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Cyto-nuclear incompatibility, a specific form of Dobzhansky-Muller incompatibility caused
by incompatible alleles between mitochondrial and nuclear genomes, has been sug-
gested to play a critical role during speciation. Several features of the mitochondrial
genome (mtDNA), including high mutation rate, dynamic genomic structure, and uni-
parental inheritance, make mtDNA more likely to accumulate mutations in the population.
Once mtDNA has changed, the nuclear genome needs to play catch-up due to the
intimate interactions between these two genomes. In two populations, if cyto-nuclear co-
evolution is driven in different directions, it may eventually lead to hybrid incompatibility.
Although cyto-nuclear incompatibility has been observed in a wide range of organisms,
it remains unclear what type of mutations drives the co-evolution. Currently, evidence
supporting adaptive mutations in mtDNA remains limited. On the other hand, it has been
known that some mutations allow mtDNA to propagate more efficiently but compromise
the host fitness (described as selfish mtDNA). Arms races between such selfish mtDNA
and host nuclear genomes can accelerate cyto-nuclear co-evolution and lead to a
phenomenon called the Red Queen Effect. Here, we discuss how the Red Queen Effect
may contribute to the frequent observation of cyto-nuclear incompatibility and be the
underlying driving force of some human mitochondrial diseases.

Keywords: cyto-nuclear incompatibility, Muller’s ratchet, selfish mitochondrial DNA, Red Queen effect, mitochon-
drial disease

Introduction

Mitochondria are themajor energy source of the cell and are also involved inmany important cellular
functions (McBride et al., 2006). Although mitochondria harbor their own genome (mtDNA),
mitochondrial genomes are severely degenerated and comprise a few to dozens of protein-coding
genes, while the majority have been transferred to the host nuclear genome (Burger et al., 2003). To
make functional mitochondria, hundreds of nucleus-encoded proteins are required (Meisinger et al.,
2008). This close relationship between mitochondria and the host cell guarantees tight co-evolution
between their genomes, which also implies that any mismatch may result in severe defects in cellular
fitness.

According to the biological species concept, evolution of reproductive isolating barriers limiting
gene flow between two populations represents a critical step of speciation (Coyne and Orr, 2004).
Reproductive isolation can result fromvariousmolecularmechanisms, including anti-recombination
induced byDNA sequence divergence, chromosome translocation and genetic incompatibility (Noor
and Feder, 2006; Greig, 2009). In recent years, much attention has been paid to the identification of
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incompatible genes and various types of genetic incompatibility
have been revealed to cause hybrid inviability or sterility (Wolf
et al., 2010). Among them, cyto-nuclear incompatibility is the one
that has been repeatedly observed between species or populations
in fungi, plants and animals (Gershoni et al., 2009; Chou and
Leu, 2010; Burton et al., 2013). Why does cyto-nuclear incom-
patibility occur so frequently across different kingdoms? Is there
any specific driving force underlying the evolution of cyto-nuclear
incompatibility?

At least three types of driving forces have been speculated to
cause cyto-nuclear incompatibility: (a) adaptive divergence, (b)
compensatory coadaptation, and (c) intergenomic conflict. One
can distinguish adaptive divergence from the other two because
the adaptive mutations were often fixed by selection from specific
ecological environments. Using hybrid or cybrid (cytoplasmic
hybrid which contains a nuclear genome from one source and
cytoplasmic genomes from another) cells, the fitness of alterna-
tive organelles in different genomic and ecological environments
can be measured to elucidate the role of extrinsic selection in
intergenomic incompatibilities. In the case of compensatory coad-
aptation and intergenomic conflict, we expect to observe only
deleterious or neutral effects from the mitochondrial genome.
However, such mitochondrial genomes are able to spread through
a naïve population at a rate higher than genetic drift under the
scenario of intergenomic conflict (discussed further below).

