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Genotype by environment interactions (GxE) are very common in livestock and hamper

genetic improvement. On the other hand, GxE is a source of genetic variation: genetic

variation in response to environment, e.g., environmental perturbations such as heat

stress or disease. In livestock breeding, there is tendency to ignore GxE because of

increased complexity of models for genetic evaluations and lack of accuracy in extreme

environments. GxE, however, creates opportunities to increase resilience of animals

toward environmental perturbations. The main aim of the paper is to investigate to

which extent GxE can be exploited with traditional and genomic selection methods.

Furthermore, we investigated the benefit of reaction norm (RN) models compared to

conventional methods ignoring GxE. The questions were addressed with selection index

theory. GxE was modeled according to a linear RN model in which the environmental

gradient is the contemporary group mean. Economic values were based on linear and

non-linear profit equations. Accuracies of environment-specific (G)EBV were highest in

intermediate environments and lowest in extreme environments. RN models had higher

accuracies of (G)EBV in extreme environments than conventional models ignoring GxE.

Genomic selection always resulted in higher response to selection in all environments

than sib or progeny testing schemes. The increase in response was with genomic

selection between 9 and 140% compared to sib testing and between 11 and 114%

compared to progeny testing when the reference population consisted of 1 million

animals across all environments. When the aimwas to decrease environmental sensitivity,

the response in slope of the RN model with genomic selection was between 1.09 and

319 times larger than with sib or progeny testing and in the right direction in contrast

to sib and progeny testing that still increased environmental sensitivity. This shows that

genomic selection with large reference populations offers great opportunities to exploit

GxE to increase resilience of animals.

Keywords: genotype by environment interaction, breeding programs, response to selection, accuracy, genomic

selection, resilience, reaction norm model
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INTRODUCTION

Genotype by environment interaction (GxE) has been an issue in
animal breeding for a very long time. Falconer (1952) invented
the concept of genetic correlation between performance in
different environments as a measure of GxE. Consequences
of GxE for breeding programs have been studied by several
researchers in the past (James, 1961; Dickerson, 1962; Banos
and Smith, 1991; Smith and Banos, 1991) and in more recent
years (Mulder and Bijma, 2005, 2006; Mulder et al., 2006; Buch
et al., 2009). GxE often reduces response to selection (Mulder
and Bijma, 2005). If GxE is not strong, recording relatives in
different environments can alleviate the reduction in response
to selection caused by GxE. If GxE is strong, i.e., a genetic
correlation between environments lower than 0.6–0.7, different
breeding programs are needed (Mulder et al., 2006). In such
cases environments are usually considered as being different
groups of farms based on geographical location (Zwald et al.,
2001; Fikse et al., 2003), milking system (Mulder et al., 2004),
grazing/no grazing (Boettcher et al., 2003; Kearney et al., 2004a,b;
van der Laak et al., 2016) or organic/conventional farms (Nauta
et al., 2006). There is however also GxE within farms between
periods with and without stress, e.g., heat stress (Ravagnolo
and Misztal, 2000; Zumbach et al., 2008; Bloemhof et al.,
2012) or due to disease outbreaks (Herrero-Medrano et al.,
2015). This within-farm GxE requires a different attitude in
breeding programs toward improving performance in stressed
and unstressed periods, i.e., to increase resilience.

There is a long-standing desire to increase resilience or
robustness of animals. In that sense, GxE is no longer a burden
because of lower response to selection, but a blessing because it
is a source of genetic variation for adaptation to environments.
In cases like heat stress or disease outbreaks, reaction norm
(RN) models are better able to deal with the continuity of the
environment than multivariate models or character state models,
because fewer parameters need to be estimated and interpolation
is possible (Kirkpatrick and Bataillon, 1999; De Jong and Bijma,
2002). Genetic variation in slope of a linear RN model can
be considered as genetic variation in environmental sensitivity
(ES). Kolmodin et al. (2003) showed that mass selection would
increase ES, while Kolmodin and Bijma (2004) showed that ES
can be changed by mass selection depending on the position
of the selection environment with respect to the environmental
gradient. Sae-Lim et al. (2015b) showed that the heritability of
ES in aquaculture species is generally low between 0 and 0.15.
Sae-Lim et al. (2015b) derived the co-heritability of ES and
found that the coheritability is generally between −0.1 and 0.1
depending on the RN-parameters. As described in Falconer and
Mackay (1996), when computing the response to mass selection,
substituting co-heritability for heritability gives the correlated
response to mass selection. Theoretically, the coheritability of ES
is between 0 and −0.1 when the genetic correlation between two
environments is higher or equal to 0.67, the heritability of the trait
is 0.3 and no heterogeneity of additive genetic variance. In most
cases, genetic correlations between environments are very high,
above 0.8, in most livestock species, but lower between extreme
environments when using a RN model (Zumbach et al., 2008;

