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Given the high costs of conducting a drug-response trial, researchers are now aiming

to use retrospective analyses to conduct genome-wide association studies (GWAS)

to identify underlying genetic contributions to drug-response variation. To prevent

confounding results from a GWAS to investigate drug response, it is necessary to

account for concomitant medications, defined as any medication taken concurrently

with the primary medication being investigated. We use data from the Action to Control

Cardiovascular Disease (ACCORD) trial in order to implement a novel scoring procedure

for incorporating concomitant medication information into a linear regression model

in preparation for GWAS. In order to accomplish this, two primary medications were

selected: thiazolidinediones and metformin because of the wide-spread use of these

medications and large sample sizes available within the ACCORD trial. A third medication,

fenofibrate, along with a known confounding medication, statin, were chosen as a

proof-of-principle for the scoring procedure. Previous studies have identified SNP rs7412

as being associated with statin response. Here we hypothesize that including the score

for statin as a covariate in the GWAS model will correct for confounding of statin and

yield a change in association at rs7412. The response of the confounded signal was

successfully diminished from p = 3.19 × 10−7 to p = 1.76 × 10−5, by accounting for

statin using the scoring procedure presented here. This approach provides the ability

for researchers to account for concomitant medications in complex trial designs where

monotherapy treatment regimens are not available.
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INTRODUCTION

Patient-to-patient variability in responses to medicines is common, underscoring the need to
develop more targeted therapeutic interventions, which is the principal aim for precision medicine
initiatives (Collins and Varmus, 2015). However, conducting clinical trials to identify and support
precision medicine interventions can be very costly and time consuming, and may be impractical
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if the response or disease is rare. An attractive alternative is to
leverage biobanked samples from completed or ongoing clinical
trials to conduct genome-wide association studies (GWAS) in
order to identify genetic determinants of variability in drug
response, potentially garnering additional value from the initial
clinical trial investment.

Biobanks store and manage collections of human specimens,
including but not limited to, human serum and plasma, solid
tissues, blood, and bone marrow. As technology improves over
time, research conducted using stored samples may facilitate
medical breakthroughs. A 2012 survey of 456 US biobanks found
that 59% of them had been established since 2001 and that they
range in size from tens of specimens to over 50 million specimens
(median of 8000) collected from as little as a few individuals to as
many as 10 million individuals per biobank (Henderson et al.,
2013). The large and growing number of available samples and
the declining costs of genotyping provide attractive opportunities
for retrospective genetic analyses (Jansen et al., 2005).

Biobanks collected during the course of clinical trials typically
provide data on medication usage and compliance as well as
relevant clinical outcomes for subjects from whom samples were
banked, and thus provide a rich opportunity for investigating
the genetics of drug response. However, as these trials were
designed for testing only the efficacy and safety of drugs in
a particular therapeutic setting and not for testing the genetic
contribution to drug response, they also present significant
challenges. Many clinical trials are designed to test efficacy of one
or more treatment strategies involving combinations of drugs,
and may not consist of individuals on a monotherapy treatment
regimen. Thus, patientsmay be takingmultiplemedications, with
potentially overlapping therapeutic targets, which can make it
difficult to tease out the genetic determinants of the response to
individual medications. Clinical trials typically use the Intention-
to-Treat (ITT) approach to analysis, which results in ignoring
issues of concomitant medications and medication compliance
after initial subject randomization (Detry and Lewis, 2014). ITT
can be a conservative drug efficacy testing approach as it mimics
challenges associated with real-world clinical scenarios (Detry
and Lewis, 2014), but for testing the association of genetic
variants with variation in drug response, ITT poses a significant
confounding risk.

In this study, we used frozen samples and data from the
Action to Control Cardiovascular Risk in Diabetes (ACCORD)
trial. The ACCORD study tested three treatment approaches,
in a double two-by-two factorial design, to determine the best
ways to decrease the high rate of major cardiovascular disease
(CVD) events among individuals with type 2 diabetes (T2D), who
are at especially high risk of having a CVD event, like a heart
attack, stroke, or death. These three treatment approaches were:
intensive lowering of blood sugar levels compared to standard
blood sugar treatment; intensive lowering of blood pressure
compared to standard blood pressure treatment; and treatment
of blood lipids with two drugs—a fibrate plus a statin—compared
to one drug, a statin alone (Buse, 2007). The ACCORD trial failed
to demonstrate a reduction in adverse cardiovascular events
with the intensive treatments, and the intensive glycemia arm
was terminated early due to an increase in mortality (Gerstein

et al., 2007). However, variability in response was observed in
all treatment arms, and understanding the underlying genetic
contribution to this variation in response may lead to more
targeted and safer therapies.