Several incompatible cyto-nuclear gene pairs have been dis-
sected to the molecular level (Harrison and Burton, 2006; Wang
et al., 2006; Lee et al., 2008; Chou et al., 2010). Moreover, many
studies have provided indirect evidence for the driving force
underlying evolution of cyto-nuclear incompatibility in different
organisms (Burton et al., 2013). In this review, we will discuss
the possibility that the internal evolutionary arms race between
mitochondrial and nuclear genomes accelerates co-evolution and
causes hybrid incompatibilities, as well as the implication of cyto-
nuclear incompatibility in human disease.

Adaptive Divergence in Mitochondrial DNA

Some indirect evidence has suggested that mutations in mtDNA
can be fixed due to adaptive evolution in the parental species.
In two sunflower species, Helianthus annuus and Helianthus peti-
olaris, ecological selection is speculated to contribute to cyto-
nuclear incompatibilities in the hybrid. Mismatches between
mitochondrial and nuclear genomes significantly influenced the
fitness and architecture of hybrid plants (Sambatti et al., 2008).
Adaptive divergence in mtDNA has also been reported in ani-
mal studies. Ballard compared 22 Drosophila simulans and 2 D.
melanogastermitochondrial genomes and found an excess of non-
synonymous substitutions relative to synonymous substitutions
within eachD. simulansmtDNA haplotype, indicating differential
selection in the subdivided populations (Ballard, 2000). In a later
study by James and Ballard, they tested three life-history traits
on D. simulans strains that carried different mtDNA in a similar
nuclear background. Significant differences in both development
time and survivorshipwere observed among flies carrying distinct
mitochondrial genotypes. The authors suggested that the changes
in mtDNA might be driven by the infected Wolbachia strain in

different geographic populations (James and Ballard, 2003). In a
study using the seed beetle Callosobruchus maculatus, the authors
observed complicated mtDNA-nDNA-environment interactions
and speculated that thermal adaptation might be involved in
this phenomenon (Arnqvist et al., 2010). Taken together, these
studies suggest that ecological selection can contribute to the
changes in mitochondrial DNA that may further lead to cyto-
nuclear incompatibility between populations or species (Galtier
et al., 2009). However, it remains unclear whether the adaptive
mutations first occur in mitochondrial or nuclear genomes. It
will require identification of the incompatible genes in order to
address this question.

Muller’s Ratchet in Mitochondria

Muller’s ratchet is the process by which the genome of an asexual
population accumulates deleterious mutations in an irreversible
manner. It is contrasting to what happens in a sexual population
that deleterious mutations are able to be purged by genetic recom-
bination. Consequently, the genetic load of an asexual population
will become so great that the population may go extinct. The
“ratchet effect” can also occur in the organelle genomes that do not
recombine. Although mitochondrial and nuclear genomes coexist
in the same cell, they often show different evolutionary trajecto-
ries. Several features of the mitochondrion make its genome more
susceptible to Muller’s ratchet and genome degradation.

First, mitochondria are often inherited uniparentally and sel-
dom undergo DNA recombination, which will influence their
effective population size and also the ability to purge deleterious
mutations. Many isogamous organisms have been observed to
actively degrade paternal mtDNA, even though gametes from
both parents contributemtDNA to the zygote (Beckers et al., 1991;
Sutovsky et al., 1999, 2000; Nakamura, 2010). In anisogamous
organisms, mtDNA is predominantly inherited from thematernal
parent, probably due to the size difference between male and
female gametes. Thus, even in a sexual population, mitochondrial
lineages are effectively asexual andmore vulnerable to the “ratchet
effect.”