Herrero-Medrano et al., 2015) and also lower in aquaculture
species (Sae-Lim et al., 2015a). This would indicate that ES can
be considered as a trait with a low heritability and therefore
accuracy of selection is limited. Furthermore, the accuracy of
selection for performance in extreme environments is expected
to be low, because such environments tend to have limited
information for breeding value estimation. Especially for such
cases, genomic selection can enhance response to selection.
Using cross-validation, Silva et al. (2014) showed that a genomic
RN model increased accuracy of EBV compared to pedigree-
based EBV, especially in extreme environments. Furthermore,
they showed clear advantage of a RN model compared to a
conventional model ignoring GxE. Also, Rashidi et al. (2014)
showed an increase in accuracy of sow effects, i.e., combined
effect of breeding value and permanent environmental effect
because of lack of pedigree, using a RN model compared to
a bivariate model (periods with or without disease outbreaks)
or a conventional model ignoring GxE. In another study, the
improvement in accuracy of EBV comparing a RN model with
different environmental parameters to a conventional model
ignoring GxE was 3–8% (Rashidi, 2016). From a theoretical
point of view it is unknown what the advantage is of RN
models compared to conventional models. Furthermore, it is
unknown by how much genomic selection can increase response
to selection across environments compared to traditional sib or
progeny testing schemes in the presence of GxE.

The main aim of this study was therefore to investigate
how to exploit GxE to increase resilience with traditional and
genomic selection methods. The first question was to investigate
the benefit of using RN models in breeding value estimation
compared to conventional methods ignoring GxE. The second
question was to investigate the benefit of genomic selection
compared to traditional sib or progeny testing schemes to exploit
GxE. The questions were addressed with selection index theory.
Economic values were derived using derivatives of linear and
non-linear profit equations.

MATERIALS AND METHODS

Quantitative Genetic Framework
Here we assumed that the underlying model was a linear RN
model generating GxE between pairs of environments. The
trait considered was a sex-linked quantitative trait like milk
production in cattle or litter size in pigs. A simple quantitative
genetic model with additive genetic effects and environmental
effects was considered, assuming that the trait was only measured
once per animal and in absence of non-additive genetic effects
and common environmental effects:

P = µ + bx+ Aint + Aslx+ E (1)

where P is the phenotype, µ is the overall mean, b is the fixed
slope of the RN, x is the environmental parameter related to
environment, Aint is the breeding value for intercept of the
RN, Asl is the breeding value for slope of the RN, and E is
the residual environmental effect. The environmental parameter
x was assumed to be continuous and related to the degree
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of environmental disturbance, for instance due to disease or
heat stress. Effectively, the environmental parameter x was
a contemporary group mean such as herd-year-season as a
deviation from a herd-year effect. The environmental parameter
x was assumed normally distributed and standardized with
mean zero and variance 1 (x ∼ N(0, 1)). The intercept of the
RN was therefore in the average environment. The breeding
values Aint and Asl were bivariate normally distributed as
[

aint
asl

]

∼ MVN

([

0
0

]

,A ⊗

[

σ 2
Aint

σAint,Asl

σAint,Asl
σ 2
Asl

])

, where A

is the numerator relationship matrix, σ 2
Aint

, σ 2
Asl

and σAint,Asl

are the additive genetic variances and covariance between the
two breeding values. Because RN models can be interchanged
with multivariate models (De Jong and Bijma, 2002; Sae-Lim
et al., 2015b), we used here the multivariate approach to predict
responses to selection in different environments. We divided the
area of the normal distribution between −2 and 2 in 11 parts
plus the parts lower than −2 and higher than 2; in total 13
environments. The parts within −2 and 2 had equal intervals of
x. The proportion of animals per environment was determined as
the area under the curve of a normal distribution. The continuity
of the environment was mimicked with 13 environments.
Preliminary results showed hardly any changes in response
to selection per environment when increasing the number of
environments. Table 1 shows the 13 defined environments and
the distribution of the reference population for genomic selection
and the progeny or sibs for progeny and sib testing across the 13
environments.

