen et al., 2008;
Samavarchi-Tehrani et al., 2010; David and Polo, 2014), along
with the loss of mesenchymal cell surface markers, CD44 and
Thy1, and a gain of the pluripotency markers, alkaline phosphatase
activity, and ESC markers (Stadtfeld et al., 2008; Samavarchi-
Tehrani et al., 2010; O’Malley et al., 2013; David and Polo, 2014).
MET is also observed in reprogramming of human fibroblasts.
Using Tra-1-60 positive intermediate reprogrammed cells, similar
events are observed during reprogramming of human fibroblasts
(Figure 3; Takahashi et al., 2014). MET-associated gene expres-
sion change occurs in early phage, where induction of epithelial
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FIGURE 3 |Telomere rejuvenation by reprogramming. The
reprogramming process is divided into three distinct stages; early stage,
transient stage, and late stage. Telomerase activation and telomere
elongation occur in the late stage by induction of telomerase reverse
transcriptase subunit and the telomerase RNA (TERC) component, which
induce telomere rejuvenation similar in length and their epigenetic state to
those of ESCs.

marker genes such as CDH1 and EpCAM, and suppression of mes-
enchymal genes including SNAI2, ZEB1, and FN1 is observed.
In transient stage, intermediate cells transiently express genes
related to the primitive streak, including BRACHYURY, MIXL1,
CER1, LHX1, and EOMES (Figure 3; Takahashi et al., 2014).
These events, along with the later phases, are directly or indi-
rectly regulated though the OSKM transcription network by which
chromatin decondensation, loss of suppressive histone modifica-
tion, DNA demethylation, and gain of active histone modification
are directed in the genes to be activated, while a concomitantly
opposite regulation is observed in the lineage-specific genes to be
inactivated (Apostolou and Hochedlinger, 2013; Buganim et al.,
2013; Papp and Plath, 2013). During late stage, activation of the
first pluripotency-associated genes, including endogenous Oct3/4,
Nanog, Sall4, and Esrrb, followed by subsequent activation of Sox2
and Dppa4 is essentially required to initiate the transformation
into pluripotent cells (Figure 3; Stadtfeld et al., 2008; Samavarchi-
Tehrani et al., 2010; Buganim et al., 2012; Golipour et al., 2012;
David and Polo, 2014; Takahashi et al., 2014). The cells activat-
ing the first pluripotency genes successfully shift into late stage
from transient stage, leading to the accomplishment of a full
reprogramming state that ensures sustained self-renewal ability
and differentiation potential. In late stage, successive passages are
required to eliminate small differences in gene expression profiles
between human iPSCs and hESCs, and to erase epigenetic mem-
ory derived from somatic cells used in reprogramming (David and
Polo, 2014).

Late stage also involves telomerase activation and telomere
elongation that provide somatic cells with infinite proliferative
potential (Figure 3; Takahashi et al., 2007; Stadtfeld et al., 2008;
Marion et al., 2009b; Wang et al., 2012). During the reprogram-
ming process, telomerase is activated by induction of telomerase
reverse transcriptase subunit (hTERT in humans) and the telom-
erase RNA component (TERC; Takahashi et al., 2007; Agarwal
et al., 2010; Ji et al., 2013), which are likely to be regulated

in stem cells by Wnt/β-catenin signaling with KLF4 and/or
TCF4 and OCT3/4 and NANOG, respectively (Agarwal et al.,
2010; Wong et al., 2010; Hoffmeyer et al., 2012; Zhang et al.,
2012). Although c-Myc is known to induce telomerase activ-
ity through direct activation of the hTERT gene (Wang et al.,
1998; Wu et al., 1999), it might be less involved in telom-
erase activation during reprogramming, because OSK of the
Yamanaka 4 factors without c-Myc is shown to generate iPSCs
with enough telomerase activity (Marion et al., 2009b). hESCs
have much longer telomeres with higher expression levels of
hTERT and stronger telomerase activity than the differentiated
cells (Thomson et al., 1998), and telomerase-dependent telomere
maintenance is critical for the growth of mammalian ESCs (Niida
et al., 1998). Telomere elongation accompanied by telomerase
activation occurs during reprogramming, leading to acquisition
of telomeres similar in length to those of ESCs after repro-
gramming (Marion et al., 2009b). iPSC generation also involves
epigenetic alterations to ESC-like states with reduced histone
codes associated with heterochromatin, and enhanced transcrip-
tion at the telomere loci. Elevated frequencies in telomeric sister
chromatid exchanges and telomere elongation were observed
even when old cells with shortened telomeres were used (Mar-
ion et al., 2009b). These observations indicate that telomeres
are rejuvenated toward an ESC-like state during reprogramming
(Figure 3).