Second, the mitochondrial genome is more susceptible to point
mutations, deletions/insertions, and structural changes compared
with the nuclear genome. DNA repair machinery inmitochondria
is inefficient and mtDNA is not protected by histones or DNA-
binding proteins (Avise, 1991; Shigenaga et al., 1994; Wei, 1998;
Krishnan et al., 2008; Fukui and Moraes, 2009). In addition, the
proximity to the electron transport chain may make mtDNA vul-
nerable to oxidative damage mediated by reactive oxygen species
(Finkel and Holbrook, 2000). In yeast, genome size, gene order,
and non-coding regions of mtDNA vary widely between different
lineages (Solieri, 2010). In plants, although the nucleotide sub-
stitution rate of mtDNA is generally lower than nuclear DNA,
mtDNA undergoes frequent recombination and its structure is
highly dynamic (Wolfe et al., 1987; Palmer and Herbon, 1988).

Finally, it is worth noting that mtDNA often experiences small
bottlenecks even though most cells contain dozens to thousands
of mitochondrial genomes. In mammals, the genetic bottleneck
may result from replication of a subpopulation of mtDNA (Wai
et al., 2008) or a sharp reduction in the mtDNA copy number
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during embryogenesis (Cree et al., 2008). In yeast cells, it has been
shown that mtDNA partitioning during vegetative segregation is
non-random, which increases the rate of intracellular drift (Birky,
2001). When deleterious mutations accumulate in mtDNA, they
inevitably compromise the fitness of host cells. Such a population
may often go extinct when facing competition from other popu-
lations. However, if the population is well isolated, compensatory
mutations in the nuclear genomewill be selected to restore fitness.

Selfish Mitochondrial DNA

Selfish DNA often spreads through a population without con-
tributing adaptive benefits. On some occasion, the selfish element
may be deleterious to the reproductive success of the host. One
such example is the selfish mtDNA in the suppressive petite
mutants discovered in yeast (Ephrussi et al., 1955; Hurst and
Werren, 2001; Petersen et al., 2002). In some petite mutants,
small mtDNA is able to replicate more efficiently than wild-type
mtDNA and therefore has a higher chance to be transmitted to
daughter cells (MacAlpine et al., 2001). The resulting petite cells
are unable to respire and have a slower growth rate. Using labora-
tory evolution experiments, Jasmin and Zeyl (2014) showed that
petite mutants could indeed spread in outcrossing sexual popu-
lations originally composed of respiration-competent cells. Some
other fungal species also contain mitochondrial plasmids, which
arise from rearrangements within the mitochondrial genome and
over-replicate at the expense of wild-typemtDNA (Bertrand et al.,
1985). Over-replication of dysfunctional mitochondrial genomes
can lead to cell death and senescence (Griffiths, 1992). Recently,
selfish mtDNA has been discovered in the nematode Caenorhab-
ditis briggsae (Clark et al., 2012). The mtDNA in natural popu-
lations carries large heteroplasmic deletions, and some deletions
exhibit a transmission bias. The selfish mtDNA produces dam-
aging reactive oxygen species and influences the fecundity and
pharyngeal pumping rates of the nematode. Transmission biases
of small mtDNA are observed in flies and crickets as well. How-
ever, the impacts of small mtDNA on host fitness remain unclear
(Solignac et al., 1984; Rand and Harrison, 1986).

Mitochondrial genomes are maternally inherited through the
cytoplasm in many organisms. Thus, any mutations in mtDNA
that increase female fitness will be selected for, even if they
are deleterious to males. This inter-genomic conflict has well
known associations with cytoplasmic male sterility (CMS) in
plants (Fishman and Willis, 2006; Chase, 2007; Chen and Liu,
2014). CMS is a maternally inherited trait often associated with
the appearance of chimeric genetic units in the mitochondrial
genome, that is thought to result from aberrant recombination
events (Hanson and Bentolila, 2004; Case and Willis, 2008). In
many cases, a nuclear-encoded fertility restorer gene (Rf ) was
observed to restore fertility of the CMS plants (Barr and Fish-
man, 2010; Luo et al., 2013). Therefore, the CMS/Rf system also
provides a valuable model for the study of interactions between
nuclear and mitochondrial genomes (Horn et al., 2014; Hu et al.,
2014). Interestingly, most RF alleles have been shown to belong to
the pentatricopeptide repeat (PPR) protein family (Chase, 2007;
Schmitz-Linneweber and Small, 2008). PPR proteins are often
involved in post-transcriptional processes, such as RNA editing,

RNA cleavage, and activation or repression of RNA translation
(Barkan and Small, 2014). The RF alleles probably function in
preventing the expression of unwanted or abnormal proteins
generated from aberrant rearrangements of the organelle genome.