ACCORD represents an especially challenging example of
the difficulties encountered in conducting retrospective analyses
of the genetics of drug response in a major clinical trial.
The intensive glycemia and blood pressure lowering strategies
involved treating to lower targets for glycated hemoglobin
and systolic blood pressure than did the standard treatment
strategies, the targets for which reflect those normally achieved
in clinical practice. As such, neither strategy involved treating
with predefined combinations of drugs, but rather, a variety
of drugs could be used and could be added to existing
therapy as needed at any time during the trial in an attempt
to achieve treatment targets. Furthermore, individual drugs
could be dropped from an individual subject’s treatment
plan at any time to deal with intolerable side effects, poor
compliance, or in an attempt to find a more efficacious treatment
combination for the individual subject. Thus, each subject had
an individualized treatment trajectory, and despite the large
size of the overall trial, it is essentially impossible to identify
a large enough subset of subjects who initiate a particular
medication (the primary medication) and maintain it long
enough to measure a response, all on the background of an
invariant set of concomitant medications. Instead, we have
taken the approach of identifying the largest possible subsets
of subjects starting and maintaining a given medication, and
accounting for all other medications in our analyses. To do
this, we needed a scoring procedure that was flexible enough to
account for the different trajectories of each of the concomitant
medications, i.e., whether the subject was already taking a
particular concomitant medication before they start the primary
medication or whether they start the concomitant medication at
or after the time the primary medication is started, and whether
they continue the concomitant medication with good compliance
throughout the period in which the primary medication is
being evaluated or whether they stop taking the concomitant
medication at some point during that period. Depending upon
the details of a concomitant medication’s treatment trajectory, it
may augment, diminish, or have no effect on treatment response
to the primary medication, and each of these possibilities must
be taken into account for each concomitant medication in the
models used for genetic analysis.

We developed and applied our scoring procedure using
several models of drug response in ACCORD. Two of these
models involved the anti-hyperglycemic effects of metformin and
of the thiazolidinediones (TZDs) rosiglitazone and pioglitazone.
Metformin and TZDs are widely prescribed to lower blood
glucose and increase insulin sensitivity in individuals with T2D
and were prescribed to the majority of patients in ACCORD,
often in combination with each other or with additional glucose-
lowering drugs. In addition, we applied our scoring procedure to
a model for response of blood lipids to fenofibrate. Our initial
genetic association results, obtained without taking account of
concomitant statin usage, yielded a significant association with
the single-nucleotide polymorphism (SNP), rs7412, located in
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FIGURE 1 | Workflow Chart.

the APOE gene. However, previous studies have identified this
SNP as being associated with LDL response to statin therapy
(Postmus et al., 2014), and the majority of subjects in ACCORD
were taking statins, suggesting that this result was largely due
to statin usage, not fenofibrate. Controlling for statin using
the scoring procedure described herein resulted in substantially
diminishing the rs7412 association, further validating the scoring
procedure.

METHODS

The scoring and model building procedures workflow for this
study is depicted in Figure 1.

Accord Trial Data Description
The ACCORD trial was a double 2 × 2 factorial design,
consisting of 10,251 recruited subjects with T2D and either a
history of CVD or at least two known risk factors for CVD,
such as documented atherosclerosis, albuminuria, dyslipidemia,
hypertension, smoking, or obesity (Buse, 2007). Subjects were

randomized to either intensive or standard glycemia treatment
strategies (targeting HbA1c<6.0 vs. HbA1c between 7.0 and
7.9). A subset of 4733 subjects were further randomized to
intensive vs. standard blood pressure management (targeting
systolic blood pressure of <120mm Hg vs. <140), and the
remaining 5518 subjects were randomized to intensive vs.
standard lipid management (fenofibrate vs. placebo, with all
subjects on simvastatin).

Entry criteria for the lipid arm required an LDL of 60–180mg
per deciliter, an HDL <55mg per deciliter for women and black
subjects or <50mg per deciliter for all other groups, and a TG
<750mg per deciliter if not receiving lipid therapy or <400mg
per deciliter if receiving lipid therapy (Ginsberg et al., 2010). The
age range for subjects with a history of CVD was 40–79, and
for those with no prior CVD history, 55–79. Body mass index
(BMI) was limited to a maximum of 45, and serum creatinine to
1.5mg per deciliter. Median length of follow-up was 4.7 years,
and the primary outcomes were the first occurrence of nonfatal
myocardial infarction or stroke, or death from cardiovascular
causes.
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FIGURE 2 | Variability in response variable, change in %HbA1c, for all subjects that met the primary medication inclusion criteria as defined in the

methods. (A) Histogram of change in HbA1c for patients on TZD. (B) Histogram of change in HbA1c for patients on Metformin.

Phenotype and Time Frame Selection
Phenotypes for analysis were based on medication efficacy. In
both metformin and TZD analyses, the change in percentage of
glycated hemoglobin (HbA1c) within a defined time period after
starting the medication was used as the measure of medication
effectiveness. Distributions of change in % HbA1c for metformin
and TZD can be found in Figure 2. Initial phenotype values were
defined as measured HbA1c at or within 30 days prior to starting
the primary medication. Since HbA1c is a long term measure
of glycemia, requiring red blood cell turnover to stabilize after
a change in treatment, a minimum of 90 days of treatment was
considered necessary to elicit the full effects of starting a new
glycemia treatment on the measured phenotype. To minimize
additional changes in treatment that were likely to occur in
ACCORD during longer times on treatment, a maximum from
initiation of treatment was set at 270 days. Therefore, final
phenotype values were defined as the first measured HbA1c
occurring between 90 and 270 days after medication initiation.
Since the ACCORD trial spanned 8 years and subjects did not
always commence a particular medication at the beginning of the
trial, there is variability in when each subject’s evaluation period
occurred within the larger trial timeframe.