However, telomerase-deficient cells with critically shortened
telomeres fail to be reprogrammed, suggesting that iPSC genera-
tion requires a minimum telomere length to be reprogrammed
(Marion et al., 2009b). Critically shortened telomeres resulting
from the progression of replicative aging in normal human cells
lose the protective function of the chromosomal ends and are
recognized as endogenous DNA damage. As a result, dysfunc-
tional telomeres induce DNA damage responses including the
activation of ataxia telangiectasia mutated (ATM), ATM- and
Rad3-related (ATR), and downstream CHK1 and CHK2 kinases,
as well as the phosphorylation of p53, inducing cellular senes-
cence via stimulation of the expression of the cyclin-dependent
kinase inhibitor (CDKI) p21 (d’Adda di Fagagna et al., 2003;
Herbig et al., 2004; Deng et al., 2008). It has been shown that
the activation of p53 significantly suppresses reprogramming effi-
ciency, known as the reprogramming barrier (Hong et al., 2009;
Kawamura et al., 2009; Li et al., 2009; Utikal et al., 2009), while
suppression of p53 improves the reprogramming efficiency in
cells with critically shortened telomeres (Marion et al., 2009a).
These findings demonstrate that activation of telomerase during
reprogramming plays a pivotal role not only in telomere elonga-
tion with chromatin state characteristic of ESCs, but also in the
restoration and maintenance of the protective functions of the
telomere at the chromosomal ends, in order to suppress DNA
damage responses.

iPSCs AS A POTENTIAL STRATEGY FOR WS TREATMENT
As described above, skin ulcers in patients with WS heal poorly,
and so far no effective therapy has been developed to treat them
or the other symptoms associated with WS. Thus, there is an
urgent need to develop a new treatment strategy in order to
improve the health and QOL of patients with WS. Understanding
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the molecular basis and development of therapeutics requires an
appropriate disease modeling system. Primary cells from affected
tissues of these patients are required for better understanding of
the pathogenic processes and complex features involved with this
disease. However, their use is usually limited to patient-derived
lymphocytes and/or fibroblasts, which are difficult to propagate in
culture for extended periods of time. Thus, regenerative medicine
such as autologous cell transplantation could be used as a thera-
peutic strategy for WS, which provides cells with high proliferative
ability and differentiation potential in large quantities over a long
period.

The skin, composed of epidermis and dermis, is one of the
main affected tissues in WS. A recent study demonstrated that
hESCs can generate a homogeneous population of epithelial cells
expressing postnatal keratinocyte markers in squamous epithe-
lia, and these hESC-derived keratinocytes could reconstitute a
functional pluri-stratified epithelium (Guenou et al., 2009). On
the other hand, human epidermal keratinocytes can reconstitute
stratified epithelium in culture, and it is known that expanded
culture of epidermal stem cells from a tiny skin biopsy can cover
the whole body surface of an individual, because of the high pro-
liferative potential of these cells (De Luca et al., 2006), thus raising
the argument as to whether pluripotent cell-derived epithelium
can be used for clinical purposes (Pellegrini and Luca, 2009). In
the case of WS, as the regenerative potential of adult skin cells is
expected to be hampered due to their impaired proliferative abil-
ity, the concerns over premature senescence phenotype in cells
from these patients might be eliminated by the development of
rejuvenated resources. Patient-specific iPSCs might be a potential
candidate that can meet these requirements. The epoch-making
invention of iPSCs has the potential to bring innovation to regen-
erative medicine as well as drug discovery, as these cells are known
to possess the ability to differentiate into all cell types, including
those belonging to the skin, hair root, blood vessel, bone, and
pancreatic islets.