One important difference between selfish mtDNA and other
selfish elements is that mtDNA propagates asexually (with-
out recombination in most cases). All mutations in the same
genome will hitchhike with the selfish mtDNA when it is spread-
ing through the population. As discussed above, mitochondrial
genomes aremore susceptible tomutations than nuclear genomes.
This implies that selfish mtDNA may have a high chance to carry
other deleterious mutations even though the mutations causing
selfish behavior are neutral to the host fitness. Consequently, the
effect of compensatory coadaptation and intergenomic conflict
may occur on the same mitochondrial DNA.

Co-evolution between the Nuclear
and Mitochondrial Genomes

The high fixation probability of mutations and frequent occur-
rence of selfish behavior in mitochondrial genomes suggest that
the cooperative relationship between mitochondrial and nuclear
genomes is unstable (Hurst, 1995; Sreedharan and Shpak, 2010;
Hadjivasiliou et al., 2013; Jasmin and Zeyl, 2014). In an isolated
population, the nuclear genome will be selected to counteract
the deleterious effect caused by the selfish behavior. This antag-
onistic relationship is reminiscent of the arms race between par-
asites and their hosts, in which parasites constantly evolve new
infectious strategies in order to spread and the hosts need to
develop resistance to control parasite proliferation (Daugherty
and Malik, 2012). The evolutionary arms race between nuclear
and mitochondrial genomes can lead to rapid evolution of the
genes involved in the interactions. It is worth noting that although
mutations fixed in these two genomes are driven by adaptation (to
increase the proliferation rate of mtDNA or nuclear genomes), the
net outcome of the arms race may not be adaptive, meaning that
the evolved cells have the same fitness as their ancestors. This co-
evolution gives rise to what the “Red Queen” hypothesis predicts,
that the nuclear genome has to run (evolve) hard in order to stay
where it is (Figure 1; Van Valen, 1973).

In addition to the arms race, the nuclear genome may also
be selected to compensate for the deleterious mutations that
hitchhike with selfish mtDNA (leading to another type of com-
pensatory coadaptation). The hitchhiking effect allows a popu-
lation to fix rare deleterious mutations at a high rate (Fay and
Wu, 2000). Moreover, unlike genetic drift, fixation of hitchhiking
mutations is not heavily dependent on population size (Smith and
Haigh, 1974). This type of compensatory coadaptation will lead to
repeated rapid co-evolution between mitochondrial and nuclear
genomes regardless of population size or the effect of mutations.
Its evolutionary trajectory is more similar to intergenomic con-
flict but distinct from conventional compensatory coadaptation
in which deleterious mitochondrial mutations are fixed by drift
(Rice, 1987; Barton et al., 2013). Therefore, in later sections we
will not separate it from intergenomic conflict in our discussion.

Rapid co-evolution between mitochondrial and nuclear geno-
mes has been documented in many organisms. Osada and Akashi
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FIGURE 1 | The arms race and co-evolution between selfish
mitochondrial DNA and the host cell. Selfish mtDNA with a higher
proliferation rate will gradually outcompete wild-type mtDNA in a sexual
population. If the selfish mtDNA possesses harmful effects or carries other
deleterious mutations, host fitness will be compromised after the selfish
mtDNA reaches a certain frequency. When the selfish mtDNA is spreading
through the population, the population starts to accumulate other mutations
to restore the host fitness. Strong restoring mutations may occur in the
nuclear genome that directly offset the harmful effect of the selfish mtDNA.
Alternatively, weak restoring mutations may occur in both mitochondrial and
nuclear genomes to compensate for the effect of deleterious mutations. In
both scenarios, the evolved mitochondrial and nuclear genomes are different
from the ancestral ones, but the host fitness remains the same.

