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Background: Fusion genes play an important role in the tumorigenesis of many cancers.

Next-generation sequencing (NGS) technologies have been successfully applied in fusion

gene detection for the last several years, and a number of NGS-based tools have been

developed for identifying fusion genes during this period. Most fusion gene detection

tools based on RNA-seq data report a large number of candidates (mostly false positives),

making it hard to prioritize candidates for experimental validation and further analysis.

Selection of reliable fusion genes for downstream analysis becomes very important in

cancer research. We therefore developed confFuse, a scoring algorithm to reliably select

high-confidence fusion genes which are likely to be biologically relevant.

Results: confFuse takes multiple parameters into account in order to assign each fusion

candidate a confidence score, of which score ≥8 indicates high-confidence fusion gene

predictions. These parameters were manually curated based on our experience and on

certain structural motifs of fusion genes. Compared with alternative tools, based on 96

published RNA-seq samples from different tumor entities, our method can significantly

reduce the number of fusion candidates (301 high-confidence from 8,083 total predicted

fusion genes) and keep high detection accuracy (recovery rate 85.7%). Validation of

18 novel, high-confidence fusions detected in three breast tumor samples resulted in

a 100% validation rate.

Conclusions: confFuse is a novel downstream filtering method that allows selection of

highly reliable fusion gene candidates for further downstream analysis and experimental

validations. confFuse is available at https://github.com/Zhiqin-HUANG/confFuse.

Keywords: RNA-seq, next-generation sequencing, fusion gene, biomarkers, bioinformatics

INTRODUCTION

A fusion gene is typically generated from two different genes due to genomic aberrations, or rarely
at the transcript level (e.g., read-through co-transcript events). It can lead to enhanced expression
or altered activity of an oncogene, or deregulation of a tumor suppressor gene (Abate et al., 2014).
Several technologies such as chromosome banding analysis and fluorescence in situ hybridization

Abbreviations: FPKM, Fragments Per Kilobase of exon per Million mapped reads.

http://www.frontiersin.org/Genetics
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
https://doi.org/10.3389/fgene.2017.00137
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2017.00137&domain=pdf&date_stamp=2017-09-29
http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive
https://creativecommons.org/licenses/by/4.0/
mailto:m.zapatka@dkfz-heidelberg.de
https://doi.org/10.3389/fgene.2017.00137
http://journal.frontiersin.org/article/10.3389/fgene.2017.00137/abstract
http://loop.frontiersin.org/people/460117/overview
http://loop.frontiersin.org/people/383170/overview
http://loop.frontiersin.org/people/183296/overview
https://github.com/Zhiqin-HUANG/confFuse


Huang et al. confFuse: High Confidence Fusion Detection

(FISH) have been successfully applied in detection of
chromosomal alterations in the past (reviewed in e.g. Mertens
et al., 2015). More recently, next-generation sequencing
(NGS) technologies such as paired-end RNA-seq have enabled
the generation of accurate, high-resolution data in a single
experiment, allowing for unbiased genome-wide fusion
detection (Steidl et al., 2011; Seshagiri et al., 2012; Chmielecki
et al., 2013; Weischenfeldt et al., 2013; Lilljebjörn et al., 2014).
A great number of fusion gene detection tools/pipelines have
been developed to interrogate data from NGS, particularly
paired-end RNA-seq (Carrara et al., 2013; Kumar et al., 2016).
The performance of the tools differs in terms of sensitivity
and specificity, depending on the individual algorithms
and filtering methods applied (Kumar et al., 2016). Each of
these tools/pipelines has its own advantages and weaknesses.
A tool/pipeline should be properly chosen for each user’s
requirements, since one single tool/pipeline may not work best
for all different data sets.