Concomitant Medication Selection
A total of 93 concomitant medications or medication classes were
identified as being used by subjects at some point during the
ACCORD trial, either through subject self-report at baseline or
annual physical exams or through reporting of study-supplied
drugs on the study visit case report forms. These include all
blood pressure, glycemia, and lipid lowering medications which
were part of the ACCORD therapeutic interventions, as well as
anticoagulants, anti-arrhythmics, NSAIDs, hormones, steroids,
antidepressants, antipsychotics, over-the-counter medications
and supplements, and other prescribed medications. To avoid
having to score all 93 medications for inclusion in the drug-
response models, we used the Wilcoxon Rank-Sum test to
identify associations between a change in HbA1c and the number
of days a patient was on each individual concomitant medication.

Additionally, a false discovery rate controlling procedure was
implemented to account for multiple comparisons. Significantly
associated concomitant medications (q < 0.05) were then
included in the model and scored according to the approach
outlined herein.

Each Wilcoxon Rank-Sum test ignores other medications
which may have impacted the association. Thus, we expect that
this initial selection approach resulted in false positives, or drugs
seemingly associated with the HbA1c change but that actually
are not. However, the number of false negatives is likely limited
since we expect the method to detect associations between time
on medication and the phenotype. Thus, this is designed to be a
conservative approach for initial variable selection to include any
potentially confounding concomitant medications, which will be
ultimately selected in the final model.

Drug Scoring
Cohort Selection
In order to be included, all patients must have maintained
full compliance, indicated as 80–100% compliance, in at least
80% of their recorded visits within the 90–270 day medication
response time frame following the first record indicating use
of the medication in the trial. Compliance was recorded in the
ACCORD trial as a categorical variable. A value of 1 indicated
80–100% compliance, a value of 2 indicated 1–79% compliance,
3 indicated 0% compliance, and 4 indicated the patient tookmore
than the prescribed dosage. For the purposes stated here, a value
of 4 was considered to be full compliance (100%).

Missing values of compliance during the medication response
measurement interval were imputed. The last observation carry
forward (LOCF) procedure is typically used for missing-value
imputation. LOCF carries the last non-missing observation
forward to impute the missing value(s). However, in our
study, if a compliancy record was missing, the next non-
missing compliance value was backfilled for the missing-
value imputation. This approach could be described as next
observation carry backward (NOCB), and is preferable because
patient compliance as assessed at each visit, is measured since
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TABLE 1 | Medication score descriptions.

Score Score criteria

0 The patient had no record of ever taking the medication of interest.

1 The patient was already on the medication at the start of the

treatment-window and stopped taking the medication before the end

of the primary medication treatment window.

2 The patient started the medication at or after the start of the

treatment-window and stopped taking the medication before the end

of the primary medication treatment window.

3 The patient started the medication at or after the start of the

treatment-window and was compliant to the end of the primary

medication treatment window.

4 The patient was already on the medication at the start of the

treatment-window and was compliant to the end of the primary

medication treatment window.

the previous visit. If patient compliance in the interval after the
missing record was maintained, then it was assumed the patient
was likely compliant during the interval prior to the missing
record, whereas, a prior record of compliance does not provide
the same level of assurance regarding future compliance.

Additionally, any patient with any record of 0% compliance
within the qualifying time frame was excluded to limit the
possibility that poor drug response was due to poor compliance
instead of genetic variability. A small number of patients were
also excluded due to inconsistent records (n = 9 for both TZD
and metformin analyses). For example, if a patient had records
of taking the primary medications during their annual physical
exam visits but no medication record could be found in their
monthly visits, the patient was excluded from further analysis.

Concomitant Medications
Concomitant medications selected using the Wilcoxon Rank
Sum test (q < 0.05) were scored using the criteria in Table 1.
In order to receive a score of 3 or 4 for concomitant medications,
all patients must have maintained full compliance (100%) in at
least 80% of their recorded visits within the designated time
frame. If a compliance record was missing for a patient visit, the
NOCB approach for missing-value imputation was applied, and
the patient must not have had any 0% compliance record within
the designated time frame.

In determining the designated time frame, however,
concomitant medications were required to use the exact time
points as those established for the subject’s primary medication.
For qualifying concomitant medications, those with monthly
records were scored using the logic found in Table 1. For
concomitant medications with only a yearly drug record,
patients not on the concomitant medication at the most recent
record prior to starting the primary medication were assigned
a 0; whereas, patients on the concomitant medication at the
most recent record prior to starting the primary medication
were assigned a 1. Some medications are represented in both
sources. For example, the annual concomitant medication
records include the TZD class of anti-hyperglycemia drugs,
while individual TZDs are annotated in the medication logs
filled out at the monthly visits. For drugs with both annual

concomitant medication records and monthly visit medication
logs, the annual records were used to determine whether a
subject was already taking the medication at the start of the trial,
and individual medications in the TZD class were combined to
create a score for TZD medications.

The number of days subjects were on insulin was significantly
associated with change in HbA1c. The glycemia management
logs for the monthly visits in ACCORD require the clinician to
record the average total dose of basal and bolus insulin (units per
day) that the subject was taking since the prior visit. Since insulin
usage was recorded as a continuous variable, it was not scored,
but rather the change (in units) of total insulin per day was used
in the variable selection.