Defining the Breeding Goal
Because we approximated the RN model with a multivariate
selection index, we defined the breeding goal H as:

H = v'a = v1A1 + v2A2 . . . + vnAn (2)

where vi is the economic value of environment i and Ai is
the breeding value in environment i. We used in this study

two breeding goals: (1) a proportional breeding goal with the
economic values equal to the frequencies of animals in each
environment according to the normal distribution, i.e., a linear
profit equation and (2) a resilience breeding goal using a non-
linear profit equation illustrating the law of diminishing returns.
It was called a resilience breeding goal, because more weight was
put on performance in low environments than on performance in
high environments, basically aiming to diminish ES. For breeding
goal 2, we used the equation presented by Eskridge and Johnson
(1991). The equation was used in Eskridge and Johnson (1991)
as a utility function reflecting the degree of risk aversion of
farmers with respect to yield in plant varieties. Here, we use this
equation as an example of a non-linear profit equation reflecting
the law of diminishing returns. The profit equation used her
was:

Profit = 1− exp(−0.3 ∗P) (3)

The economic value per environment can be derived for different
levels of P, i.e., different levels of x:

vi =
dProfit

dxi
= 0.3 exp

(

− 0.3E (Pi)
)

= 0.3 exp
(

−0.3(µ + bxι)
)

(4)
where xι was the average value of x in environment i based
on a normal distribution. Here, we assumed µ = 0 and
b = 1. Figure 1 shows the profit equation and its derivative
as a function of the environmental gradient x. By using the
value 0.3 in Equation (3), the economic values in the lowest
and highest environment approximately differed by a factor
four.

Selection Index Framework
Accuracy of EBV per Environment

The first objective was to quantify the accuracy of progeny-
based and genomic-based environment-specific breeding values.
Progeny and the reference population were assumed to be

TABLE 1 | The average environment and distribution of animals in the reference population or progeny across 13 environments assuming a normally

distributed environmental parameter x and basic number of animals in the reference population (5000) and number of progeny (100).

Environment x lower bound x higher bound Proportion of

environment

x average Number of animals

reference population

Number of progeny

1 −∞ −2.00 0.02 −2.37 113.75 2.28

2 −2.00 −1.64 0.03 −1.80 140.66 2.81

3 −1.64 −1.27 0.05 −1.44 253.38 5.07

4 −1.27 −0.91 0.08 −1.08 400.47 8.01

5 −0.91 −0.55 0.11 −0.72 555.35 11.11

6 0.55 −0.18 0.14 −0.36 675.71 13.51

7 −0.18 0.18 0.14 0.00 721.37 14.43

8 0.18 0.55 0.14 0.36 675.71 13.51

9 0.55 0.91 0.11 0.72 555.35 11.11

10 0.91 1.27 0.08 1.08 400.47 8.01

11 1.27 1.64 0.05 1.44 253.38 5.07

12 1.64 2.00 0.03 1.80 140.66 2.81

13 2.00 ∞ 0.02 2.37 113.75 2.27
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FIGURE 1 | The profit equation (black blocks) and the economic value

(open blocks) as a function of environment.

distributed across the environments according to frequencies
based on the normal distribution (Table 1). To calculate the
accuracy of EBV per environment, we used selection index theory
and set the breeding goal to the environment of interest (vi = 1,
economic value in environment i) and setting all other economic
values to zero. For progeny information, the index consisted of
progeny averages in each environment:

Iprog = b1P1 + . . . + bnPn = bprog 'xprog (5)

where bi are selection index weights for the progeny mean in
environment i, Pι is the average phenotype of half-sib progeny
in environment i. The optimal selection index weights bprog were
calculated using selection index theory (Hazel, 1943):

bprog = P−1
progGprogv (6)

where Pprog is the variance-covariance matrix of the information
sources in the selection index, Gprog is the covariance matrix
between information sources in the selection index and the
breeding values in the breeding goal and v is the vector with
economic values for each environment. The matrix Pprog was
calculated as:

Pprog =







var(P1) · · · cov(P1, Pn)
...

. . .
...

cov(P1, Pn) · · · var(Pn)






(7)

where var(Pι) and cov(Pι, Pj) were calculated as:

var(Pι) =

(

σ 2
Aint

+ 2xiσAint,As l
+ x2i σ

2
Asl

+ σ 2
e +

(

(ni − 1) ∗ 0.25 ∗ (σ 2
Aint

+ 2xiσAint,Asl
+ x2i σ

2
Asl
)
)

/

ni

)

(8)

and

cov
(

Pι, Pj
)

= 0.25 ∗ (σ 2
Aint

+ (xi + xj) σAint,As l
+ xixjσ

2
Asl
) (9)

The matrix Gprog was calculated as:

cov
(

Pi,Aj

)

= 0.5 ∗ (σ 2
Aint

+ (xi + xj) σAint,As l
+ xixjσ

2
As l

) (10)