Fusion gene detection tools/pipelines generally consist of
three major parts: firstly, mapping genomic data on reference
genome/transcriptome based on existing alignment tools such as
Bowtie (Langmead et al., 2009; Langmead and Salzberg, 2012)
and BWA (Li and Durbin, 2009); second, individual methods
for generating fusion candidates such as deFuse (McPherson
et al., 2011), FusionMap (Ge et al., 2011), and SOAPfuse (Jia
et al., 2013); and third, additional filtering algorithms to remove
false positive candidates. The sensitivity of fusion gene detection
mainly depends on the mapping ability in the alignment step
and the specificity mostly depends on the methods of generating
fusion candidates and the individual filtering methods.

Most of those tools/pipelines generate a large number of
putative fusion transcripts even after filtering, of which most
are likely to be false positives or of low biological interest
(e.g., precursor read-through transcripts), making it hard to
prioritize candidates for experimental validation. Additional
filtering methods were developed based on individual datasets
in order to select reliable candidates (Cancer Genome Atlas
Research Network, 2013; Torres-García et al., 2014). Those
individual filters of fusion gene candidates, however, may have
a bias toward cancer or cell type-specific artifacts. A method
which can work across different data sets would be very helpful
for users. Some false positive fusion predictions may be due to
sequencing/alignment artifacts or sequencing library preparation
(Mertens et al., 2015). Furthermore, strict filtering can decrease
sensitivity of true fusion detection (Torres-García et al., 2014).
Therefore, we developed confFuse, a new scoring algorithm,
which can be applied on paired-end RNA-seq across tumor
entities with both high sensitivity and high detection accuracy.

MATERIALS AND METHODS

confFuse was designed to rank fusion candidates based on deFuse
output by assigning each fusion candidate a confidence score,
with the aim of markedly reducing the total number of fusion
candidates while retaining a high recall rate for true positives.
It takes multiple features into account, including some from the

standard deFuse output and also newly generated features, with
each given a specific score weight. These features are closely
relevant to mapping performance and fusion-related structure.
The final confidence score is the sum of the score weights
of different single/combined features (the initial baseline score
is 10). These parameter weightings were manually optimized
in comparison to a known validated fusion list, in order to
achieve a balance between eliminating false positives whilst
retaining true fusions. Fusion candidates scoring between 8 and
10 are considered as being high-confidence candidates. The main
features used to calculate these score weights are described below
and summarized in Table S1.

Training Data
Sixteen recently published pediatric glioblastoma RNA-seq
samples were chosen as the first training data (International
Cancer Genome Consortium PedBrain Tumor Project, 2016).
Fusion gene candidates in these 16 samples were first identified
by tools SOAPfuse and TopHat2-Fusion (Kim et al., 2013). High-
confidence candidates were then filtered for common artifacts
and by visual inspection of fusion break points of exons between
two fusion partners (International Cancer Genome Consortium
PedBrain Tumor Project, 2016). In total, 40 fusion genes were
successfully verified by RT-PCR among the 16 samples. The first
training data was mainly used to identify and select features from
deFuse reports.

The second training data contains 96 RNA-seq samples from
seven studies, including pilocytic astrocytoma (n = 7; Jones
et al., 2013), thyroid cancer (n = 5; Ricarte-Filho et al., 2013),
glioblastoma (n = 47; Bao et al., 2014), lung adenocarcinoma
(n = 28; Seo et al., 2012), ependymoma (n = 7; Pajtler et al.,
2015), lung cancer liver metastasis (n = 1; Ju et al., 2012), and
biphenotypic sinonasal sarcoma (n= 1;Wang et al., 2014). Those
samples, including 126 experimentally verified fusion genes, were
used to optimize the score weights of varied features.

Validation Data
A published study of early-onset prostate cancer including
11 RNA-seq samples were chosen for validation in silico
(Weischenfeldt et al., 2013) and three primary breast cancer
samples were used for experimental validation.