Non-drug Covariate Scoring
Medication scores were not the only covariates available
for selection into the model. Other covariates including
age, number of years with dyslipidemia, number of years
with diabetes, smoking status, gender, clinical trial network,
alcohol consumption, self-reported race, and education level
were assessed at the start of the trial. Additional covariates,
pre-treatment phenotype (HbA1c), BMI, average creatinine
clearance, glomerular filtration rate, diastolic blood pressure,
systolic blood pressure, waist size, serum creatinine, and fasting
plasma glucose were recorded as the most recent measurement
prior to starting the primary medication.

Population stratification, or systematic difference in allele
frequencies between subpopulations due to ancestry differences,
can provide false associations if not properly accounted for Price
et al. (2010). Significant population stratification can oftentimes
be observed, even within the same self-reported ethnicities
or races. A method that can account for the differences in
genetic ancestry between individuals without relying on self-
reported measures is preferable. Principal components calculated
from the genome-wide genotype data (see below) can be used
to infer genetic ancestry and can therefore help avoid the
negative consequences of population stratification (Price et al.,
2010). Here, we allow the first 10 principal components (see
Supplementary Material) to be selected into the model to avoid
problems associated with population stratification, as described
below.

Genotype Data
The quality control and data processing steps are described in
detail in Irvin et al. (2016). Briefly, genotypes were subjected to
quality control to account for duplicate concordance, Mendelian
segregation (in HapMap trios included on the genotyping plates),
Hardy-Weinberg Equilibrium, and predicted gender. Cryptic
relatedness was identified using KING (v1.4), and one member of

each pair with a kinship coefficient > 1
5
2

2 = 0.1768 was removed
from the analysis data set (Manichaikul et al., 2010). Rare variant
SNPs were excluded based on a minor allele frequency <3%.
Probes significantly deviating fromHWE (χ2 > 19.51, p < 10−5)
in at least two of the four main ethnic subgroups were excluded
from the imputation process. The remaining untyped genotypes
were prephased using SHAPEIT2 (v2.r778; Delaneau et al., 2012,
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TABLE 2 | ACCORD trial baseline characteristics.

Baseline Overarching glycemia BP trial Lipid trial

characteristic trial (n = 10,251) (n = 4733) (n = 5518)

Mean age (year) 62.77 62.73 62.79

Women (%) 38.55 47.71 30.70

Race/ethnicity

White (%) 62.36 58.76 65.46

Non-white (%) 37.64 41.24 34.54

Mean duration of diabetes (yr) 10.80 10.99 10.63

Mean weight (lb) 206.16 202.82 209.02

Mean waist circumference (in) 42.02 41.61 42.37

Mean systolic BP (mm Hg) 136.15 139.00 133.70

Mean diastolic BP (mm Hg) 74.71 75.79 73.79

Mean HbA1c (%) 8.28 8.31 8.26

Mean LDL-C, mg/dL 104.72 109.60 100.53

2013) and imputed using IMPUTE2 (Howie et al., 2009) to the
1000 genomes reference panel (Howie et al., 2012).

Statistical Model Description
After all medications and other covariates were appropriately
scored, a linear regression model was constructed using all
covariates.

ŷ = β̂0 + β̂1x1 + β̂2x2 + · · · + β̂nxn

Two criteria were used for selecting observational units for
the regression model: (1) any subject that met the primary
medication inclusion criteria, and (2) any subject withoutmissing
covariate values. In cases where two covariates were collinear
(|r|> 0.5), one of the covariates was dropped from the selection
pool. Because concomitant medication scores are categorical,
they are included in the model as dummy variables, meaning that
each score is compared to the referent score of 0. Treatment arm
indicators, principal components 1–3, to account for population
stratification, and pre-treatment phenotype value were forced
into the model.

Models using many covariates are prone to overfitting and
use too many degrees of freedom, making replication of results
difficult. Thus, a backward-selection approach was applied by
comparing Bayesian information criterion (BIC) of the full
model to the resulting BIC when removing one covariate. This
comparison was repeated for each covariate, one at a time to
determine which covariates had the least effect. Those with little
effect were deemed insignificant and removed from the model.
This is repeated for all covariates and the covariate that has
the least effect on BIC is removed from selection in subsequent
iterations. This is done until there is no longer a reduction in BIC
when removing any of the remaining covariates.

Proof-of-Principle
As a proof-of-principle for the scoring procedures outlined
above, a third medication, fenofibrate, was chosen for analysis,
with simvastatin evaluated as a concomitant medication that

was expected to be a confounder. Subjects in the lipid arm of
ACCORD were randomized in a double-blind fashion to either
fenofibrate or placebo. Patients receiving placebo were excluded
from the analysis. Approximately 60% of subjects were taking a
statin prior to entry into the trial, while all subjects in the lipid
arm were put on simvastatin treatment at the trial baseline. Low-
density lipoprotein (LDL) was the phenotype of interest because
both fenofibrate and statins lower LDL. Final phenotype values
were defined as the first measured LDL post-compliance for a
time period of between 90 and 120 days. All other aspects scoring
procedures were consistent with those described in Table 1.