For genomic selection, we assumed that in each environment a
genomic EBV (GEBV) was estimated with a univariate model
using only the reference population of that environment. For
convenience, these GEBV were scaled toward a variance of one.
The accuracy of each GEBV was calculated following Daetwyler
et al. (2008):

ri =

√

Nih
2
i

Nih
2
i +Me

(11)

where h2i is the heritability in environment i and calculated as
h2i = (σ 2

Aint
+ 2xi σAint,Asl

+ x2i σ 2
Asl
)/(σ 2

Aint
+ 2xi σAint,Asl

+
x2i σ

2
Asl

+ σ 2
e ), Ni is the size of the reference population in

environment i and Me is the effective number of chromosome
segments, which was assumed constant across environments.
Subsequently, the GEBV of all environments were combined into
an index:

IGS = b1GEBV1 + . . . + bnGEBVn = bGS 'xGS (12)

where bGS was calculated using Equation (6) and replacing Pprog
and Gprog by PGS and GGS. The matrix PGS was calculated as:

PGS =







1.0 · · · rg,ijrirj
...

. . .
...

rg,ijrirj · · · 1.0






(13)

where rg,ij is the genetic correlation between environment i and j
and ri and rj are the accuracies of GEBV in environment i and j.
The matrix GGS was calculated as:

cov
(

GEBVi,Aj

)

= rg,ijri

√

σ 2
Aint

+ 2xjσAint,Asl
+ x2j σ

2
As l

(14)

The method is in essence identical to Wientjes et al. (2016)
for one breed, but differs slightly in mathematical expressions.
The accuracy of EBV or GEBV per environment combining the
information across environments was finally calculated as:

ri,index =
b′gi

σI

√

σ 2
Aint

+ 2xi σAint,Asl
+ x2i σ

2
Asl

(15)

where σI =
√
b′Pb, i.e., the standard deviation of the index.

When a conventional model was used for breeding value
estimation ignoring GxE, all elements of Pprog were averaged

using the weights
(

ninj
)

/

(

∑i= n
i= 1 ni

)2
, where ni is the number

of progeny in environment i, and all elements of Gprog were
averaged per column to be able to calculate accuracies per
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environment. For genomic selection, we combined the univariate
GEBV of each environment into an overall index to maximize

response in Aint ignoring GxE using PGS, conv =







1.0 · · · rirj
...

. . .
...

rirj · · · 1.0







and gi = ri. Subsequently, Equation (15) was used to calculate
ri,index, setting the genetic variance in environment i to one
(σ 2

Aint
+ 2xiσAint,Asl

+ x2i σ
2
Asl

= 1.0).

Pseudo-BLUP Selection Index
The expressions 5 till 15 were extended to a pseudo-BLUP
index. The pseudo-BLUP selection index approximates BLUP
selection by including pedigree information in the selection index
(Wray and Hill, 1989; Dekkers, 1992; Villanueva et al., 1993).
Furthermore, the pseudo-BLUP selection index accounts for
reduction of genetic variance due to selection (Bulmer, 1971).
For sib or progeny testing equations were used as presented in
Mulder and Bijma (2005). For sib testing of sires and dams,
we used information of half-sibs in each environment and in
addition full-sib information in the nucleus environment, which
was considered the best environment (x = 2.37). Furthermore,
female selection candidates had own performance in the best
environment. Because BLUP selection was assumed, we included
the EBV of sires and dams in the best and worst environment,
as well as the EBV of the dams of the half-sibs. We could
not use EBV for all environments, because of singularities in
matrices due to very high correlations between EBV of different
environments. For progeny testing, we used for females the
same information as for sib testing; for males we used the same
information as for sib testing, except half-sibs were replaced by
half-sib progeny in each environment. For genomic selection,
the pseudo-BLUP index used GEBV as information using the
Equations (13) and (14). Response to selection per environment
was calculated following Mulder and Bijma (2005) using relative
generation intervals of 1 for sib testing and genomic selection and
1.6 for sires in an efficient progeny testing scheme. Response to
selection in intercept of the RN was the response in the average
environment, while the response in the slope of the RN was
calculated as RAsl

=
(

Ri − Raverage
)

/xi, where Ri is the response
in environment i (Note that, i should be different than the average
environment, but it does not matter which other environment
is used because the RN is linear). Selection intensities were
calculated assuming a finite population of selection candidates
and corrected for correlated index values among relatives (Hill,
1976; Meuwissen, 1991). The selected proportions in males
and females were assumed 5% and 20%, respectively. The
input parameters are summarized in Table 2; Figure 2 shows
the genetic correlation between a certain environment and the
average environment for the two sets of genetic parameters used.