Artifact List
Despite a prominent role for oncogenic gene fusions in multiple
cancer types, it is relatively rare for the exact same fusion to
be detected across multiple, unrelated tumor entities. Fusions
identified in multiple samples from different tumor entities based
on currently available fusion detection tools are therefore mostly
considered to be of high false positive rate. This high false positive
prediction may be due to genomic complexity such as repeat
regions or mapping artifacts in the alignment step. In total,
171 paired-end RNA-seq samples from 15 different entities were
used to generate an artifact list of fusions identified in multiple
samples from several different entities (Figure 1). To increase
the sensitivity, a small number of verified fusions were manually
excluded from the artifact list. We aim to assign high-confidence
fusion genes a score between 8 and 10, and consider fusions
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FIGURE 1 | One hundred and seventy-one paired–end RNA–seq samples

from 15 different entities were used to generate an artifact list of fusion genes.

ETMR, embryonal tumor with multilayered rosettes; CLL, chronic lymphocytic

leukemia; ATRT, atypical teratoid rhabdoid tumor.

contained in the artifact list to be of high false positive rate.
confFuse therefore assigns a negative score (−6) to those fusions
in the artifact list in order to rank them outside of the range of
confident predictions.

When taking fusion candidates identified by deFuse (version
v0.6.1) in no less than three entities (recurrence ≥ 3), 2190
fusions were included in the artifact list (Figure 2). For
candidates identified in ≥4 and ≥5 entities, there are 1,409 and
995 fusions in the artifact list, respectively. In this study, we
chose a threshold of three entities for the final artifact list. Of
note, a small number of additional putative artifacts are still
identified with each increase in the number of different tumor
types, suggesting that accuracy could be further improved by
increasing the complexity of the data set used to generate the
artifact list.

In total, 64% (5881/9169) of putative fusion transcripts (n
= 9169) identified in the second training data were found in
the artifact list (n = 2190). Among them, 62.3% (3666/5881)
were fusions from adjacent genes and 91.5% (5378/5881) were
identified by deFuse as likely being a product of alternative
splicing.

Split Reads and Spanning Reads
One of the most important features supporting a true fusion
event is the number of split reads and spanning reads. Since this is
related not just to mapping performance, but also to fusion gene
expression levels and sequencing depth, we found that setting
a simple threshold on the number of split and spanning reads
could not best distinguish true and false positive predictions.
For example, a true fusion gene with low expression and low
coverage sequencing depth may have only a few detectable split
and spanning reads. A false positive fusion gene may have a
large number of reads due to mapping artifacts and/or unreliable
reads aligned to multiple genomic locations. Comparing verified
fusions with all initial calls, the distribution of number of split
reads and spanning reads between them is similar, of which
the majority are of low read numbers (Figure 3). Most of the
verified fusions in the first training data have <200 split reads
and 50 spanning reads. A threshold purely on the number of split

FIGURE 2 | The number of recurrent fusion genes in 15 different entities.

Fusions identified in more than two entities were selected for the final artifact

list, resulting in 2,190 artifact fusions labeled with red color.

and spanning reads therefore cannot distinguish true and false
positive fusion predictions.

In addition, the mapping quality of reads should also be
considered. Some spanning reads can be aligned to more
than one genomic position, indicating reads of low mapping
quality which do not reliably support a fusion event. Breakpoint
homology is the number of nucleotides near the fusion break
point which can map equally well to both fusion partners,
with very high breakpoint homology therefore suggesting more
ambiguous support for a fusion event. Most of the verified
fusions contain <10 homologous bases at the fusion breakpoint
(Figure 3). confFuse therefore assigns a negative score (−1)
when breakpoint homology is ≥10. If spanning reads are
mapped on a repeat region, it is difficult to identify where
they are originally from, and thus those spanning reads are
considered as low mapping quality. Therefore, confFuse assigns
a negative score to those fusions with the majority of spanning
reads aligned on repeat regions, e.g., −0.5 score for fusions
of 80% up to 90% of spanning reads aligned on a repeat
region and −1 score for those fusions of >90% (Figure 3;
Table S1).