(2012) combined phylogenetic information and the 3D structure
of the cytochrome c oxidase (COX) complex to reveal a strong
tendency for co-evolution between mtDNA- and nuclear DNA
(nDNA)-encoded components in primates. They found that rapid
evolution in primate COX genes appears to be driven by adaptive
evolution when nDNA-encoded mitochondrial proteins try to
counteract deleterious nucleotide substitutions in mtDNA. In a
systematic screen for cyto-nuclear incompatibility between closely
related yeast species, our group found that an nDNA-encoded
mitochondrial splicing protein, Mrs1, has co-evolved with the
intron in the mtDNA-encoded COX1 gene (Chou et al., 2010).
They further confirmed that the functional change of Mrs1 is
mainly caused by three amino acid changes localized on the
RNA-binding surface.

The rapid co-evolution pattern is also observed in mitochon-
drial ribosomes, which are composed of proteins encoded in both
mitochondrial and nuclear genomes. By comparing divergent
copepod populations, Barreto and Burton (2012) found that the
rate of amino acid changes for nuclear-encoded mitochondrial
ribosomal proteins is higher than that of cytosolic ribosomal
proteins. Similar patterns can be found at the interspecific level
in wasps, flies and yeast. In plants, cyto-nuclear co-evolution has
been examined using different ecotypes of Arabidopsis thaliana.
Moison et al. (2010) found that in 27 pairs of the reciprocal
F2 family, the cytoplasm donor has a significant effect on the
germination capacity of seeds. Among these observed examples of
fast co-evolution betweenmitochondrial and nuclear genomes, no
direct evidence has shown that the driving mutations in mtDNA
result from adaptation to environmental changes. Moreover, this

FIGURE 2 | Cyto-nuclear incompatibility represents a specific form of
Dobzhansky-Muller incompatibility that causes hybrid breakdown. In
the ancestral population (in red), the nuclear genotype is AABB. When the
population is split into two, different mitochondrial mutations (in blue and
green) are fixed in each population. If the new mtDNA carries deleterious
mutations (most likely due to hitchhiking with selfish elements) that
compromise host fitness, the nuclear genomes may evolve complementary
mutations (aa or bb) to restore the host fitness. When two populations
containing co-adapted mitochondrial and nuclear mutations encounter each
other and generate hybrids, unmatched mitochondria and nuclei
(double-headed arrow) cause hybrid breakdown in F1 diploids (if the
incompatibility is dominant), or F1 haploid gametes and F2 homozygous
diploids (if the incompatibility is recessive).

phenomenon has been observed in a variety of organisms that
have different population structures. It raises a doubt about
whether they are all caused by conventional compensatory coad-
aptation in which population size plays a critical role. In the
future, it will be important to examine the evolutionary trajec-
tory of mitochondrial mutations and determine how often selfish
mtDNA has been involved.