Two linear models were run using the fenofibrate patients.
Both models used backwards variable selection based on BIC.
However, in the first model, statin scores were added to the list of
forced covariates, while in the second, statin scores were removed
from the covariate selection pool. After scoring and modeling
was complete, genetic variants covering a five megabase region
of chromosome 19 (chr19:42912079-47912079) and obtained as
part of a GWAS (manuscript in preparation) were tested for
association with response of LDL levels to fenofibrate. Previous
studies identified a statin response with SNP rs7412, located
in the APOE gene chr19:45412079. Here we hypothesize that
including the statin score as a model covariate corrects for
confounding of fenofibrate effect by statin and will yield an
association change at rs7412. We used a statistical cutoff of
p < 1 × 10−6, since this is routinely used as a threshold for
suggestive significance in GWAS, and here we are focusing only
on chr19, where the multiple testing burden is much lower,
hence more conservative. SNPs do not satisfy the assumption of
independence due to linkage disequilibrium, therefore standard
multiple test correction methods (e.g., Bonferroni) are overly
conservative.

We also tested a drug response of statin for rs7412, but since
so many subjects were on statin prior to starting the trial, the
sample size was small (n = 653). To determine if the results with
and without statin correction were significantly different from
one another, we performed 1000 bootstrap iterations to develop
95% confidence intervals around the β coefficient for rs7412. If
the confidence intervals do not overlap then the difference is
statistically significant. Additionally, we performed a Student’s
t-test between the two bootstrapped distributions to test if the
means are significantly different, and a p < 0.05 was considered
to be statistically significantly different.

RESULTS

The allocation of patients within the ACCORD trial arms has
been previously reported (Buse, 2007). Baseline characteristics
for patients included in the ACCORD trial are shown in Table 2.
Females encompass approximately 40% of the trial and the
majority of trial participants were Caucasian. 58.5% of subjects
were currently or had previously been a smoker. The average
diabetes duration was approximately 11 years and the average
patient weight was 206 lb. Of the total 10,251 participants, 83%
(8508) consented to provide biological specimens for future
genetic analyses (Simons-Morton et al., 2014). After genotyping
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TABLE 3 | Distributions of concomitant medications within TZD analysis.

Medication p-valuea q-valuea Scoreb

0 1 2 3 4 Not scorable

Sulfonylureac 1.21E-10 1.13E-09 1011 344 37 166 1540 0

Meglitinide 2.20E-42 1.85E-40 3004 94 NA NA NA 0

Metformin 4.47E-12 4.70E-11 511 167 36 247 2137 0

Statind 0.0042 0.0149 1441 56 4 98 1499 0

ACE inhibitors 0.0005 0.0023 1433 1651 NA NA NA 14

Other diabetic medications 0.0015 0.0064 3069 29 NA NA NA 0

Angiotensin II receptor blockers 0.0049 0.0169 2570 514 NA NA NA 14

Alpha-glucosidase inhibitors 3.50E-14 4.05E-13 3067 31 NA NA NA 0

Cholesterol absorption inhibitors 0.0115 0.0363 3012 5 NA NA NA 81

Lisinoprile 0.0054 0.0182 2607 81 24 117 269 0

Loop diuretics 0.0026 0.0101 2860 224 NA NA NA 14

Nitrates 0.0135 0.0421 2921 148 NA NA NA 29

aResults from Wilcoxon Rank-Sum test for number of days on drug and change in %HbA1c across the whole trial.
bCells with NA are from medications that only had yearly records and thus only have a 0 or 1 score.
c Individual medications from the sulfonylurea drug class were combined to create this score. The Wilcoxon Rank-Sum p- and q-values is for the sulfonylurea medication, glimepiride.
dDetailed statin records were only recorded for subjects in the lipid management arm of the trial, and was not recorded for the blood-pressure arm. However, statin were measured

annually across all subjects, and is expected to capture this aspect of the trial design.
eLisinopril was only recorded for subjects in the blood-pressure arm of the trial, and was not recorded for the lipid arm. However, Lisinopril is a member of the ACE Inhibitor class of

drugs, which were measured annually across all subjects, and the ACE Inhibitor score is expected to capture this aspect of the trial design.

TABLE 4 | Regression model selected for TZD analysis.

Variable β Std. Error p-value

Intercept −1.22 0.05 <2 × 10−16

Pre-treatment HbA1c −0.67 0.02 <2 × 10−16

Principal component 1 −0.07 0.02 1.94 × 10−4

Principal component 2 −0.03 0.02 0.14

Principal component 3 −0.03 0.02 0.17

Baseline age −0.07 0.02 1.98 × 10−4

Years diabetic 0.11 0.02 5.02 × 10−10

BMI −0.11 0.02 4.12 × 10−8

Metformin score 1 0.03 0.10 0.80

Metformin score 2 −0.46 0.16 4.49 × 10−3

Metformin score 3 −0.47 0.08 1.79 × 10−9

Metformin score 4 −0.12 0.05 0.02

and quality control, genetic data for 7844 ACCORD participants
were available for analysis. Medication compliance is a concern
for any drug response study and non-compliance rates, defined
here as any recorded compliance <80% or greater than 100%,
for TZD, metformin, and fenofibrate were 4.5, 4.2, and 13.6%,
respectively. Additional details regarding the missing compliance
and non-compliance rates are presented in Supplementary
Table 1. Summary changes in %HbA1c for patients treated with
TZDs or metformin are available in Supplementary Table 2.