Fusion genes with different fusion transcripts (i.e., splice
variants) in the same sample may be of high true positive rate,
especially those fusion transcripts with a high count of split
reads and spanning reads. We observed that deFuse sometimes
reports multiple fusion transcripts for the same pair of fusion
partner genes (occurrence of the same fusion pairs) indicating
high probability of true fusion events. confFuse thus considers
the multiple fusion transcripts from a fusion gene as a positive
factor supporting a true fusion event.

By combining with the occurrence of the same fusion pairs,
the number of supporting reads, mapping quality of reads,
possible mapping artifacts and other fusion structure related
features mentioned below, confFuse also assigns a positive score
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FIGURE 3 | The number of split reads, spanning reads and breakpoint homology between verified and identified fusions. deFuse reported most of the verified fusion

genes in 16 glioblastoma samples as containing <200 split reads, <50 spanning reads and <10 bp breakpoint homology. The maximum proportion of spanning

reads in fusion partners aligned on a repeat region (repeat_proportion) is <80% among most of the verified fusions.

from 0.5 to 2.5 to fusions with a high number of split and
uniquely mapped spanning reads or a negative score from −0.5
to−2.0 otherwise, such as−1.5 score when all the spanning reads
are mapped on more than one genomic location (Table S1).

Fusion Structure Related Features
Two adjacent genes in the same orientation may give rise to an
apparent fusion due to read-through transcription or aberrant
splicing rather than genomic rearrangement. Although some
may acquire novel function, the vast majority are expected
to be false positives in terms of their biological relevance.
deFuse reports an altsplice feature, indicating that a fusion
may arise from alternative splicing between adjacent genes. In
the first training data, verified fusion genes do not contain
any read-through or alternative splicing events (Figure 4).
More than 75% of initially identified fusions are, however,
from an alternative splicing event. Therefore, confFuse takes

those fusions with read-through or alternative splicing as
high false positive fusion candidates by assigning a negative
score (−4) in order to separate them from high confidence
candidates. An adjacent gene fusion ESR1:CCDC170 was
reported from 22 of 990 tumor samples (Veeraraghavan et al.,
2014), showing the possibility of true fusions from adjacent
genes. Fusion candidates from adjacent genes but without a
read-through or altsplice tag are therefore given a reduced
penalty of only −0.5. Furthermore, a higher ratio of inter-
rather than intra-chromosomal fusions were detected in the
verified fusions comparing with all identified fusions (Figure 4),
and confFuse therefore also assigns a modest negative score
(−0.5) for intrachromosomal predictions (users can reset the
score weight to zero if distance between fusion gene partners is
large).

True oncogenic fusions typically preserve the open reading
frame in order to form a functional fusion protein, and the
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FIGURE 4 | Important feature distributions between verified and identified fusions. In the first training dataset, the verified fusions (n = 38) do not have any feature of

read-through, alternative splicing and adjacent genes (which may also be partly due to a selection bias in those fusions selected for verification). Comparing with

identified fusions, higher ratios of interchromosomal, open reading frame (orf) and exon boundaries in verified fusions were detected.

precise location of a fusion breakpoint point plays a critical
role in demonstrating evidence supporting true positive fusions.
When the location of a fusion splicing point is at a known exon
boundary, such a fusion is more likely to be a true positive.
Comparing with all identified fusions, we observed higher ratios
of verified fusions preserving an open reading frame and showing
fusion splicing points at exon boundaries (Figure 4). confFuse
assigns a negative score to fusions with non-detected open
reading frame (−1 score) and with splicing point not at an
exon boundary (−1.5 score). It is also more likely to be of low
biological interest when a break point is located downstream of
the 3

′

fusion partner because such predictive fusions may not
have biological function or may arise from mapping artifacts.
confFuse takes those fusions as low-confidence ones by assigning
a negative score (−4).