The Red Queen and Hybrid Breakdown

Cyto-nuclear incompatibility is a specific form of Dobzhansky-
Muller incompatibility, which is caused by improper interactions
between genetic loci that have functionally diverged in two dif-
ferent species (Figure 2; Dobzhansky, 1937; Muller, 1942). As
mentioned, many examples of cyto-nuclear incompatibility have
been documented in a variety of organisms including primates
(Kenyon and Moraes, 1997) and the details can be found in a
very comprehensive recent review (Burton et al., 2013). A pos-
sible explanation for why cyto-nuclear incompatibility is so com-
mon among currently identified incompatible genes could be the
arms race and co-evolution between mitochondrial and nuclear
genomes. Unlike other speciation models, which suggest that the
genes causing hybrid breakdown result from either adaptation to
external ecological environments or genetic drift, the arms race
model predicts that incompatibility can quickly evolve even if two
populations are living in a constant environment similar to their
ancestral populations (Johnson, 2010; Presgraves, 2010; Crespi
and Nosil, 2013).
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Hybrid incompatibility caused by internal evolutionary arms
races has been suggested from studies in flies and plants (Fishman
and Saunders, 2008; Bayes and Malik, 2009; Ferree and Barbash,
2009). However, the interactions between mitochondrial and
nuclear genomes possess several unique features that are absent in
other systems. First, mitochondria are the most important energy
powerhouse of the cell, and the energy requirement usually is quite
high during gametogenesis and sexual reproduction. Any reduc-
tion in the mitochondrial efficiency can easily compromise these
processes. Second, all mtDNA-encoded genes need the assistance
of nDNA-encoded proteins for their biogenesis or functions. This
close relationship enables many mutations in mtDNA to drive
co-evolution of nDNA-encoded mitochondrial proteins. Third,
as we discussed previously, mtDNA is transmitted asexually, so
any deleterious mutation in the same selfish mtDNA is unable
to be separated when this selfish mtDNA is proliferating in the
population. This implies that the same type of selfish elements
may convey different deleterious effects when they occur in dif-
ferent populations. Cyclic arms races or co-evolution guarantee
that cyto-nuclear incompatibility will frequently appear between
different populations or species. However, most of our discoveries
about cyto-nuclear incompatibility are from distinct species. Sys-
tematic studies among isolated populations are required to further
validate the current model.

Red Queen in Mitochondria and Human
Disease

Despite the diminutive size of themitochondrial genome,mtDNA
mutations are an important cause of disease in human (Taylor
and Turnbull, 2005; Tuppen et al., 2010). Mitochondrial biogen-
esis and function require regulated and coordinated expression
of nuclear and mitochondrial genomes. Mutations in nDNA-
encoded mitochondrial proteins can also lead to particular dis-
eases associated with mitochondrial functions. Previously, it has
been suggested that most population-specific mtDNA variations
in modern humans are selectively neutral to avoid being elimi-
nated by selection (Wallace et al., 1999). On the other hand, it
remains elusive whether the neutrality is nuclear background-
dependent. If arms races and co-evolution in mitochondrial and
nuclear genomes have frequently happened in different human
populations during evolution, the neutrality observed in a pop-
ulation may be specific to its nuclear background and an outcome
of the balance between deleteriousmtDNAmutations and nDNA-
encoded suppressors. The deleterious effect of mtDNA variations
will be revealedwhen they are introduced into a newnuclear back-
ground that does not contain the suppressors. Will the Red Queen
Effect explain the complicated pattern in the diseases associated
with mitochondrial defects? How many of those disease-related
mitochondrial mutations are pathogenic only in certain nuclear
backgrounds?

Many pathogenic mutations detected by genome-wide associ-
ation studies (GWAS) also exist to a certain frequency among
control populations (Manolio et al., 2009; Lee et al., 2011).
Brandon et al. (2006) assembled and analyzed the data on somatic
mtDNAmutations found in several types of tumors. They surpris-
ingly discovered that among 190 tumor-specific somatic mtDNA

mutations, 72% (137) of them overlap with mtDNA sequence
variants in a human population database. These mutations cover
a wide spectrum, including mutations in regulatory and protein-
coding regions, tRNA, and rRNA. The biological relevance of the
apparent association between tumor-specific mtDNA mutations
and population variants is still unclear. However, it does sup-
port the opinion that mtDNA variants are not selectively neutral
(Rand, 1994; Rand et al., 1994; Dowling et al., 2008). Recently, the
development and use of human cybrids allow biologists to exper-
imentally demonstrate the epistatic effect of mtDNA variants in
different nuclear backgrounds (Lin et al., 2012; Kenney et al.,
2014). These studies suggest that cyto-nuclear incompatibility can
easily develop between different human populations. An even
more important implication is that amitochondria-related disease
may simply be the outcome of mismatched mitochondrial and
nuclear genomes.