Scoring Results
TZDs
Of the original 10,251 ACCORD subjects, 2672 were excluded
from the analysis due to one or more of the following reasons:

patient medication information was not consistent across files
(n = 9); the patient was taking a TZD, stopped for a period of
time and then resumed the medication during the selected time
frame (n = 439); the patient had at least one record of non-
compliance (n = 379); the patient had an average compliance
(after NOCB) of less than 80% within the selected time-frame
(n = 809); the patient did not have a measured HbA1c value
within the required time-frame (n = 1832).

Of the remaining 7579 subjects, 2411 were never prescribed
a TZD during the trial, while 57 were not on a TZD for
the minimum requirement of 90 days. The resulting 5111
subjects were compliant throughout the time-frame requirement.
However, 2013 of these subjects were already taking a TZD
at the beginning of the ACCORD trial. Thus, 3098 subjects
met all inclusion criteria (i.e., started TZD during the trial,
were compliant for the required period of time, and had valid
starting and ending HbA1c measures) and were included in the
subsequent analysis.

The concomitant medication distributions for eligible subjects
taking TZD are shown in Supplementary Figure 2 and Table 3.
Results from the initial concomitant medication screening as
determined by the Wilcoxon Rank-Sum tests are also provided
in Table 3. There were very few subjects taking “other diabetic
medications,” while slightly more than half of the subjects were
taking ACE inhibitors. Metformin, glimepiride, and statin all had
scores of 4 for a large proportion of subjects, indicating subjects
who were already taking these concomitant medications at the
time they started a TZD.

Since the insulin scoring procedure yields a continuous
variable, a histogram of the change in insulin usage in subjects
starting TZDs is provided in Supplementary Figure 2. The values
are tightly packed around 0 units with a standard deviation
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TABLE 5 | Distributions of concomitant medications within metformin analysis.

Medication p-valuea q-valuea Scoreb

0 1 2 3 4 Not scorable

Sulfonylureac 1.21E-10 1.13E-09 888 164 29 144 597 0

Meglitinide 2.20E-42 1.85E-40 1760 62 NA NA NA 0

TZDsd 1.97E-27 1.33E-25 1231 61 17 200 313 0

Statine 0.0042 0.0149 918 22 3 78 801 0

ACE inhibitors 0.0005 0.0023 922 887 NA NA NA 13

Other diabetic medications 0.0015 0.0064 1782 40 NA NA NA 0

Angiotensin II receptor blockers 0.0049 0.0169 1517 292 NA NA NA 13

Alpha-glucosidase inhibitors 3.50E-14 4.05E-13 1812 10 NA NA NA 0

Cholesterol absorption inhibitors 0.0115 0.0363 1763 31 NA NA NA 28

Lisinoprilf 0.0054 0.0182 1520 43 24 98 137 0

Loop diuretics 0.0026 0.0101 1644 165 NA NA NA 13

Nitrates 0.0135 0.0421 1696 98 NA NA NA 28

aResults from Wilcoxon Rank-Sum test for number of days on drug and change in %HbA1c across the whole trial.
bCells with NA are from medications that only had yearly records and thus only have a 0 or 1 score.
c Individual medications from the sulfonylurea drug class were combined to create this score. The Wilcoxon Rank-Sum p- and q-values is for the sulfonylurea medication, glimepiride.
d Individual medications from the TZD drug class were combined to create this score. The Wilcoxon Rank-Sum p- and q-values is for the TZD medication, rosiglitazone.
eDetailed statin records were only recorded for subjects in the lipid management arm of the trial, and was not recorded for the blood-pressure arm. However, statin were measured

annually across all subjects, and is expected to capture this aspect of the trial design.
fLisinopril was only recorded for subjects in the blood-pressure arm of the trial, and was not recorded for the lipid arm. However, Lisinopril is a member of the ACE Inhibitor class of

drugs, which were measured annually across all subjects, and the ACE Inhibitor score is expected to capture this aspect of the trial design.

of 7.75 units indicating that few patients had large changes in
insulin dosage. However, there are extreme values on either end
creating long tails; the minimum insulin score is −57 units with
a maximum of 110.5 units. The mean and median are 0.55 units
and 0 units, respectively.

Of the 3098 subjects meeting the TZD inclusion criteria,
only subjects that consented to genetic analysis were carried
further, resulting in a total of 2431 subjects. The scored
concomitant medications and other covariates were then tested
for collinearity. Supplementary Table 3 shows variables with an
|r|> 0.5 and outlines why Variable 1 was dropped. After collinear
variables were removed from the pool of available covariates, a
linear model was selected using a backwards selection method
based on BIC. Table 4 shows the final model selected. Metformin
was the only concomitant medication selected into the regression
model.

Metformin
Of the original 10,251 ACCORD subjects, 1843 were excluded
from the analysis due to one or more of the following reasons:
patient medication information was not consistent across files
(n = 9); the patient was taking metformin, stopped for a period
of time and then resumed the medication during the selected
time-frame (n = 319); the patient had at least one record of non-
compliance (n = 278); the patient had an average compliance
(after NOCB) of less than 80% within the selected time frame
(n = 919); the patient did not have an HbA1c value within the
required time-frame (n = 802).

Of the remaining 8408 subjects, 772 were never prescribed
metformin during the trial, while 74 were not on metformin
for the minimum requirement of 90 days. The resulting 7562

TABLE 6 | Regression model selected for metformin analysis.