RESULTS

The Benefit of a Reaction Norm Model for
Estimating Breeding Values
The accuracy of EBV in extreme environments was higher with
a RN model compared to a conventional model ignoring GxE

TABLE 2 | Values of parameters used in calculating response to selection

in sib testing, progeny testing schemes, and genomic selection schemes:

basic parameters and range of values used in alternative breeding

schemes.

Parameter Basic Alternatives range

Additive genetic variance intercept: σ2
Aint

0.3 0.1, 0.5

Additive genetic variance slope: σ2
Asl

0.05

Genetic correlation intercept slope r
Aint,Asl

0 0.5

Residual variance: σ2
e 0.7

Proportion of selected sires 0.05

Proportion of selected dams 0.20

Number of progeny per dam 10

Number of animals in nucleus 2000

Number of commercial half-sibs/half-sib progeny 100

Reference population genomic selection (N) 5000 1,000,000

Relative generation interval progeny testing

compared to genomic selection or sib testing

1.6

Number of effective chromosome segments (Me) 1200

FIGURE 2 | The genetic correlation between performance in a certain

environment and the average environment (=intercept) for the sets of

reaction norm parameter values used. (see Table 2).

for both genomic and progeny-based EBV (Figure 3). In the
average environment, i.e., the intercept, the accuracy for both
RN and conventional model were similar. When the genetic
correlation between intercept and slope was 0.5, the difference
in accuracy between the two models was largest in extremely
negative/unfavorable environments. The EBVs based on progeny
had higher accuracy than based on genomic prediction, but
the accuracy of genomic prediction could be further improved
with larger reference populations. When using a RN model, the
increase in accuracy across environments with either increasing
reference population for genomic EBV or with increasing
number of progeny for progeny based EBV was similar as
shown in Figure 4: in both cases accuracy reached unity in all
environments with very large reference populations or numbers
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FIGURE 3 | Accuracy of progeny or genomic based breeding values as

a function of environment with normally distributed progeny or

reference populations across environments using a reaction norm

model (RN) or a conventional model ignoring GxE (conv) (A:

r
Aint,Asl

= 0; B: r
Aint,Asl

= 0.5). See Table 2 for parameter values.

of progeny per sire. In summary, RN models resulted in higher
accuracy of EBV in extreme environments than conventional
models ignoring GxE.

The Benefit of Genomic Selection
Compared to Sib or Progeny Information
The breeding goal and the genetic correlation between intercept
and slope had a large effect on response to selection as shown in
Figures 5, 6. When the breeding goal had more emphasis on low
environments, i.e., the resilience breeding goal, most response to
selection was obtained in low environments when the genetic
correlation between intercept and slope was zero. Genomic

FIGURE 4 | Accuracy of genomic based (A) or progeny based (B)

breeding values as a function of environment with normally distributed

progeny (prog) or reference populations (refpop) across environments

for different sizes of the reference population and number of progeny

per sire using reaction norm models. See Table 2 for parameter values.

selection had higher response to selection than selection on
sib or progeny information. Especially a very large reference
population increased response to selection in low environments
more than in high environments: i.e., the difference in response
to selection became larger. When the genetic correlation between
intercept and slope was 0.5, response to selection was still higher
in high environments because of higher genetic variance in high
environments than in low environments and the positive genetic
correlation, which made it more difficult to have high response
to selection in low environments. In that case, a very large
reference population made response to selection more balanced
across environments compared to a small reference population.
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FIGURE 5 | Response to selection as a function of environment when

the breeding goal is based on the profit equation (Equation 3) using sib

testing (only half-sibs), progeny testing (progeny for sires; half-sibs for

dams) or genomic selection when the reference population is 5000 or

1,000,000 animals (A: r
Aint,Asl

= 0; B: r
Aint,Asl

= 0.5). See Table 2 for

parameter values.

A reference population of 5000 animals had a larger response to
selection in high environments than in low environments, i.e.,
a steeper slope, than sib or progeny testing indicating that small
reference populations would still increase ES. Results showed that
genomic selection with a large reference population has better
opportunity to increase performance in low environments than
traditional breeding schemes.

When the breeding goal was proportional to the environment
(Figure 6), response to selection was constant across
environments for all types of selection when the genetic
correlation between intercept and slope was zero. When
the genetic correlation between intercept and slope was 0.5,
response to selection was higher in high environments than
in low environments, due to higher genetic variance in high
environments than in low environments. Differences in response

FIGURE 6 | Response to selection as a function of environment when

each environment has a proportional economic value in the breeding

goal according to the normal distribution using sib testing (only

half-sibs), progeny testing (progeny for sires; half-sibs for dams) or

genomic selection when the reference population is 5000 or 1,000,000

animals (A: r
Aint,Asl

= 0; B: r
Aint,Asl

= 0.5). See Table 2 for parameter

values.

to selection between breeding schemes were smallest in low
environments and highest in high environments. Increasing the
reference population from 5000 to 1 million animals further
increased ES because more response could be achieved in high
environments with a higher genetic variance. It can be concluded
that the response across environments is highly affected by the
genetic correlation between intercept and slope.