GENERATION OF iPSCs FROM WS PATIENT CELLS
During the reprogramming process, both telomere and telom-
erase play protective roles at chromosomal ends against DNA
damage responses, causing a reprogramming barrier (Marion
et al., 2009a,b). Fibroblasts from patients with WS exhibit pre-
mature senescence caused by accelerated telomere loss during
DNA replication (Salk et al., 1981b; Crabbe et al., 2007). Thus,
it is interesting to note that forced expression of the telomerase
catalytic gene hTERT in WS fibroblasts bypassed the pheno-
type, raising the question as to whether WS fibroblasts can
be reprogrammed into iPSCs. In addition, there are doubts as
to whether WS iPSCs, if successfully generated, can maintain
hESC-like characteristics during long-term culture. Inconsis-
tent consequences of the generation of patient-specific iPSCs
from dyskeratosis congenita (DKC), another disease involving
telomere abnormalities, have been reported (Agarwal et al., 2010;
Batista et al., 2011). Batista et al. demonstrated that DKC iPSCs
presented with progressive telomere shortening and loss of
self-renewal ability in long-term culture (Batista et al., 2011).
Therefore, it is important to evaluate the properties of iPSCs

derived from the cells of the patient with telomere dysfunc-
tion over the long term. The findings from a recent study
by Cheung et al. demonstrating the successful generation of
disease-specific iPSCs from cells of patients with WS were
in accordance with one of our current works, leading us to
believe that reprogramming repressed premature senescence phe-
notypes in WS cells (Cheung et al., 2014; Shimamoto et al.,
2014).

WS iPSCs were generated from the patient’s fibroblasts and
were quite similar to normal iPSCs in their characteristics as
pluripotent stem cells, including their hESC-like morphology,
expression of pluripotency genes, and hESC-specific surface mark-
ers, global gene expression profiles, embryoid body (EB) formation
and subsequent differentiation into three embryonic germ lay-
ers, and teratoma formation. The WS iPSCs maintained their
telomeres with reactivation of endogenous telomerase by induc-
tion of hTERT as well as other components of telomerase, such as
TERC and DKC1, and were sustained in culture for more than 35
(Cheung et al., 2014) and 150 passages (Shimamoto et al., 2014)
without morphological changes and loss of growth capacity. These
observations indicate that induction levels of telomerase activity
during reprogramming are sufficient for generation and subse-
quent cloning and maintenance of iPSCs from WS fibroblasts
(Figure 4).

REPROGRAMMING SUPPRESSES PREMATURE SENESCENCE
PHENOTYPES AND GENOMIC INSTABILITY OF WS
FIBROBLASTS
Expression levels of senescence-associated genes including the
CDKIs as well as the SASP factors, were compared between WS
fibroblasts and WS iPSCs, because it is widely accepted that age-
associated inflammatory responses, including SASP, contribute to
human aging mechanisms (Goto, 2008). The results demonstrated
that in addition to the CDKI genes p21Cip1/Waf1 and p16INK4A, the
SASP genes such as IL-6, gp130, IGFBP5, IGFBP7, ANGPTL2,
and TIMP1 were highly expressed in cells of patients with WS as
compared with PDL-matched normal fibroblasts. However, the
expression levels of the same genes were suppressed in their iPSC
derivatives to the level generally seen in normal iPSCs. These
observations revealed that reprogramming suppresses and rejuve-
nates the premature aging phenotypes of WS fibroblasts (Figure 4;
Shimamoto et al., 2014).