Variable β Std. Error p-value

Intercept −1.39 0.03 <2 × 10−16

Pre-treatment HbA1c −0.74 0.03 <2 × 10−16

Principal component 1 −0.11 0.02 6.67 × 10−6

Principal component 2 −0.07 0.02 8.46 × 10−3

Principal component 3 −0.04 0.02 0.07

Years diabetic 0.16 0.03 1.09 × 10−10

TZD score 1 0.49 0.14 6.21 × 10−4

TZD score 2 −0.52 0.32 0.10

TZD score 3 −0.43 0.08 9.33 × 10−8

TZD score 4 0.03 0.07 0.70

Glomerular filtration rate −0.07 0.03 6.30 × 10−3

subjects were compliant throughout the time frame requirement.
However, 5740 of these patients were already takingmetformin at
the beginning of the ACCORD trial, so no pre-treatment HbA1c
value was available. Thus, 1822 subjects met all inclusion criteria
(i.e., started metformin during the trial, were compliant for the
required period of time, and had valid starting and endingHbA1c
measures) and were included in the subsequent analysis.

The concomitant medication distributions are shown in
Supplementary Figure 1 and Table 5. The population for these
distributions describes the 1822 patients who met the inclusion
criteria for metformin. Results from the concomitant medication
screening as determined by the Wilcoxon Rank-Sum test
(q < 0.05) are also provided in Table 5. For subjects starting
metformin, there were relatively few subjects taking meglitinide,
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TABLE 7 | Regression models selected for fibrate validation analysis.

Variable With statin BIC = 1932.32 Without statin BIC = 2112.53

β Std. Error p-value β Std. Error p-value

Intercept −0.026 0.016 0.103 −0.040 0.004 <2× 10−16

Intensive glycemia arm −0.015 0.006 0.015 −0.015 0.006 0.011

Principal component 1 0.002 0.003 0.606 2.25× 10−4 0.003 0.933

Principal component 2 0.002 0.003 0.600 0.004 0.003 0.142

Principal component 3 0.006 0.003 0.040 0.008 0.003 0.005

Pre-treatment LDL score −0.077 0.004 <2× 10−16 −0.099 0.003 <2× 10−16

Years diabetic −0.010 0.003 1.18× 10−3 −0.007 0.003 0.018

Years with dyslipidemia 0.009 0.003 5.17× 10−3 0.011 0.003 1.92× 10−4

Statin score 1 0.070 0.029 0.016

Statin score 2 −0.026 0.038 0.497

Statin score 3 −0.073 0.017 1.02 ×10−5

Statin score 4 0.018 0.016 0.261

TZDs, or “other diabeticmedications,” while slightly less than half
were taking ACE inhibitors. Glimepiride and statin have scores
of 4 for a large proportion of subjects, indicating subjects who
were already taking these medications at the time they started
metformin.

A histogram of the change in insulin usage for individuals
starting metformin is provided in Supplementary Figure 1. The
distribution of values displays little deviation from 0 units with
a standard deviation of 8.9 units, but there are extreme values
on either end creating long tails. The minimum insulin score is
−67.62 units with a maximum of 90 units. The mean andmedian
are−0.34 units and 0 units, respectively.

Of the 1822 subjects meeting the metformin inclusion criteria,
only subjects that consented to genetic analysis were carried
further, resulting in a total of 1468 subjects. The scored
concomitant medications and other covariates were then tested
for collinearity. Supplementary Table 4 shows variables having an
|r|> 0.5 and outlines why Variable 1 was dropped. After collinear
variables were removed from the pool of available covariates, a
linear model was selected using a backwards selection method
based on BIC. Table 6 shows the final model selected. TZD was
the only concomitant medication selected into the metformin
regression model.

Proof-of-Principle Results
The same scoring procedure described for the anti-
hyperglycemia medications, above, was also applied to an
analysis of fenofibrate drug response. Included subjects were
participants in the fibrate arm of the Lipid subtrial of ACCORD.
After selecting the fenofibrate cohort, and its corresponding
secondary medications and all other covariates were scored, the
variables were tested for collinearity. Supplementary Table 5
shows variables that have an |r|> 0.5 and outlines why Variable
1 was dropped. After collinear variables were removed from the
pool of available covariates, a linear model was selected using a
backwards selection method based on BIC. Table 7 shows the
final model selected when statin score is a forced covariate and
when the statin scores were removed from selection. The BIC for
the model with statin was 1932, while the model without statin

was 2113. This indicates that including statin obtained a better
model fit, despite the incorporation of additional covariates.

LocusZoom plots of the selected region of chromosome 19
from the two resulting genetic association analyses can be found
below in Figure 3. The lead SNP on the APOE gene (rs7412)
is shown as a purple diamond. The yellow point above rs7412
is rs141622900 on the APOC1 gene located directly to the right
of APOE (∼4 Kb). In the plot without statin as a covariate
we see a peak indicating an association near the lead SNP
on the APOE gene (p = 3.19 × 10−7, β = −0.0406, 95%
CI[−0.0419, −0.0407]). In the plot when statin was included
as a covariate, that association has been substantially reduced
(p = 1.76 × 10−5, β = −0.0353, 95% CI[−0.0361, −0.0349]).
There was a statistically significant difference between the two
effect sizes (p < 0.001). We also tested for an association with
statin drug response. Most subjects in ACCORD began statin
treatment prior to starting the trial, preventing an appropriate
pre-treatment measurement of LDL, subsequently 653 subjects
meeting the inclusion criteria (analogous to fibrate). There was a
significant association between SNP rs7412 and LDL response for
subjects starting statin (p = 0.0016, β = −0.0357).