The Benefit of Genomic Selection
Compared to Traditional BLUP Breeding
Schemes
Table 3 shows the benefit of genomic selection vs. traditional
BLUP breeding schemes either based on sib or progeny testing
using a pseudo-BLUP selection index. In all cases, genomic
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selection increased response to selection with increments
between 9 and 140% compared to sib testing and between
10 and 114% compared to progeny testing schemes. The
increase was largest in low environments and smallest in
the high environments, because the breeding goal had more
emphasis on low environments, whereas in sib testing and
progeny testing schemes own performance on females and full-
sib information was available in high environments, i.e., the
nucleus environment. The advantage of genomic selection was
larger for a heritability of 0.1 than for 0.3 and 0.5, especially
with a large reference population. Traditional sib and progeny
testing schemes obtained larger gain in high environments
and increased ES, whereas genomic selection decreased ES.
The response in slope, i.e., ES, of the RN model was with
genomic selection between 1.09 and 319 times larger than with
sib or progeny testing and in the right direction (Table 4).
The response in intercept was equal to the response in the
intermediate environment in Table 3. It should be noted that
the values for slope of genomic selection compared to progeny
testing were extremely large, because the response in slope was
very close to zero for progeny testing and dividing by almost
zero resulted in very large numbers. Results showed very good
opportunities for genomic selection to increase resilience by
exploiting genotype by environment interaction, especially with
large reference populations.

DISCUSSION

Methods and Results
The aims of this study were to show the benefit of RN
models compared to conventional models and to show the
benefit of genomic selection to exploit GxE compared to
traditional sib or progeny testing schemes. RN models gave
higher accuracy of EBV in extreme environments, whereas
accuracy was similar in average environments. Furthermore,
genomic selection outperformed traditional breeding schemes

TABLE 3 | Response to selection with genomic selection (GS) relative to

response to selection of sib or progeny testing schemes based on a

pseudo-BLUP selection index for 3 heritabilitiesa and 2 sizes of the

reference population for genomic selectionb.

h2 Size of reference population

5000 1,000,000

Low Middle High Low Middle High

GS/sib 0.1 1.38 1.22 1.09 2.40 1.84 1.36

0.3 1.60 1.37 1.17 2.17 1.64 1.19

0.5 1.69 1.40 1.16 2.11 1.57 1.11

GS/progeny 0.1 1.23 1.17 1.10 2.14 1.76 1.37

0.3 1.47 1.32 1.18 1.99 1.58 1.19

0.5 1.55 1.34 1.16 1.94 1.51 1.11

aheritability in average environment; due to change in genetic variance across environment

and constant residual variance, heritabilities change over the range of environments.
bSee Table 2 for used input.

by 9–140% across environments. Genomic selection was much
better able to change ES, i.e., the slope of the RN model. With
rapidly increasing reference populations in all livestock species,
it becomes increasingly feasible to have high accuracy across all
environments and makes environment-specific selection of sires
for commercial use attractive, e.g., in cattle or in pigs.

Here, we found that the difference in accuracy of EBV between
RN and a conventional model ignoring GxE increased when
more progeny per sire were available or when the reference
population was larger. The reason why RN models gave higher
accuracy than conventional models is that conventional models
ignore the genetic component due to slope and effectively only
the intercept is used. With conventional models, the accuracy
of the EBV in environment i becomes the accuracy of the EBV
for intercept times the genetic correlation between environment
i and the intercept. With RN models, the accuracy of the EBV
in environment i is higher than with conventional models due
to better exploiting the data in that environment and adjacent
environments.

Here, we found that genomic selection with a reference
population of 5000 animals outperformed traditional sib or
progeny testing schemes (Figures 5, 6), while the accuracy of
GEBV was lower than for progeny-based EBV (Figures 3, 4).
The main reason is that the accuracy of selection either with sib
testing both sexes or for sib-tested females in a progeny testing
scheme is much lower than the accuracy of genomic selection.
For instance, the accuracy of genomic selection (rIH , i.e., the
accuracy of selection for the breeding goal) was 0.73 for both
sexes with the proportional breeding goal when using the pseudo-
BLUP selection index, whereas the accuracies of selection were
0.90 and 0.47 for males and females in a progeny testing scheme
and 0.45 and 0.57 for males and females in a sib testing scheme.
Furthermore, in a progeny testing scheme, the higher accuracy
of progeny-tested males was offset by their longer generation
interval. Thus, the higher average accuracy in both sexes and the