WS is characterized by genomic instability and chromosomal
aberrations, including translocations, inversions, and deletions
that have been observed during culture of patient-derived cells
(Salk et al., 1981a). As the generation and subsequent mainte-
nance of iPSCs involve extensive cell division, WS iPSCs may
acquire additional chromosomal abnormalities during the pro-
cess. In one of our recent works, we performed a chromosomal
profiling analysis which indicated karyotype stability in WS iPSCs
in long-term culture (Shimamoto et al., 2014). We performed G-
banding stain and multicolor fluorescence in situ hybridization,
and showed that 3 of 6 WS iPSC clones had the same karyotypes
as their parental cells after approximately 100 passages, suggesting
that karyotypes of WS cells are stabilized following reprogram-
ming (Figure 4; Shimamoto et al., 2014). Normal human iPSCs
are known to acquire genomic instability with high incidence
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FIGURE 4 | Reprogramming suppresses premature senescence

phenotypes. (A) Accelerated telomere shortening during replication induces
telomere dysfunction and DNA damage response at the lagging telomere,
leading to induction of premature senescence and SASP following
chromosomal instability and upregulation of CDK inhibitors. (B)

Reprogramming involves induction of pluripotency and global epigenetic
alteration toward ESC-like state, which suppress senescence phenotypes
including CDKi and SASP. Reprogramming also overcomes the lack of WRN
through activation of telomerase, consequently inducing telomere elongation
and cellular immortality.

of additions, deletions and translocations (Martins-Taylor et al.,
2011; Taapken et al., 2011). Thus, given the genomic instability of
WS cells, these data reveal the unexpected maintenance of chro-
mosomal profiles in WS iPSC clones during long-term culture,
indicating the possibility of its application clinically, although
general risk factors, including genetic and epigenetic abnormal-
ities (Gore et al., 2011; Hussein et al., 2011; Lister et al., 2011; Pera,
2011) and the potential for tumorigenicity (Kiuru et al., 2009; Ben-
David and Benvenisty, 2011) and immunogenicity (Zhao et al.,
2011; Araki et al., 2013) must be taken into consideration.

RECAPITULATION OF PREMATURE SENESCENCE
PHENOTYPES IN DIFFERENTIATED CELLS
Differentiated cells including mesenchymal stem cells (MSCs) and
other cell types derived from WS iPSCs were examined to deter-
mine their roles as models of WS, because the WS iPSCs do not
exhibit any of the characteristic features of the syndrome. Che-
ung et al. demonstrated premature senescence of WS MSCs with
elevated expression levels of p53, p21, and p16; accelerated telom-
ere shortening; and impaired telomeric lagging-strand synthesis
that causes telomere loss and dysfunction (Cheung et al., 2014).
They also showed that WS iPSC-derived neural progenitor cells

(NPCs) expressing telomerase activity maintained telomere and
proliferative capacity with NPC phenotypes, and treatment with
telomerase inhibitor was seen to decrease growth and increase the
incidence of γH2AX in WS NPCs. These results, together with the
fact that hTERT rescues premature senescence and telomere dys-
function, suggest that premature senescence in WS MSCs is due
to insufficient levels of telomerase activity downregulated during
differentiation (Figure 5A). Thus, adequate telomerase activity
could maintain tissue stem cell function in WS (Cheung et al.,
2014).

Differentiated cells derived from WS iPSC EBs were also exam-
ined for their growth defects. We found that the cells underwent
premature senescence with a higher rate of SA-β-gal positive
cells, upregulation of p21 concomitantly with downregulation of
hTERT and induction of SASP genes (Figure 5A; Shimamoto et al.,
2014). Since EB-derived differentiated cells include a variety of cell
types originating from the three germ layers, these results suggest
that EB-mediated iPSC differentiation could provide a simple and
rapid method for the identification of cell lineages other than the
MSCs in WS.

ATM, a causative gene for premature aging syndrome ataxia
telangiectasia (AT) is required for the maintenance of stem cells
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FIGURE 5 | Healthy stem cells from gene-corrected WS iPSCs. (A) WS iPSC-derived stem cells with insufficient levels of telomerase activity induce
premature senescence and stem cell dysfunction. (B) Gene-corrected WS iPSCs can produce healthy stem cells by suppressing premature senescence
due to functional WRN helicase.

including hematopoietic and spermatogonial stem cells (Ito et al.,
2004; Takubo et al., 2008). Furthermore, the pathophysiology of
AT might be associated with dysregulation of the reservoir of adult
stem cell populations (Wong et al., 2003). Recent findings have
shown dysfunction of vascular smooth muscle cells (VSMCs) and
their progenitor SMCs in Hutchinson–Gilford Progeria syndrome
(HGPS; Liu et al., 2011; Zhang et al., 2011). Taken together, these
findings suggest that premature aging syndromes including WS,
AT, and HGPS are stem cell dysfunction-associated diseases.