RESULTS AND DISCUSSION

Recovery Rate of Verified Fusions
In the first training data (n = 16), 77.5% (31/40) of verified
fusions were scored ≥8 by confFuse, 15% (6/40) is of 6≤ score
<8, and 2.5% (1/40) is <6 (Table S2). In total, 8,083 fusion
gene candidates (9,169 putative transcripts) from the second

training data (n = 96) were identified by deFuse using default
settings, of which 126 fusions were previously validated by RT-
PCR (Table S3). confFuse called 301 high-confidence fusion
genes (score ≥ 8, 301/8,083, 3.7%). Among the 301 fusions
were 108 of the 126 validated fusions, resulting in a recovery
rate of 85.7% (108/126). The remaining previously validated
fusions were either scored <8 (n = 5) or were not detected
or were already filtered by default deFuse parameters prior to
application of confFuse (n = 13; Table S4). The correlation
between recovery rate and confFuse score in the second training
data is given in Figure 5. As annotation features such as read-
through are not provided by fusionMap and soapFuse, the
number of supporting reads was chosen to compare recovery
rate. As the threshold for the required minimum number of
supporting reads increases, the recovery rate by soapFuse and
fusionMap decreases (Figure S1, Tables S9, S10). For fusions
with more than five supporting reads, fusionMap predicted 964
fusions, of which 101 were previously verified, resulting in a
recovery rate ∼80% (101/126); soapFuse predicted 562 fusions,
of which 65 were verified before, resulting in a recovery rate
∼51.6% (65/126). Thus, setting a threshold only on the number
of supporting reads cannot retain a high recovery rate and results
in decreasing sensitivity.
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FIGURE 5 | confFuse score and recovery rate in 96 published samples. In total, 126 fusion genes were validated, 113 of which were identified by deFuse. confFuse

detected 108 of 126 known validated fusions with score threshold 8. The right-hand figure shows the correlation between confFuse score and the number of fusions

identified by deFuse.

FIGURE 6 | Comparison of probability predicted by deFuse and confidence score by confFuse in 96 published RNA-seq samples. High density is of red color and low

density is of blue color.
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Comparison of Defuse Probability and
confFuse Confidence Score
The distribution of deFuse’s own probability score was compared
with our confFuse confidence score for all putative fusion
transcripts in the second training data (Figure 6). Notably, there
are many putative transcripts with a high deFuse probability
which were assigned a low score (∼ −8) by confFuse, of which
most are in the artifact list or of alternative splicing feature. None
of these are in the list of 126 known validated fusions in the
second training data. Most of the verified fusions (108/126) are
located in the range of confFuse confidence score no less than
eight. It demonstrates that confFuse is able to identify the verified
fusions among hundreds of putative fusions with high deFuse
probability.

Comparison of Alternative Fusion
Detection Tools
Comparing across tools, fusionMap, deFuse (default probability
score threshold = 0.5), deFuse-0.81 (deFuse with probability
score threshold set to ≥0.81, as used in McPherson et al., 2011),
soapFuse, confFuse-6.5 (score ≥ 6.5) and confFuse-8 (high-
confidence candidates scored≥ 8) showed recovery rates of 91.3,
89.7, 84.9, 73, 88.1, and 85.7% respectively for the 126 validated
fusions (Figure 7; Tables S4–S6, S9, S10), indicating confFuse
can dramatically reduce the number of candidates (from 8,083
to only 301) without compromising detection accuracy when
compared with other available tools.