TABLE 4 | Response to selection in reaction norm parameters with

genomic selection (GS) relative to response to selection of sib or progeny

testing schemes based on a pseudo-BLUP selection index for 3

heritabilitiesa and 2 sizes of the reference population for genomic

selectionb.

h2 Size of reference population

5000 1,000,000

BV intercept BV slope BV intercept BV slope

GS/sib 0.1 1.22 −1.09 1.84 −6.35

0.3 1.37 −1.48 1.64 −4.86

0.5 1.40 −1.47 1.57 −3.80

GS/progeny 0.1 1.17 −54.84 1.76 −319.34

0.3 1.32 −3.60 1.58 −11.80

0.5 1.34 −2.59 1.51 −6.68

aHeritability in average environment; due to change in genetic variance across

environment and constant residual variance, heritabilities change over the range of

environments.
bSee Table 2 for used input.

Frontiers in Genetics | www.frontiersin.org 8 October 2016 | Volume 7 | Article 178

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Mulder Genomic Selection Increases Resilience

short generation interval in both sexes lead to higher response
to selection with genomic selection schemes compared to sib or
progeny testing schemes.

The form of GxE was according to a linear RN model. In
practice, the form of RN and the environmental parameter
causing GxE are unknown. This requires statistical analysis
and model comparison techniques such as Akaike’s information
criterion (AIC), Bayesian information criterion (BIC) or
deviance information criterion (DIC) for Bayesian approaches.
Furthermore, also cross-validation techniques can help. Selection
index models such as developed in this study can help to
set expectations for accuracies based on cross-validation, e.g.,
depending on the size of the reference population or the
distribution of the reference population across environments.

Here, we extended the pseudo-BLUP selection index
developed in Mulder and Bijma (2005) to multiple environments
and to genomic selection equivalent of Wientjes et al. (2016).
Sib testing and progeny testing when only sibs or progeny
were used in breeding value estimation yielded very similar
responses to selection across environments (Figures 5, 6). When
nucleus information was included (Table 3), sib testing schemes
increased response to selection in high environments more
than in low environments, while progeny testing schemes had
more balanced response to selection. Similarly, Mulder and
Bijma (2005) found that sib testing was more sensitive to GxE
between selection environment and production environment
than progeny testing. Genomic selection was much better able
to increase response to selection in low environments than
traditional breeding schemes. It should be noted, however, that
in practice genomic selection uses also pedigree information,
whereas in our study we assumed that GEBV were only based
on markers. Furthermore, we assumed that markers captured
all genetic variance, while in practice high-density SNP chips
and even sequence data may only capture part of the whole
genetic variance. For instance, sequence data may suffer from
cumulating sequencing and imputation errors, while high
density SNP chips may capture only part of the genetic variation,
because of incomplete linkage disequilibrium between QTL and
SNPs. As a consequence, an accuracy of one may not be reached
and our study may have over predicted the value of genomic
selection compared to traditional selection methods. However,
even when the maximum accuracy of genomic selection would
be 0.9 or 0.95, genomic selection has still very good opportunities
to exploit GxE and to decrease rather than increase ES.

We show that genomic selection is much better able to reduce
ES than traditional selection schemes, which increased ES in
agreement with previous studies (Kolmodin et al., 2003; van der
Waaij, 2004). There are two reasons why genomic selection has
better opportunities to exploit GxE than traditional selection
methods: (1) less emphasis or no emphasis on own performance
in optimal nucleus environments and (2) high accuracy of
selection in unfavorable environments for both sexes. Especially
with sib testing, e.g., in pigs and poultry, there is high emphasis
on own performance in optimal nucleus environments. Genomic
selection has the potential to move the emphasis to performance
in commercial environments. Furthermore, with very large
reference populations genomic selection has the potential to

achieve accuracies of ∼1 across the whole environmental range,
whereas with traditional selection this is not feasible due to low
amounts of information of relatives in extreme environments.

Resilience and the Breeding Goal:
Diseases and Climate Change
Resilience is a trait which is loosely defined in many cases.
Walker et al. (2004) defined resilience as “the capacity of a
system to absorb disturbance and reorganize while undergoing
change so as to still retain essentially the same function, structure,
identity, and feedbacks,” while stability is the time required
for an ecosystem to return to an equilibrium or steady-state
following a perturbation (Holling, 1973). In animal breeding
terms, we define resilience here as the ability of an animal to
maintain performance despite perturbations and can therefore
be translated into an animal with a low ES. Stability may be
translated as decreasing variability or increasing uniformity.
Selection for increased stability or uniformity will not be
discussed here further as it is discussed elsewhere (Mulder et al.,
2008; Hill and Mulder, 2010).