DISCUSSION

Here, we proposed a flexible scoring scheme to control
which concomitant medications are selected and how they are
accounted for in the analysis model for medication responses in
a complex clinical trial. Although this method was incorporated
into a linear regression model for the purpose of conducting
GWAS with the ACCORD trial data, this scoring scheme is
flexible and could be implemented into many statistical models.

We applied this scoring method to two commonly prescribed
medications to treat T2D, TZDs, and metformin. In the TZD
model, one concomitant medication, metformin, was selected for
inclusion. Both of these drugs lower HbA1c, and are the twomost
commonly prescribed anti-diabetic medications in the ACCORD
trial, so it is not surprising that metformin was incorporated into
the TZD linear model as a concomitant medication.
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FIGURE 3 | LocusZoom plots of Chromosome 19 resulting from the GWAS (A) without statin included in the model and (B) with statin included in the

model.

In the metformin model, TZD was the only concomitant
medication to be selected for inclusion. This is expected for the
same reason that metformin scores were included in the TZD
linear model. For the purposes of demonstrating the effect of
the drug scoring, the trial arm variable was not included because
it is specific to the ACCORD trial. Interestingly, in the TZD
model, including the intensive glycemia arm indicator as a forced
covariate removed the metformin score from the final model
selection (not shown). Patients within the intensive glycemia arm
of the trial were more likely to be taking additional medications
than those in the other half of the trial.When the dummy variable
for the intensive glycemia arm is added, metformin scores were
no longer selected into the model. The inclusion of metformin
once the intensive glycemia variable was excluded suggests that
the variation contributed by metformin can be largely explained
by the intensive glycemia arm variable.

A third medication, fenofibrate, was also tested along with
appropriate concomitant medications and used as a validation
of the approach described herein. Studies have shown that
the use of statins lower LDL cholesterol, and although patient
response to statins vary, part of this variability may be explained
by genetics (Postmus et al., 2014). SNPs that have been
shown to be associated with LDL response to statin treatment
include rs2199936 (ABCG2), rs10455872 (LPA), rs7412 (APOE),
rs445925 (APOE), and rs4420638 (APOE; Postmus et al., 2014).
The rs7412 SNP located in the APOE gene was genotyped,
along with surrounding SNPs, in ACCORD subjects as part of
a GWAS (data not shown), allowing us to test the effect of
incorporating statin as a covariate in an analysis of LDL response
to fenofibrate. Thus, we hypothesized that we would find an
APOE gene association using the model that does not account for
the effects of statin, while the model with statin would not yield
an association.

Two models for fenofibrate drug response were used as a
proof-of-principle for the proposed drug scoring method, one
with statin as a forced covariate and one without (Figure 3).
In the model without adjustment for statin, an association of

LDL levels with rs7412 in the APOE gene was observed (p =

3.19×10−7), which was significant based on our threshold of p <

1 × 10−6. The significance of this association was subsequently
reduced to p = 1.76×105 after incorporating the statin score into
the model. We created bootstrapped confidence intervals around
the β coefficients for the two models and the confidence intervals
did not overlap, indicating the effect size was significantly
reduced after correcting for statin (p < 2.2×10−6). Additionally,
there was also a SNP (rs141622900) with nearly the same level of
significance (p = 9.36 × 10−7) on the APOC1 gene. The level
of significance for rs141622900 was also diminished by adjusting
for statin (p = 6.46 × 10−6). Previous studies also found that
SNPs located on APOC1 may contribute to the variation in LDL
response with the use of statin (Barber et al., 2010). Although,
most subjects started statin prior to entering the trial, 653 subjects
were available and a significant association directly with statin
treatment was also observed for rs7412 in this reduced sample
size (p = 0.0016, β = −0.0357). Thus, these results demonstrate
that the implemented scoring system works as expected.

In summary, the proposed scoring scheme worked well for
the ACCORD trial data possessing a large number of study
participants, detailed compliance, and concomitant medication
data. The scoring scheme for when subjects start and stop
medications in relation to the pre- and post-treatment values
should be applicable to any drug response study design. Certain
parameters (e.g., time–frame, compliance rate), could be readily
modified to suite a specific study design thatmay be different than
the ACCORD study presented here. Admittedly, for retrospective
analyses of other biobanked clinical trial samples, the types and
extent of data available will vary from trial to trial and thus, this
scoring scheme may not be appropriate in all cases. In order to
improve the sample size, the time-frame requirements could be
relaxed. For example, lengthening the time-frame requirement
would likely incorporate more patients, but would require a
longer record of compliancy. Alternatively, tightening the time-
frame would likely eliminate patients without a phenotype
measurement, but would also reduce the length of time patients
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were required to be compliant. It may be informative to conduct
future analysis using these scoring variations, test differences in
selected models, and observe the quality of results.

Here we have proposed a flexible scoring procedure in order
to incorporate both the presence and compliance of concomitant
medications in linear regression models for the purpose of
finding genetic contribution to drug-response variation. This
procedure could be applied to many statistical models and has
been shown to decrease the confounding effect of concomitant
medications.
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