Can Compensatory Coadaptation Always
Halt the Muller’s Ratchet?

Co-evolution of the nuclear genome allows cells to mitigate
Muller’s ratchet in mitochondria. However, can the nuclear
genome always keep up with its steps to maintain the host fitness
when the mtDNA runs at different speeds? How will evolutionary
trajectories of cyto-nuclear co-evolution change when mtDNA
has different mutation rates or host cells have different popu-
lation sizes? Since it is not easy to identify all footprints left
by co-evolution between mitochondrial and nuclear genomes in
natural populations, an alternative approach to these issues will
be conducting experimental evolution in the laboratory and then
analyzing the well-controlled evolved products. The baker’s yeast,
Saccharomyces cerevisiae provides an excellent model organism
for addressing these questions.

Different mutations in the yeast mtDNA polymerase Mip1, an
ortholog of human pol γ that replicates mtDNA, can lead to 10- to
5000-fold increases in the mtDNA mutation rate (Hu et al., 1995;
Ropp and Copeland, 1996; Baruffini et al., 2006). In addition, the
mismatch repair system also plays a critical role in the fidelity of
mtDNA replication (Chi and Kolodner, 1994). By manipulating
both the mtDNA polymerase and mismatch repair proteins (such
as Msh1), yeast cell lines with different levels of mtDNA mutation
rates can be constructed and used to test co-evolution under a
laboratory setup (Figure 3). This system will allow us to dissect
the effect ofmtDNAmutation rate and host cell population size on
co-evolution of mitochondrial and nuclear genomes. Moreover,
since mitochondrial or nuclear genomes can be easily separated
in yeast, we can test the individual effect of evolved mtDNA
and nuclear genomes by constructing cybrid cells carrying either
evolved mitochondrial and ancestral nuclear genomes, or vice
versa. Finally, the evolved genomes can be subjected to whole
genome sequencing to identify the changes that occur during
laboratory evolution. The combination of these analyses will gen-
erate a high-resolution map of how mitochondrial and nuclear
genomes co-evolve within different parameters. The information
can also help us understand the patterns observed in natural
populations.
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FIGURE 3 | Schematic models of co-evolution between selfish mtDNA
and the nuclear genome. Yeast cell lines with various mitochondrial
mutation rates are constructed using different mutant forms of the
mitochondrial DNA replication protein Mip1 and mismatch repair protein
Msh1. Parallel sexual cultures are then set up to evolve in different population
sizes. Outcrossed sex exposes mitochondrial genomes to competition and
allows selfish mtDNA to spread despite organismal fitness costs. In addition,
other deleterious mutations (shown as blue circles) have the opportunity to
hitchhike with the selfish mtDNA when it is spreading through the population.
When the frequency of deleterious mutations in mtDNA is increasing in the
population, it results in a fitness valley. Subsequently, compensatory
mutations in the nuclear genome will be selected to restore the host fitness
unless the fitness valley is too deep to be recovered. This system allows us to
assay the influence of different evolutionary parameters (i.e., mutation rate,
population size and outcrossing frequency) on the co-evolution patterns
between mitochondrial and nuclear genomes.

Conclusion

It has been established that mitochondrial endosymbiosis played
an important role in eukaryotic evolution. Using data from previ-
ous studies in a variety of organisms, we argue that mitochondria
are also a strong driving force of population divergence. The
arms race and co-evolution between mitochondrial and nuclear
genomes allow different populations to accumulate different pat-
terns of mutations, eventually leading to genetic incompatibility
between populations. In some cases, the incompatibility may
also contribute to human diseases despite that the cure already
exists in the population. Cybrid line construction and the sup-
pressor screen may provide a useful tool for deciphering the
mitochondrial diseases. On the other hand, our understanding
about the co-evolution patterns, evolutionary trajectories and
determining parameters of this process is still very limited. Lab-
oratory evolution experiments using a tractable organism like
yeast may allow us to address these questions in a systematic
manner.
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