In this study, we defined a resilience breeding goal as one with
more weight in the breeding goal on stressed environments, i.e.,
a low environment, and less weight on unstressed environments,
i.e., high or optimal environments, such as the nucleus. Here, we
defined the breeding goal consisting of performance in different
environments; equivalently the breeding goal can be defined in
terms of intercept and slope breeding values of RN. Clearly,
improving resilience is only of importance if low environments
have higher weight than high environments. Improving resilience
has no economic value when environments have an effect on
the overall breeding goal according to their frequencies and the
frequency of environments follow a symmetric distribution, such
as a normal distribution. Examples of breeding goals in which
increasing resilience may be of importance are improving disease
resilience and resilience to climatic environmental perturbations
such as heat stress in livestock or variation in water temperature
in aquaculture (Sae-Lim et al., 2016).

Improving disease resilience has been a research topic
for decades. Two clear examples are resilience to nematode
infections in sheep (Albers et al., 1987; Bisset and Morris, 1996)
and resilience to PRRS in pigs (Rashidi et al., 2014; Herrero-
Medrano et al., 2015). In the case of diseases, resilience may
consist of two mechanisms: resistance and tolerance (Lewis
et al., 2007; Kause, 2011; Doeschl-Wilson and Kyriazakis, 2012).
Resistance is the ability of animals to restrict the invading
pathogen’s life cycle. A resistant animal will have minimum
pathogen burden during an infection period. Tolerance is the
animal’s ability to minimize the symptoms of infection at a
given pathogen burden. Rashidi (2016) showed that selection
on the EBV for slope of a RN model, i.e., EBV for resilience,
simultaneously improved resistance and tolerance, without the
need to have records on pathogen burden. A clear example for
improving resilience is to decrease the number of stillborn and
mummified piglets during PRRS outbreaks both from economic
and societal perspective. Herrero-Medrano et al. (2015) showed
good heritabilities for number of lost piglets (the sum of stillborn
and mummified piglets) during disease outbreaks.
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Improving resilience to climatic environmental perturbations
such as heat stress in livestock or variation in water temperature
in aquaculture are other examples that have research interest.
In both examples animals experience in part of the year stresses
such as too high temperature or too low temperature. If climate
change causes more fluctuations in temperature, breeding should
aim for animals capable of handling more extreme temperatures,
i.e., more resilient. The effect of climate change may be limited
for livestock, but larger for aquaculture as fish are cold-blooded.
In such cases genetic variation in response to temperature may
help to breed fish better adapted to environments with larger
fluctuations in water temperature (Sae-Lim et al., 2016).

Optimizing Genomic Selection Programs
Genomic selection is much better able to increase resilience
than traditional breeding schemes provided that the reference
population is well-spread across environments. Preliminary
results showed hardly any difference in response when the
reference population was either equally distributed across
environments or according to proportions based on a normal
distribution. However, if the whole reference population would
be formed by elite farms with no environmental perturbations
such as disease outbreaks, genomic selection would not be able
to increase resilience. Therefore, it is crucial that the reference
population should reflect as best as possible the environmental
range that commercial progeny are expected to experience. For
cattle, this would mean that ideally all farms in milk recording
would genotype their cows. For crossbreeding schemes such as in
pigs and poultry, it would be important to genotype many more
commercial crossbred animals than currently is the case. Further,
complications are that crossbreds provide information of only

one parental haplotype per breed in case of two-way crosses
and performance in different crossbred products may not be
genetically the same trait. Clearly, here is room for optimization
of cost-effective genotyping and phenotyping efforts.

CONCLUSIONS

This study showed that RN models increased the accuracy of
environment-specific EBV or GEBV compared to conventional
models ignoring GxE. Large reference populations of 1 million
animals increased accuracies up to one across the whole
environmental range. Progeny testing schemes and sib testing
performed very similar when the breeding goal was to increase
performance across the whole environmental range. Genomic
selection outperformed traditional breeding schemes, even with
a reference population of 5000 animals. Genomic selection
increased response to selection by 9% till 140% compared to
sib testing and 11% till 114% compared to progeny testing.
When the breeding goal was to increase performance in low
environments more than in high environments, i.e., reduce ES,
progeny testing increased ES less than sib testing. However,
only genomic selection was able to reduce ES in absence of a
genetic correlation between intercept and slope, especially with
a reference population of 1 million animals. Therefore, it was
concluded that genomic selection has much better ability to
increase resilience and reduce ES.
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