GENE-CORRECTED WS iPSCs AND ITS CLINICAL
APPLICATION
Autologous cell transplantation can be selected as one of the ther-
apeutic strategies for treating the intractable symptoms of WS,
including skin ulcers. Clinical application of iPSCs requires unlim-
ited proliferative ability and differentiation potential into various
cell types with healthy conditions that could replace the affected
area. Although WS iPSCs are almost indistinguishable from nor-
mal iPSCs in many aspects, differentiated cells from WS iPSCs
manifest premature aging phenotypes (Figure 5A; Cheung et al.,
2014; Shimamoto et al., 2014). Thus, gene-corrected WS iPSCs
could offer a unique treatment strategy for patients with WS.
Recent progress in gene therapy and genome engineering tech-
nology provides powerful tools for genome editing, including
zinc-finger nucleases (ZFNs), transcription activator-like effec-
tor nucleases (TALENs), and RNA-guided engineered nucleases
derived from the bacterial clustered regularly interspaced short
palindromic repeat (CRISPR)-Cas system (Kim and Kim, 2014;
Li et al., 2014). This technology could be used for correction of
the disease-specific mutations in iPSCs by gene targeting (Yusa
et al., 2011; Suzuki et al., 2014) and establishment of disease-
specific iPSCs from wild-type iPSC lines (Soldner et al., 2011).
Because WS is inherited in an autosomal recessive manner, a sin-
gle gene-targeting event of specific mutations in WRN loci might
be sufficient for recovery from WS, which could be confirmed by
examining differentiated cells such as MSCs for the restoration of
telomere dysfunction and premature growth defects (Figure 5B).

In addition to the safety of iPSCs (Okano et al., 2013), evalua-
tion of whole-genome sequencing and epigenomic analysis will be
needed before their clinical application because WS patient cells
are reported to have chromosomal aberrations including translo-
cations, inversions, and deletions (Salk et al., 1981a). Furthermore,
the differentiation potential and corrected phenotypes in gene-
corrected WS iPSCs must be warranted for their clinical use.
For example, reconstituted epithelium might be clinically applica-
ble for skin ulcers after finding evidence that gene-corrected WS
iPSC-derived keratinocytes could form functional pluri-stratified
epithelium with fibroblast-containing fibrin dermal matrix in vivo
(Guenou et al., 2009).

CONCLUSION
Recent findings including ours, demonstrate that reprogramming
bypasses premature senescence and suppresses genomic instability
in WS cells, leading to sustained undifferentiated states with the
ability to differentiate into three embryonic germ layers over the
long term. It is noteworthy that WS iPSCs exhibited stable chromo-
somal profiles, and this unexpected property might be achieved by
the expression of the endogenous telomerase gene induced during
reprogramming. As normal iPSCs exhibited higher expression lev-
els of WRN protein than normal fibroblasts, WRN helicase might
have a role in chromosomal stability as well as telomere mainte-
nance in iPSCs. Thus, thorough safety tests, especially concerning
genetic and epigenetic abnormalities and the potential for tumori-
genicity, will be necessary before the clinical application of these
cells. The use of WS iPSCs will enhance our understanding of the
pathogenic processes and modeling of complex features associated
with WS. In addition, it can provide opportunities for drug screen-
ing and the discovery and development of new strategies for the
treatment this disease. Finally, although challenges and concerns
remain regarding the general safety and risk of iPSCs as well as
the WS-specific defects, a recent clinical trial using patient-specific
iPSCs at the RIKEN Center for Developmental Biology (CDB) will
encourage and promote stem cell research toward clinical appli-
cation (Reardon and Cyranoski, 2014), at the same time, we need

www.frontiersin.org January 2015 | Volume 6 | Article 10 | 9

http://www.frontiersin.org/
http://www.frontiersin.org/Genetics_of_Aging/archive


Shimamoto et al. Reprogramming suppresses Werner syndrome phenotypes

to consider the results of the RIKEN CDB clinical trial in a calm
manner.
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