Validation of confFuse Predicted
Candidates
To evaluate the accuracy of high-confidence candidate
predictions (score≥ 8), three primary breast tumor samples were
sequenced to generate paired-end RNA-seq data. In total, deFuse
predicted 1,026 fusion genes in the three samples, of which

18 scored ≥8 by confFuse. All 18 high-confidence candidates
were validated with RT-PCR followed by Sanger sequencing,
resulting in 100% validation rate (Figure 8; Table S7). To the
best of our knowledge, the 18 novel fusion genes haven’t been
validated before. Interestingly, one of them (QKI:PACRG)
was predicted in three of 1,019 breast cancer samples from
TCGA (www.tumorfusions.org), indicating that QKI:PACRG
may be a novel recurrent fusion in breast cancer. QKI can
suppress cell proliferation and prevent inappropriate activation
of the Notch signaling pathway in lung cancer (Zong et al.,
2014) and PACRG is an evolutionarily conserved protein with
currently unclear function (Dawe et al., 2005). Furthermore,
we randomly chose some candidates scored <8 for validation.
Nine of 13 candidates (6.5 ≤ score ≤ 7.5, medium confidence)
and three of 10 candidates (0.5 ≤ score ≤ 6, low confidence)
were experimentally verified (Table S7). Most of the genes
involved in verified fusions were in the expression level of
FPKM <50 (median≈6.44; Figure S2), indicating that it is not
only very highly-expressed candidates being detected but also
lowly-expressed ones.

To find out whether or not those verified fusions are
individual tumor specific rather than simply artifacts of pan-
breast tumor expression, the primers of verified fusions in each
sample were used for validation in the other two breast primary
tumor samples as control. In total, primers (Untergasser et al.,
2012) of 14 verified fusions were used, of which 13 showed true
negative in two control samples and one showed a false negative
in one control sample DR8V (Figure S3). This “false negative”
fusion (CD3D:TOM1L2) in sample DR8V shows a much weaker
band in gel compared with the one in sample AC72 where the
fusion was true positive, and appears as a double band of different
size to AC72, possibly indicating an unspecific PCR product.

In addition, 11 published early-onset prostate cancer samples
were used as an in silico validation dataset. Eight hundred and

FIGURE 7 | Identified fusion genes and recovery rate of validated fusions among different tools. One hundred and twenty-six fusions were previously validated by

RT-PCR. Five methods (fusionMap, deFuse, deFuse-0.81, confFuse-6.5, and confFuse-8) performed similarly in terms of recovery rate. confFuse generated much less

fusion candidates than the others (higher specificity) while identifying comparable number of validated fusions (similar sensitivity).
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FIGURE 8 | Eighteen high-confidence fusions validated by RT-PCR followed by Sanger sequencing in three primary breast tumor samples. Circular layout is based on

tool (Gu et al., 2014).

forty-nine fusion genes were called by deFuse, 24 of which were
identified as high-confidence fusion (score ≥ 8) by confFuse.
The well-known E26 transformation-specific (ETS) fusions were
detected by confFuse in 10 of 11 samples, which are the same as
previously published results (Weischenfeldt et al., 2013). Among
the 24 fusions, 17 were confirmed by DNA-seq, FISH validation
or known ETS fusions, resulting in a∼70% (17/24) recovery rate
(Table S8).

Overall, confFuse can classify fusion candidates into three
groups, namely high-confidence (8 ≤ score ≤ 10), medium-
confidence (6.5 ≤ score ≤ 7.5) and low-confidence (score ≤ 6)
fusions, which makes the users more convenient to prioritize
candidates for validations. Not only novel and biologically
relevant fusions can be identified by confFuse, but also well-
known fusions across tumor entities can be detected by
confFuse.
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CONCLUSIONS

Based on deFuse reports, the scoring algorithm confFuse
assigns each putative fusion transcript a confidence score.
In three breast tumor samples, we achieved 100% true
positive rate for high-confidence fusion candidates. Once
more verified fusion genes are available as reference data,
score weight optimization could be further improved.
Users can also customize the score weights based on their
experience to better analyze their specific data. In summary,
confFuse can reliably select high-confidence fusion genes
that are more likely to be biologically relevant, achieving
both high validation rate and high detection accuracy, while
reducing the number of candidates to a realistic number for
validation.
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